用户名: 密码: 验证码:
矿渣粉粒度分布特征及其对水泥强度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬化水泥石是由气、液、固组成的三相多孔体系,水泥石的孔隙率对水泥强度影响最大。探求形成低孔隙率的高强度水泥石,从水泥颗粒的原始堆积状态、水化产物的密实填充等作用,将水泥颗粒分布对水泥石强度的影响概括为最紧密堆积模型、最快水化速度模型和水化速度与堆积综合模型。
     用球磨机制成7种矿渣粉、1种熟料粉和1种石膏粉,分别测定9种颗粒群的粒度组成,矿渣粉和熟料粉的颗粒分布都符合RRSB分布,且n值变化范围较小,以de、d_(50)、d_(90)颗粒群的粒度特征参数和均匀程度特征参数n都能较好地反映7种矿渣粉粒度分布的差别;熟料粉、矿渣粉粒度分布与最紧密堆积的Fuller曲线相比,细颗粒含量偏少,粉体的比表面积越高与Fuller曲线越接近。
     以矿渣粉掺量10~70%,石膏粉掺量固定为4%,配制成矿渣水泥的颗粒粒度仍然符合RRSB分布。比表面积小于441m~2/kg的矿渣粉与熟料粉(比表面积为356m~2/kg)制成矿渣水泥的n值随着矿渣粉掺量呈线性提高。当矿渣粉比表面积大于500m~2/kg时,配制成矿渣水泥的n值在一定掺量范围内呈二次函数减小趋势(均匀性提高),而且矿渣粉的比表面积越大,n值的减小幅度越大。其中6种矿渣粉的de、d_(50)值都比熟料粉小,随着矿渣粉掺量的增加矿渣水泥的de和d_(50)值线性下降(细度提高),矿渣粉的细度越高,矿渣水泥的de和d_(50)值下降斜率越大。
     矿渣水泥的强度与矿渣粉颗粒群的特征参数是相关联的,以矿渣水泥对同一熟料粉制成硅酸盐水泥的同龄期同种强度的比率表示强度,以矿渣粉的比表面积为其细度特征参数。矿渣粉的比表面积在344~414m~2/kg、441~549m~2/kg、603~640m~2/kg,对于矿渣粉掺量因素的增加,矿渣水泥的3天抗压和抗折强度比率分别呈现逐渐减小、较小波动、和持续提高三种截然不同的趋势。7、28天抗压强度比率也与3天抗压呈现同样的特性。除了7天抗折强度比率随比表面积344~414m~2/kg矿渣粉掺量的增加呈现小波动外,7天抗折强度比率随比表面积414m~2/kg以上矿渣
    
    西安建筑科技大学硕士学位论文
    粉、28天抗折强度比率随比表面积344m2/kg以上矿渣粉掺量的增加而上升。
     以矿渣粉掺量和比表面积分别为X、Y坐标,做矿渣水泥强度比率等高线图,
    抗压强度比率最高区的中心随龄期由矿渣粉掺量60%向48%移动,而抗折强度比率
    最高区则是随着龄期逐渐向矿渣粉掺量70%为中心的区域浓缩。
     简化多粒度分散系为单一粒度分散系并以d50值代表其粒度大小,以矿渣水泥
    的ds。为X坐标,矿渣粉与熟料粉的d50之比为Y坐标,做矿渣水泥强度比率等高
    线图。3天抗压、抗折强度比率最低区X、Y坐标是(14~16.5,0.85~1 .0),28天
    抗压强度比率最低区(9~14,0.85~1.1)。两个龄期Y值的坐标都是在1.0附近,相
    当于两种等大尺寸球体的配合堆积,整个体系的堆积密度低孔隙率高。3天抗压、
    抗折强度比率最高区的x、Y坐标是(9一12,0.40一0.42),28天抗压强度比率最高
    区的x、Y坐标是(11~12,0.40~0.42)。两个龄期Y值坐标都是在0.41附近,对
    应于两种尺寸球体达到最紧密堆积、最低空隙率的理想球径比值。抗压强度比率最
    低区随龄期增大X坐标值减小,抗压强度比率最高区随龄期增大X坐标值增大,即
    混合粉体的粒径增大,颗粒的水化速度减小,说明随着龄期的增长,矿渣粉细颗粒
    对矿渣水泥强度的作用减弱。
     分析矿渣粉5个粒度区间的含量与矿渣水泥3个龄期抗压强度的关联度。O一3
    林m、3一10林m在3个各龄期都属于强相关粒径:10一30林m在3、7天属于中等相关性
    粒径,在28天龄期变为强相关性粒径。30一65脚、>65脚颗粒在各龄期都属于弱相
    关性粒径,其中>65林m颗粒的关联度最低。
     将矿渣粉分为5个粒度区间,以抗压强度值为特征因素,建立GM(1,6)灰色
    模型分析。对于3、7、28天3个龄期抗压强度,o一3林m、3一0卜m、30一65林m3种粒
    度,驱动系数为正,增加这种粒度矿渣粉对水泥的抗压强度有利。10一30林m、>65卜m
    两种粒度颗粒的驱动系数为负,减小这种颗粒对3个龄期的抗压强度有利。在3个
    龄期各种粒度的驱动系数数值是变化的。
Hardened cement paste is a tri-phase system consisted of gas, liquid and solid with holes. Porosity of hardened cement paste has an important factor affecting its strength. For resulting in cement stone of low porosity and high strength, three possible mechanisms are suggested and explored by the author. Based on the original packing state of cement particles and the micro-structure of hydrate products, it may suggest that the densest packing, the speediest hydrate rate, and the combination of the packing states and hydrate rate mentioned are essential for desired cement stone.
    Slag powders of seven finenesses, a clinker powder and a gypsum powder are prepared by a ball mill. The size distributions of the powders are measured to be accordance with the RRSB distribution and the values of n for each of the powders have a narrow range. The difference slag powders are characterized by granularity parameters such as de, d50, d90 and the values of n. Comparing the distribution of slag powder and clinker powder with Fuller curve of the dense packing, it shows that the content of fine particles used in specimen is less require for the Fuller curve. The curve of higher specific surface area is more closed to Fuller curve.
    The size distribution of slag cement, containing 10~70% of slag powder and 4% of gypsum, is also accordance with the RRSB distribution. The values of n of slag cement, consisted of slag powder with specific surface area less than 441m2/kg and clinker powder with specific surface area of 356m2/kg, increases with the content of slag increasing. For slag powder's specific surface area larger than 500m2/kg, its n value decreases with the content of slag increasing in a certain content of slag. The decreasing slope increases with specific surface area of slag augmenting. The value of de and d50 of six kinds slag powders are less than those of clinker. The values of de and d50 of slag
    cements decrease lineally with the content of slag increasing. The higher the fineness of
    
    
    
    slag, the larger the slope of value of de and d50.
    It is proven than the strength of slag cement is accordance with the characteristic parameters of particle size distribution of slag. The strength is characterized by the ratio of the same ages' strength of slag cement and the standard sample, Portland cement. The fineness characteristic parameter is specific surface area of slag powder. The specific surface area of slag powder from 344 to 414m2/kg, from 441 to 549m2/kg and from 603 to 640m2/kg, its ratios of flexure and compressive strength of 3d show decreasing, fluctuant and increasing trend respectively with the content of slag powder increasing. The ratios of compressive strength of 7d and 28d have the same trend as that of 3d. The ratios of flexure strength of 7d show fluctuant with the content of slag increasing with specific surface area between 344 and 414m2/kg. The ratios of flexure strength of 7d is increasing with the content of slag increasing with specific surface area larger than 414m2/kg, so does the ratios of flexure strength of 28d with specific surface area of slag larger than 344m2/kg.
    Setting the content of slag and specific surface area as X coordinate and Y coordinate respectively, the contour maps of the ratios of slag cement strength are depicted. The center of the tiptop compressive strength ratios moves from 60% to 48% with ages increasing, while the center of the tiptop flexure strength ratios moves to 70% with ages increasing.
    The polydisperse distribution is simplified to mono-disperse distribution. The granularity is characterized by the value of d50. Setting d50 of slag cement as X coordinate and the ratios of d50 of slag powder and d50 of clinker powder as Y coordinate, the contour maps of the ratios of slag cement strength is depicted. The minimum strength ratios of flexure and compressive strength of 3d occur at X of 14~16.5 m and Y of 0.85~1.0 and those of 28d occur at X of 9~14 m and Y of 0.85~ 1.1. All the Y values are about 1.0 and this corresponds to the packing model of two kinds of
引文
[1] 沈威,黄文熙,阎盘荣:水泥工艺学,武汉工业大学出版社,1—5,1991
    [2] 建材工业信息,20008,4-5
    [3] GB/T1344—1999:矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥,中国标准出版社,2003
    [4] 蒋永惠,汪小东等:矿渣微粉对实施水泥新标准的影响,水泥技术,No1.1,55-58,2002
    [5] 邹伟斌,赵慰慈,杨杰:立窑水泥实现新国标达标生产的综合措施,水泥工程,no.1,45-48,2001
    [6] F W Locher, J Wuhrer and K. Schweden: Tonind. Ztg Keram Rundsch, 547-550, 1966
    [7] J.H Taplin:5t"International Symposium on the Chemistry of cement VolⅡ, Tokio, 337-421, 1968
    [8] F.M.李:水泥和混凝土化学,第三版,中国建筑工业出版社,128—162,1980
    [9] Metha P K: Hardened Cement Pate-Microstructure And its Relationship to Properties[A]. In Proceedings of 8th international congress in the chemistry of cement[G], Vol.Ⅰ Rio de Janeiro: Finep, 113-121, 1986.
    [10] 冯乃谦,邢锋:高性能混凝土技术,原子能出版社(第一版),20-28,2000
    [11] 吴中伟,廉慧珍:高性能混凝土.北京;中国铁道出版社,38-44,1999
    [12] Lange F, Mortel H: Ruder V. Dense Packing Of Cement Pastes And Resulting Coquences On Mortar Properties[J], Cement and Concrete Research, 27(10), 1481-1488, 1997
    [13] 陶珍东,郑少华:粉体工程与设备,化学工业出版社,No.8,23-29,2003
    [14] R.M.German著:粉末注射成形,曲选辉译,中南大学出版社,19-46,2001
    [15] 郑水林:超细粉碎;中国建材工业出版社,9-39,1999
    [16] 陆厚根:粉体工程导论[M].上海:同济大学出版社,1993.
    [17] H.T. Horsfield: The Strength Of Asphalt Mixtures.Journal of The Society For Chemical Industry, vol.53, 107-115, 1934
    [18] W. B. Fuller and S. E. Thompson. The Laws Of Proportioning Concrete. AMERICAN Mixtures Journal of The Society For Chemical Industry, vol.53, 107-115, 1934
    
    
    [19] 乔龄山:水泥的最佳颗粒分布及其评价方法,水泥,No.8,2-5,2001
    [20] V. Johansen, P.J. Andersen: Particle packing and concrete properties, Materials Sience of Concrete, The American Ceramic Society, USA, 111-147, 1991
    [21] Wang Aiqin, Zhang Chengzhi, Zhang Ning sheng: The theoretic analysis of the influence of the particle size distribution of cement system on the property of cement Cement and Concrete Research, Vol29, 1721-1726, 1999
    [22] A.Wang, C.Zhang, N.Zhang: Study of the particle size distribution on the properties of cement, Cement and Concrete Research, Vol 27(5), 685-695, 1997
    [23] T.C.Powers: Industuial And Engineering Chemistry, Vol 27, 790-794, 1935
    [24] G. Frigioine, S.Marra: Relationship between particle size distribution and compressive strength in Portland cement, Cement and Concrete Research, No1.6, 113-128, 1976
    [25] 许仲梓:颗粒分布对水泥水化速度的影响的理论探讨,硅酸盐学报,Vol.14(No.1),47-54,1986.3
    [26] K Kuhlmanm, H -G Ellerbrock and S.Sprung, Diisseldorf: Particle size distribution and properties of cement Part Ⅰ: Strength of Portland cement, ZKG, No.6, 136-144, 1985
    [27] S Sprung, K.Kuhlmanm and H.G. Ellerbrock et.al: Particle size distribution and properties of cement Part—Water demand of Portland cement, ZKG, No.11 275-281, 1985
    [28] S. Tsivilis, G. Kakali, E. Chaniotakis, A. Souvaridou, A study on the hydration of Portland limestone cement by means of TGA, J Therm Anal 52863-870,(1998)
    [29] F. Skvara, K.KOlar, J Novotny, et.al: The effect of cement particle size distribution upon properties of pastes and mortars with low water-to-cement ratio, Cement and Concrete Research, Vol.11, 247-255, 1981
    [30] 冯修吉,赵飞:用灰色系统理论研究粒径分布对水泥抗压强度的影响,武汉工大学学报,Vol.13,No.12,1-9,1991
    [31] 赵飞:粒径分布对水泥水化和性能的影响的研究,[硕士论文],武汉工业大学图书馆,1985
    [32] H. Li, M.R.Silsbee and D M Roy: Particle packing characteristics and effects on highstrength cements, Materials science of concrete, The sidney Diamond Symposium, Published by The America Ceramic Society, 509-515.
    
    
    [33] Torben Kundsen: The dispersion model for dration of Portland cement I, General Concepts, Cement and Concrete Research, Vol 14, 622-630, 1984
    [34] A Kato and K.Hirose: Cement Assoc Japan, Twenty Third General Meeting 1969, 109-121, 1970
    [35] 王爱琴,张承志,张宁生:颗粒级配对水泥性能影响的探讨,水泥工程,No1.6,16-20,1996
    [36] P K Mehta: Durability-Critical issues for the future, Concrete International, 19(7), 27-33, 1997
    [37] D P Bentz, CJ Haecker: An argument for using coarse cements in high performance concrete, Cement and Concrete Research, 29, 615-617, 1999
    [38] 张永娟,张雄,窦竞:矿渣微粉颗粒分布与其活性指数的灰色关联分析,建筑材料学报,Vol.4,No.1,44-48,2001
    [39] 卢迪芬,陈森凤,吴建其,陶龙忠:矿渣微粉颗粒分布对胶凝材料性能影响的灰色系统,华南理工大学学报(自然科学版),Vol.31,No1.,30-33,2003
    [40] 管宗甫,谭伟:混合材颗粒级配对水泥强度的影响 郑州大学学报(自然科学版),Vol.33,No.12,82-85,2001
    [41] 张雄等:矿渣微粉掺量及其与水泥颗粒群分布的匹配,建筑材料学报,Vol.6,No.3,296-300,2003
    [42] 张永娟,张雄:矿渣微粉颗粒群分布与水泥性能的关系研究,水泥,No.1,p1-4,2002
    [43] 牛全林,冯乃谦,杨静:矿渣超细粉作用机理的探讨,建筑材料学报,Vol.5,No.1,84-89,2002
    [44] 张福根,荣跃龙,程路:用激光散射法测量大颗粒时使用衍射理论的误差[J],粉体技术,1996,2(1):7—14.
    [45] 任中京:颗粒群粒度均匀性的定量表征,硅酸盐通报,No.3,12-14,1999,
    [46] T. Allen: Particle Size Measurement, Second Edition, Halsted Press, London, 23-31, 1975
    [47] 罗帆:不同粒级的水泥及其作用.四川建材,No.5,1989
    [48] 施娟英:熟料颗粒大小对水泥性能的影响—兼论水泥最佳颗粒组成,中国建材院庆祝建院三十周年水泥与混凝土研究论文选.(下册).(内部资料),1993-2005
    [49] 陈真维:水泥的粒度分布与水泥性能,广东建材,No.4,1992
    [50] 肖忠明,王昕:研究颗粒组成与性能关系新方法—兼论水泥的最佳颗粒组成,
    
    水泥,No.4,8-12,2000
    [51]刘思峰等:灰色系统理论及其应用(第二版),科学出版社,2000
    [52]邓聚龙:灰色控制系统:武汉:华中理工大学出版社1997
    [53]张龙庭,罗佑新:试验数据处理的多因素灰色模型GM(1,n)及其应用,机械设计,Vol.20 No.1,2003
    [54]陈云波,邓慧颖;应用灰色系统优化水泥颗粒分布的方法研究,水泥,No.7,5-8,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700