用户名: 密码: 验证码:
干养护加气混凝土反应机理与物理性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的加气混凝土是在高含水状态下进行的,水热合成反应使得制品结晶度低、毛细孔增多。直接表现在制品强度低、吸水率大、干燥收缩大、抗冻性能差等一系列问题。基于这些问题,本研究用干法养护加气混凝土,即用干热代替饱和蒸汽,在养护过程中使坯体的多余水分向外迁移,坯体在含有适当水分情况下进行水热合成反应,研究水化产物变化,含水率、吸水率抗压强度变化,以及收缩性和抗冻性的变化。
     研究表明:蒸汽养护坯体中心温度与表面温度最大差值为70℃,干养护最大差值为35℃,干养护能够大大地减小坯体中心与表面的温差。干养护制品出釜含水率比蒸汽养护低7个百分点,吸水速度比蒸汽养护慢,最终吸水率比蒸汽养护低2%,抗压强度比蒸汽养护提高10%,干养护加气混凝土的收缩值比饱和蒸汽养护的加气混凝土降低3%。试件质量损失和强度损失都低于饱和蒸汽养护。
The traditional aerated concrete is protected by the steam of 1.0 MPa~1.5Mpa, the products are steamed under steam pressure from the outside into inside, water transmission from outside into the inside of the product, and water is filled in the pores and adobe nonporous. Hydrothermal synthesis reaction makes product low crystallization, nonporous increase with the status of high moisture content. Direct performance of products is low-intensity, high water absorption and drying shrinkage, poor antifreeze performance of a range of issues. Based on these problems, this study used dry thermal curing of aerated concrete instead of saturated steam curing, the surplus water of concrete body migrates to the outward in the curing process, and the hydrothermal synthesis reaction processed under appropriate water concentration. Changes of hydration product, moisture, water absorption, compressive strength, and the changes of antifreeze and contraction were studied.
     The results show that: the largest margin in the conservation of steam is 70℃, the largest margin between dry curing center body temperature and surface temperature is 35℃, and dry curing can greatly reduce the temperature between center and surface of the body. The moisture of dry thermal curing products was 7% lower than the steam water conservation, the ultimate moisture was 2% lower than the steam water conservation, the compressive strength of the dry thermal curing was10% higher than the steam water conservation, and the value of the contract of dry thermal curing aerated concrete was lower 3% than steam conservation aerated concrete. The losses of quality and intensity of the temporary are lower than steam conservation.
引文
[1]陈胜利.加气混凝土的生产及应用[J],砖瓦,2007,7:50~52.
    [2]刘敬中、颜敏.加气混凝土的性能与工程应用[J],山东建材,2006,2:46~48.
    [3]王新民,李颂等.新型建筑干拌砂浆指南[M].北京:中国建筑工业出版社,2004:66-103.
    [4]闰志光.世纪之交的断想.加气混凝土,2000:83.
    [5]方承仕.加气混凝土的十大特性.加气混凝土应用技术论文集,1999,10.
    [6]陶有生.加气混凝土建筑的节能效果分析[J].保温材料与建筑节能,2005,1:55~57.
    [7]李森芳、谢生混.应用外加剂显著提高加气混凝土强度,建材工业信息[J],1991(16):12.
    [8]张敏、蒋冬青、薛广龙.加气混凝土的使用性能[J],陕西建筑,2006,6,132:18~21.
    [9]王秀芬.加气混凝土性能及优化的试验研究:硕士学位论文,上海:同济大学,2006.
    [10]姜勇.加气混凝土行业的发展[J].加气混凝土,1998,2:31~35.
    [11]苑金生.国外加气混凝土的生产状况[J].江苏建材.
    [12]吴森纪.国内加气混凝土生产工艺设备新进展[J].中国建材装备,1998,(1);19~20.
    [13]李占印.再生骨料混凝土性能的试验研究.西安建筑科技大学硕士毕业论文.2003.3.
    [14]秦现军.钢筋混凝土框架结构填充墙裂缝的成因与治理[J],山西建筑,2008,34(5):180~181.
    [15]粉煤灰性质对蒸压粉煤灰制品性能及水化产物的影响.1979年全国新型建筑材料及试验性.
    [16]师昌绪主编,材料大辞典,北京:化学土业出版社,1994:908.
    [17]孙抱真等.加气混凝土孔结构与强度的数学关系式.硅酸盐建筑制品.1983.5.
    [18]吴正直编著.粉煤灰房建材料的开发与应用.中国建材工业出版社.2003.1.
    [19]张誉.混凝土结构基本原理.北京:中国建筑工业出版社,2000
    [20]郑志峰.蒸压加气混凝土砌块在广州大学城建设中的应用[J].广东建才.2005,2:25~28
    [21]郭延辉,覃维组,郭京育.混凝土外加剂及其应用技术[M].北京,机械工业出版社,2004,296~301.
    [22]王培铭等编著.绿色建材的研究与应用.中国建材工业出版社.2004,10:130~131.
    [23]刘斌.加气混凝土砌块应用中的若干问题.广东建材.2005.5
    [24]高连玉,郭福胜.加气混凝土应用及其关键技术[J].房材与应用.2002(2)
    [25]殷仲海.蒸压加气混凝土用抹面砂浆的研制与应用[J].湖北教育学院学报2003,(5):10~11.
    [26] K.Shen,ed.Aerated fly ash concrete,Proc.,Symposium on utilization of fly ash,International Workshop,UN Industrial Devel.Org.1990, 3: 132~149
    [27]冯乃谦,实用混凝土大全,北京:科学出版社,2001
    [28] S . Aroni , G. . J . de Groot , M . J . Robinson , G.Svanholm ,F.H.Wittman(Eds.).Autoclaved Aerated Concrete:Properties,Testing and Design,RILEM Recommended Practice,E&FN Spon,London,1993.
    [29]陈海燕,YTONG加气混凝土矩形和异形屋面板试验研究YTONG轻质填充墙-钢筋混凝土框架连接抗震性能研究:硕士学位论文,上海:同济大学,2002
    [30]齐子刚、姜勇.我国加气混凝土行业现状及发展趋势[J],新型墙材,2008, (1): 32~34
    [31] Franklin,H.A.,Nonlinear Analysis ofReinforeed Conerete Frames and Panels,Ph.D.Dissertation,Division of Struetural Engineering and Struetural Meehanies,University of California,Berkeley. 1970, 3: 29~38
    [32] Nilsson,Arthur H.,Nonlinear Analysis of Reinforeed Conerete by the Finite Element Method,ACI Journal. 1968, 65(9): 77~82
    [33]周柄章.蒸压加气混凝土应用技术在中国的推广与应用[J].加气混凝土,1999,3:81~86
    [34] Georgiades,J.Marinos.Effect of micropore struture on AAC shrinkage.Cement and Concret Research. 1991, 121(7): 195~213
    [35] Halina Ziembicka Effect of micropore structure on cellular concrete shrinkage.Cement and Concrete research .1977, 17: 357~368
    [36]吴九成.我国加气混凝土板的现状及改进意见[J].加气混凝土,1992,(1):31~34
    [37]吴正直.粉煤灰房建材料的开发与应用.北京:中国建材工业出版社,2003;50~54
    [38]黄振利.加气混凝土墙面抹灰层空裂原因及解决方案[J].新型建筑材料,2002,(4):35~36.
    [39]李涵敏、高峰加气混凝土与含水率之间关系的探讨[J].房材与应用.2004,4:23~26
    [40] GB/T11970-1997.加气硅体积密度、含水率和吸水率试验方法.中华人民共和国国家标准.1997.
    [41] GB/T11968-1997.蒸压加气混凝土砌块.中华人民共和国国家标准.1997
    [42] GB/T11972-1997.加气混凝土干燥收缩试验方法.中华人民共和国国家标准.1997.
    [43]马保国.钟开红等.轻质加气混凝土干燥收缩的研究[J].墙材革新与建筑节能.2003,12:4~7
    [44]沈馄.关于加气混凝土收缩试验方法的问答[J].硅酸盐建筑制品.1982,(6):30~31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700