用户名: 密码: 验证码:
不同水氮管理对水稻生长和水氮效率影响的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻集约化生产条件下氮肥和水分利用效率偏低,氮肥环境污染问题日益突出。协调水氮管理,发挥水氮协同效应,实现产量与水氮效率协同提高,是当前农业水氮管理中亟待探讨的问题。已有的研究大多从单因子效应、短时间、室内模拟和产量效应与水分利用效率的关系等方面展开探索,而在大田条件下对水稻集约化生产的水肥耦合进行多因子试验,系统研究其对水稻产量、品质、资源利用效率以及生态环境效应等的影响则鲜见报道。本研究以节水抗旱稻旱优3号和灌溉稻(扬两优6号、华两优9313、金科优938)为试验材料;在大田条件下采用裂区试验设计,以水分管理模式(包括半旱栽培、干湿交替和淹灌)为主区,施氮量(氮肥施用量2009年为0、108.148.5、189kg ha-1,2010年为0、108、175.5kg ha-1)为裂区,品种为再裂区;比较研究了不同水氮管理方式对水稻生长发育、产量及其构成因子、水分利用效率、氮肥利用效率、水氮耦合效应等的影响,初步明确了适用于集约化水稻生产区的水稻产量与水氮高效协同的模式,阐明了水稻高产和水氮高效利用的关键过程和限制因素。主要研究结果如下:
     (1)本试验条件下,稻田水分管理模式以半旱栽培(semi-dry cultivation, SDC)较好,SDC模式与淹灌(continuously flooded, CF)或干湿交替(alternate wetting and drying, AWD)产量差异不显著,但灌溉水量分别减少68%和58%左右,水分利用效率显著提高。在相同的水分和养分管理模式下,灌溉稻品种产量比旱稻品种高20%左右。因而,采用高产水稻品种,结合SDC水分管理方式和相对偏低的施氮量(108kg ha-1)是相对最优的高产高效协同管理模式。
     (2)不同施氮水平下,SDC模式和AWD模式促进基部节间缩短,水稻群体中下部干物质分配比例增大,有利于提高水稻抗倒伏性能;同时SDC和AWD与淹灌相比,株型变紧凑,中下部透光率增加,有利于营养器官中储藏物质后期向穗部转运。
     (3)在本试验条件下,水稻群体生长速率在幼穗分化期至齐穗期最高,其次为齐穗期至成熟期,分蘖期较低;氮肥用量与群体生长速率在不同生育时期表现各异,分蘖期随氮肥用量增加而增大,幼穗分化期以后氮肥用量与群体生长速率呈二次曲线关系,在施氮量108kg ha-1时,群体生长速率最大,过低或过高的氮肥用量均不利于群体生长速率的增加。SDC比AWD或淹灌的群体生长速率高。水分管理模式与氮肥用量对群体生长速率影响的交互效应不显著。
     (4)SDC和AWD模式通过降低二次枝梗退化率和一、二次枝梗颖花空粒率来补偿轻度水分亏缺导致的穗粒数降低的现象,从而使SDC和AWD与淹灌模式每穗粒数差异不显著。
     (5)水稻强势粒比弱势粒灌浆启动早15天左右,同一稻穗当强势粒灌浆结束时才启动弱势粒的灌浆。在不施氮和氮肥用量为108kg ha-1寸,SDC模式有利于提高弱势粒的灌浆速率,当氮肥用量较高时,这一优势不显著,SDC、AWD和淹灌模式的籽粒灌浆速率差异不显著。
     (6)与灌溉稻相比,节水抗旱稻在表层(0-10cm)根量分配比例下降,而深层(10cm以下)根量比例增加;节水抗旱稻的根冠比高于灌溉稻,但总根干重则略低于灌溉稻;节水抗旱稻后期根系伤流量下降幅度较大,而灌溉稻下降幅度小于节水抗旱稻;不同水分管理模式对根系干重、根冠比以及根系伤流量的影响规律不明显。
     (7)SDC和AWD的水分利用率分别为1.11kgm-3和0.92kg m-3,比淹灌分别高35%和12%;氮肥用量与水分利用效率呈二次曲线关系;灌溉稻比节水抗旱稻水分利用率高10%。成熟期地上部总吸氮量SDC和AWD模式比淹灌分别降低了7%和4%,且随施氮量增加而呈显著性增加,灌溉稻比节水抗旱稻高29%;氮素籽粒生产效率SDC和AWD模式分别比淹灌高11%和4%,且随施氮量增加而降低,灌溉稻比节水抗旱稻高17%;氮肥农学利用率SDC和AWD模式分别比淹灌高59%和19%,且随施氮量增加而降低,灌溉稻比节水抗旱稻高27%。
Over-use of N in the intensive irrigated rice system not only decreased the water use efficiency (WUE) and nitrogen use efficiency (NUE), but also resulted in increasing environment pollution. Coordination of water and nitrogen management for achieving a win-win situation that will realize both high grain yield and improved WUE and NUE has still to be concentrated. However, most of studies on nutrient management were conducted with single treatment, over short time, by in-house modelling and/or on the relationship between yield and WUE. Little effort has been devoted to study the interaction effect of water and nitrogen on grain yield, grain quality, resource use efficiency (WUE or NUE), and ecological environment. The experiments were conducted under field conditions with a drought-resistant variety Hanyou3and irrigating varieties (Yangliangyou6, Hualiangyou9313and Jinkeyou938). Treatments were arranged in a resplit-plot design with water treatments as the main plots, nitrogen treatments as the subplots, and cultivars as the sub-subplots. Water treatments included semi-dry cultivation, alternative wetting and drying and continuous flooding. The nitrogen fertilizer rates were0,108,148.5and189kg ha-1in2009and0,108,175.5kg ha-1in2010. The objectives of this study was to determine the interaction effect of N and water treatments on the development, grain yield, yield components, WUE and NUE of two types of rice cultivars. The study developed an appropriate combination of N and water management for the intensive irrigated rice system, which could realize a high yield with an efficient utilization of N and water. In addition, the critical physiological traits limiting high grain yield and high resource use efficiency were elucidated. The main results are as follows:
     (1) In this study, there were no significant differences in grain yield under semi-dry cultivation (SDC) in comparison with continuously flooded (CF) and alternate wetting and drying (AWD) water regimes, but rice under semi-dry cultivation (SDC) had higher WUE due to the reduction in water utilization (68%and58%for CF and AWD respectively). In addition, the high-yielding cultivars outyielded the WDR cultivar by20%in the same management conditions. It was concluded that high yield and high efficiency in this study could be achieved by selecting high-yielding cultivar, adopting the SDC water management and applying relatively less nitrogen fertilizer (less than108kg ha-1).
     (2) Under various N treatments, SDC and AWD could restrict the elongation of basal internodes and increase lodging resistance. In addition, SDC and AWD had higher radiation transmitting efficiency in the middle of canopy due to a compact plant type, which was beneficial to the transportation of carbohydrates from the stems to the panicles during grain filling.
     (3) In this study, the crop growth rate maximized from panicle initiation stage to full heading stage, followed by that from full heading stage to maturity, and it was lowest at tillering stage. The effects of N treatments on crop growth rates varied at different growth stages, with a positive linear relation at tillering stage but quadratic curve relation after panicle initiation. Crop growth rate after panicle initiation was highest at108kg ha-1treatment. SDC had a higher crop growth rate compared with AWD and CF. No significant interaction effect was observed between water and N treatments on crop growth rate.
     (4) Degeneration of secondary branches and the percentage of unfilled spikelets in the primary and secondary branches were lower in SDC and AWD treatment, which compensated for the lower panicle spikelets.
     (5) Grain filling of rice superior spikelets started15days earlier than inferior spikelets. In the relatively lower nitrogen treatments (0and108kg ha-1), SDC could promote the start of grain filling of inferior spikelets. There were no significant differences in grain filling rate among the three water treatements.
     (6) There was a lower partition of root mass in0-10cm soil and a higher partition in the soil deeper than10cm for the WDR cultivar compared with the high-yielding cultivar. WDR cultivar had lower root mass but higher root-shoot ratio than that of high-yielding cultivars. The amount of bleeding sap of WDR cultivar decreased more than that of irrigating rice cultivars. There were congruous effects of water treatments on root mass, root-shoot ratio and root bleeding sap.
     (7) WUE of SDC and AWD were1.11and0.92kg m-3, which were35%and12%higher than that of CF, respectively. Effects of nitrogen treatments on WUE exhibited a quadratic curve pattern. WDR cultivars had a10%lower WUE than that of irrigating cultivars. The N accumulations of SDC and AWD at maturity were7%and4%lower than that of CF. N accumulation increased significantly as N fertilizer rate increased. Irrigating rice assimilated29%higher N at maturity than WDR cultivars. N use efficiencies for grain production (NUEg) of SDC and AWD were11%and4%higher than that of CF, and irrigating cultivars had a higher NUEg by17%. Agronomy nitrogen use efficiency (AE) decreased as nitrogen fertilizer rate increased, and SDC and AWD had higher AEs than CF by59%and19%respectively. AE of irrigating cultivars was27%higher than that of WDR cultivar.
引文
1. 熬和军,王淑红,邹应斌,彭少兵,程兆伟,刘武,唐启源.不同施肥水平下超级杂交稻对氮、磷、钾的吸收积累.中国农业科学,2008,41(10):3123-3132.
    2. 蔡昆争,骆世明,段舜山.水稻根系的空间分布及其与产量的关系.华南农业大学学报(自然科学版),2003,24(3):1-4.
    3. 蔡昆争,骆世明,段舜山.水稻根系在根袋处理条件下对氮养分的反应.生态学报,2003,23(6):1109-1116.
    4. 蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响.中国水稻科学,2000,14(4):219-224.
    5. 川田信一郎著,申廷秀等译.水稻的根系.农业出版社,1984.
    6. 程柄篙主编.土壤环境条件对植物根系生长发育的影响.见:植物生理与农业研究.北京:中国农业出版社,1995:96-98.
    7. 陈惠哲,朱德峰,林贤青,张玉屏,张卫星.促花肥施氮对超级杂交稻冠层叶片生长及光合速率的影响.湖南农业大学学报,2007,33(5):617-621.
    8. 陈惠哲,朱德峰,林贤青,张玉屏.穗肥施氮量对两优培九枝梗及颖花分化和退化的影响.浙江农业学报,2008,20(3):181-185.
    9. 程建平,曹凑贵,蔡明历,汪金平,原保忠,王建漳,郑传举.不同灌溉方式对水稻生物学特性与水分利用效率的影响.应用生态学报,2006,17:1859-1865.
    10. 程建平.水稻节水栽培生理生态基础及节水灌溉技术研究.[博士学位论文].武汉:华中农业大学,2007.
    11. 程式华,曹立勇,陈深广,等.水稻遗传育种回顾与展望//翟虎渠.科技创新成就辉煌一中国农业科学院建院50周年学术文集.北京:中国农业科学院,2007:84291.
    12. 程式华,方福平.2009年中国水稻产业发展报告.北京:中国农业出版社,2009.
    13. 丁颖.中国水稻栽培学.北京:农业出版社,1961,610-613.
    14. 范仲学.冬小麦-夏玉米一年两熟水氮高效利用及其机理研究.[博士学位论文].北京:中国农业大学,2001.
    15. 甘志波.土壤干旱时氮肥对小麦叶片碳、氮化合物的影响.湖北农业科学,1994,6:29-33.
    16. 高明,车福才,魏朝富,谢德体.垄作免耕田水稻根系生长状况的研究.土壤通报,1998,29(5):236-238.
    17. 郭晓红,吕艳东,郑桂萍,李金峰,钱永德,李宏宇,陈书强.土壤水分对稻米品质影响的研究进展.黑龙江八一农垦大学学报,2005,17(2):33-36.
    18. 行翠平,韩东翠,史民芳,安林利,高海燕.不同株叶型冬小麦生长动态分析.山西农业科学,2003(31):3-6.
    19. 胡岳岷.中国粮食安全战略:一个制度安排框架.江汉论坛,2007(9):49-53.
    20. 黄佩民,俞家宝.2000-2030年中国粮食供需平衡及其对策研究.农业经济问题,997,(3):9-14.
    21. 黄振曼,李道远,杨峻,向花香,黄恒掌,黄日辉.沪旱优3号杂交稻在广西试验的表现.广西农学报,2008,23(3):37-44.
    22. 嵇庆才,周明耀,张凤翔,徐华平,周春林,荆昊,顾太义.水培条件下水肥耦合对水稻根系形态及其活力的影响.水利与建筑工程学报.2005,3:18-21.
    23. 康玲玲.不同氮素水平下土壤水分对冬小麦干物质及养分分配的影响.水土保持研究,1995,2(1):27-30.
    24. 李迪秦,秦建权,张运波,杨胜海,彭少兵,邹应斌,唐启源.品种与播期对齐穗期水稻群体光能截获量和干物质垂直分布的影响.核农学报,2009,23(5):858-863.
    25. 李婕.不同水氮条件下旱稻水分与氮素利用特征研究.[博士学位论文].北京:中国农业大学,2004.
    26. 李荣刚.高产农田氮素肥效与调控途径—以江苏太湖地区稻麦两熟农区为例推及全省.[博士学位论文].北京:中国农业大学,2000.
    27. 李生秀,李世清,高亚军,王喜庆,贺海香,杜建军.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果.干旱地区农业研究,1994,12(1):38-43.
    28. 李世清,李生秀.水肥配合对玉米产量和肥料效果的影响.干旱地区农业研究,1993,11(1):47-53.
    29. 李义珍,郑景生,庄占龙,黄育民,杨惠杰.杂交稻施氮水平效应研究.福建农业学报,1998:13(2):58-64.
    30. 刘建丰.超高产杂交稻冠层形态结构和光合特性及其遗传研究.[博士学位论文].长沙:湖南农业大学,2001.
    31. 梁银丽,陈培元.水分胁迫和氮素营养对小麦根苗生长及水分利用效率的效应,西北植物学报,1995,15(1):21-25.
    32. 梁银丽,陈培元.土壤水分和氮磷营养对冬小麦根苗生长的效应.作物学报,1996,22:446-482.
    33. 刘建丰,袁隆平,邓启云,陈立云,蔡义东.超高产杂交稻的光合特性研究.中国农业科学,2005,38(2)258-264.
    34. 刘凯,叶玉秀,唐成,王志琴,杨建昌.水稻籽粒中乙烯和ACC对土壤水分的反应及其与籽粒灌浆的关系.作物学报,2007,33(4):539-546.
    35. 刘凯,张耗,张慎凤,王志琴,杨建昌.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因.作物学报,2008,34(2):268-276.
    36. 刘桃菊,戚昌瀚,唐建军.水稻根系建成与产量及其构成关系的研究.中国农业科学,2002,35(11):1416-1419.
    37. 刘文兆,李秧秧.断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题.西北植物学报,2003,23(8):1320-1324.
    38. 刘运武.杂交水稻吸氮特性及氮肥利用状况的研究.土壤通报.1990,21(2):60-64.
    39. 柳新伟,孟亚利,周治国,曹卫星.水稻颖花分化与退化的动态特征.作物学报,2005,31(4):451-455.
    40. 林贤青,周伟军,朱德峰,张玉屏.稻田水分管理方式对水稻光合速率和水分利用效率的影响.中国水稻科学,2004,18(4):333-338.
    41. 凌启鸿,龚存,朱庆森.中稻各叶位叶片对产量形成作用的研究.江苏农学院学报.1982,3(2):9-19.
    42. 凌启鸿,张洪程,苏祖芳,凌励.稻作新理论—水稻叶龄模式.科学出版社,1994.
    43. 凌启鸿等著.水稻精确定量栽培理论与技术.北京:中国农业大学出版社,2007.
    44. 马均,明东风,马文波,许凤英.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究.中国农业科学,2005,38(2):290-296.
    45. 茆智.水稻节水灌溉及其对环境的影响.中国工程科学,2002,4(7):8-16.
    46. 潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展.植物学通报,1996,13(2):13-20.
    47. 彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland Buresh,Christian Witt提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
    48. 彭少兵.论新时期作物栽培管理在全球水稻增产中的作用.作物研究,2008,22(4):207-208.
    49. 彭世彰,徐俊增,黄乾,吴宏霞.控制灌溉水稻叶片水平的水分利用效率试验研究.农业工程学报,2006,22(11):47-52.
    50. 任华中.水氮供应对日光温室番茄生育、品质及土壤环境影响的研究.[博士学位论文].北京:中国农业大学,2003.
    51. 申云霞,唐拴虎,王长发,吴永常.冬小麦水肥产量交互效应模拟研究.西北植物学报,1995,15:138-141.
    52. 盛承发.生长的冗余-作物对于虫害超越补偿作用的一种解释,应用生态学报,1990,1(1):20-30.
    53. 司青明,王方明,张国斌,李智勇.抗旱杂交稻旱优3号在川东北雨养稻区试验示范表现及推广前景.杂交水稻,2010,25(5):48-50.
    54. 松岛省三.稻作理论与技术.庞诚译,北京:农业出版社,1966,121-133.
    55. 孙怀文.砂姜黑土小麦水肥效应的研究.土壤肥料,1991,(2):8-11.
    56. 孙静文,陈温福,臧春明,王彦荣,吴淑琴.水稻根系研究进展.沈阳农业大学学报,2002,33(6):466-470.
    57. 孙永健,孙园园,刘凯,张荣萍,马均.水氮交互效应对杂交水稻生理性状及产量的影响.浙江大学学报(农业与生命科学版).2009a,35(6):645-654.
    58. 孙永健,孙园园,刘凯,张荣萍,马均.水氮互作对结实期水稻衰老和物质转运及产量的影响.植物营养与肥料学报,2009b,15(6):1339-1349.
    59. 唐启源.水稻冠层的生态生理特性及其影响因素研究.[博士学位论文].长沙:湖南农业大学,2005.
    60. 汪德水.半干旱地区水肥效应研究.土壤肥料,1994,(2):1-5.
    61. 汪强,樊小林,刘芳,李方敏,Klaus D, Sattemacher B断根和覆草旱作条件下水稻的产量效应.中国水稻科学,2004,18(5):437-442.
    62. 汪强,樊小林,Klaus D, Sattemacher B华南地区覆草旱种水稻节水及其水分利用效率研究.灌溉排水学报,2007,26(4):89-92.
    63. 王绍华,刘胜环,王强盛,丁艳锋,黄丕生,凌启鸿.水稻产量与叶片含氮量及叶色的关系.南京农业大学学报,2002,25(4):1-5.
    64. 王维,蔡一霞,张祖建,郎有忠,杨建昌,朱庆森.结实期低土水势对水稻强弱势粒灌浆特性及主要米质性状的影响.中国农学通报,2005,21(9):170-173,183.
    65. 王维,蔡一霞,蔡昆争,张建华,杨建昌,朱庆森.水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响.作物学报,2006,32(7):972-979.
    66. 王夏雯,工绍华,李刚华,王强盛,刘正辉,余翔,丁艳锋.氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系.作物学报,2008,34(12):2184-2189.
    67. 王小彬.旱地农业水肥互作的研究.干旱地区农业研究,1993,11(3):6-13.
    68. 王余龙,徐家宽,朴悦,蔡建中.水稻颖花根活量对籽粒灌浆结实的影响及其原因分析.江苏农学院学报,1993,14(1):11-16.
    69. 王志琴,叶玉秀,杨建昌,袁莉民,王学明,朱庆森.水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节.作物学报,2004,30(7):634-643.
    70. 吴光南,张云桥.稻穗发育过程及其控制途径研究.作物学报,1962,1(1):43-52.
    71. 吴海卿,杨传福,孟兆江,刘安能.以肥调水提高水分利用效率的生物学机制研究.灌溉排水,1998.17:6-10.
    72. 吴岳轩,吴振球.丁酸对杂交稻根系代谢活性及叶片衰老的影响.杂交水稻,1991(4):29-34.
    73. 徐萌.无机营养与作物抗早性的关系.干早地区农业研究,1989,(4):77-80.
    74. 徐正进,陈温福.水稻不同穗型群体冠层光分布的比较研究.中国农业科学,1990,23(4):10-16.
    75. 薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响.植物生理学报,1990,16(1):49-55.
    76. 薛全义,荆宇华.略论我国早稻的生产和发展.中国稻米,2002(4):5-7.
    77. 杨建昌,朱庆森,王志琴,郎有忠.土壤水分对水稻籽粒增重过程的影响.江苏农学院学报,1994,15(3):9-14.
    78. 杨建昌,王志琴,刘立军,郎有忠,朱庆森.旱种水稻生育特性与产量形成的研究.作物学报,2002a,28(1):11-17.
    79. 杨建昌,王朋,刘立军,王志琴,朱庆森.中籼水稻品种产量与株型演进特征研究.作物学报,2006,32(7):949-955.
    80. 杨建昌.水稻弱势粒灌浆机理与调控途径.作物学报,2010,36(12):2011-2019.
    81. 姚友礼,王余龙,蔡建中.水稻大穗形成机理的研究-(1)品种间每穗颖花分化数的差异及其与穗部性状的关系.江苏农学院学报,1994a,15(2):33-38.
    82. 姚友礼,王余龙,蔡建中.水稻大穗形成机理的研究-(2)品种间每穗颖花退化数及其与分化数和抽穗期物质生产的关系.江苏农学院学报,1994b,15(4):24-29.
    83. 姚友礼,王余龙,蔡建中.水稻大穗形成机理的研究-(3)品种间颖花现存数与颖花分化数和抽穗期物质生产的关系.江苏农学院学报,1995,16(2):11-16.
    84. 姚友礼,王余龙,蔡建中,李昊云,徐加宽,卞悦.水稻大穗形成机理的研究-穗肥施用时期对每穗颖花分化、退化和现存数的影响.江苏农学院学报,1997,18(4):29-35.
    85. 余新桥,梅捍卫,李明寿,梁文兵,徐小艳,张剑锋,罗利军.节水抗旱杂交稻的选育和应用前景.分子植物育种,2005,3(5):637-641.
    86. 袁隆平,马国辉.超级杂交稻亩产800 kg关键技术.中国三峡出版社,2006,11.
    87. 曾建敏.水稻氮效率评价系统的建立与氮高效形成机理的研究.[博士学位论文].武汉:华中农业大学,2006.
    88. 张爱良,苗果园,王建东.作物根系与水分的关系.作物研究,1997(2):4-7.
    89. 张成良,姜伟,肖叶青,邬文昌,陈大洲,黄英金.水稻根系研究现状与展望.江西农业学报,2006,18(5):23-27.
    90. 张瑞珍,邵玺文,童淑媛,童淑媛,杜震宇,杨沫,孙长占.开花期水分胁迫对水稻产量构成及产量的影响.吉林农业大学学报,2006,28(1):1-3,7.
    91. 张福锁等著.协调作物高产与环境保护的养分资源综合管理技术研究与应用.北京:中国农业大学出版社,2008a.
    92. 张福锁,王激情,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物氮肥利用率现状与提高途径.土壤学报,2008b,5(45):915-924.
    93. 张耗,黄钻华,王静超,王志琴,杨建昌.江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系.作物学报,2011,37(6):1020-1030.
    94. 张庆,殷春渊,张洪程,魏海燕,马群,杭杰,李敏,李国业.水稻氮高产高效与低产低效两类品种株型特征差异研究.作物学报,2010,36(6):1011-1021.
    95. 张卫星.超级稻品种穗生长发育和灌浆结实对水分亏缺的响应及其机理.[博士学位论文].北京:中国农业科学院,2008.
    96. 张玉屏,李金才,黄义德,黄文江.水分胁迫对水稻根系生长和部分生理特性的影响.安徽农业科学,2001,29(1):58-59.
    97. 赵步洪,杨建昌,朱庆森,张洪熙.水分胁迫对两系杂交稻籽粒充实的影响.扬州大学学报(农业与生命科学版),2004,25(2):11-16.
    98. 郑家国,任光俊,陆贤军,姜心禄.花后水分亏缺对水稻产量和品质的影响.中国水稻科学,2003,17(3):239-243.
    99. 周建斌,陈竹君,李生秀.土壤微生物量氮含量、矿化特性及其供氮作用.生态学报.2001,21(10):1718-1725.
    100.周江明,姜家彪,姜新有,詹丽钏.不同肥力稻田晚稻水氮耦合效应研究.植物营养与肥料学报.2008,14(1):28-35.
    101.周荣,杨荣泉,陈海军.水氮交互作用对冬小麦产量及土壤中消化氮分布的影响.北京农业工程大学学报,1994,14(4):67-71.
    102.朱德峰,程式华,张玉屏,林贤青,陈惠哲.全球水稻生产现状与制约因素分析.中国农业科学,2010,43(3):474-479.
    103.邹长明,秦道珠,陈福兴,刘更另.水稻氮肥施用技术1.氮肥施用的适用时期与用量.湖南农业大学学报(自然科学版),2000,26(6):467-470.
    104.邹长明,秦道珠.水稻的氮磷钾养分吸收特性及其与产量的关系.南京农业大 学学报.2002,25(4):6-10.
    105. Angus J F, Williams R L, Durkin C O. MANAGE RICE:decision support for tactical crop management. In:R. Ishii and T. Horie ed. Crop Research in Asia: Achievements and perspective. Proceedings of the 2nd Asian Crop Science Conference.21-23 August,1995. Fukui, Japan.1996,274-279.
    106. Aoyama M, Nozawa T. Microbiao biomass nitrogen and mineralization immobilization process of nitrogen in soils incugated with various organic materials. Soil Sci. Plant Nutr.,1993,39,23-32.
    107. Atlin G N, Lafitte H R, Tao D, Laza M, Amante M, Courtois B. Developing rice cultivars for high-ferility upland systems in the Asia tropics. Field Crops Res, 2006,97,43-52.
    108. Belder P, Bouman B A M, Cabangon R, Guoan L, Quuilang E J P, Li Y et al. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manage,2004,6:193-210.
    109. Belder P, Spiertz J H J, Bouman B A M, Lu G, Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Res, 2005,93,169-185.
    110. Beyrouty C A, Wells B R, Norman R J, Marvel J N, Pillow J A. Root growth dynamics of a rice cultivar grown at two locations. Agron. J,1988,80, 1001-1004.
    111. Beyrouty C A, Norman R J, Wells B R, Gbur E E, Grigg B, Teo Y H. Water management and location effects on root and shoot growth of irrigated lowland rice. J. Plant Nutr,1992,15,737-752.
    112. Borrell A K, Garside A L and Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Res,1997,52: 231-248.
    113. Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manage,2001,49,11-30.
    114. Bouman B A M, Peng S, Castaneda A R, Visperas R M. Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manage,2005,74,87-105.
    115. Bouman B A M, Yang X, Wang H, Wang Z, Zhao J, Chen B. Performance of aerobic rice varieties under irrigated conditions in North China. Field Crops Res,. 2006,97,53-65.
    116. Bueno C S, Bucourt M, Kobayashi N, Inubishi K, Lafarge T. Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation. Agric. Water Manage, 2010,98,241-250.
    117. Cabangon R J, Castillo E G, Bao L X, et al. Impact of alternate wetting and drying irrigation on rice growth and resource-use efficiency. International Water Management Institue. Colombo, Sri Lanka,2001,55-80.
    118. Cabangon R J, Tuong T P, Castillo E G, Bao L X, Lu G, Wang G H, Cui L, Bouman B A M, Li Y, Chen C D, Wang J H. Effect of irrigation method and N-fertilitzer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy and Water Environ, 2004,2(4),195-206.
    119. Cabangon R J, Castillo E G, Tuong et al. Chlorophyll meter-based nitrogen management of rice grown under alternate wetting and drying irrigation. Field Crops Res,2011,121(1):136-146.
    120. Cheng S H, Zhuang J Y, Fan Y Y, Du J H, Cao L Y. Progress in research and development on hybrid rice:A super-domesticate in China. Annals of Botany, 2007,100(5):959-966.
    121. Chu G X, Shen Q R and Cao J L. Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant and Soil,2004,263 (1/2),17-27.
    122. Crook M J, Ennos A R. The effect of nitrogen and growth regulations on stem and root characteristics associated with lodging in two cultivars of winter wheat. J. Exp. Bot,1995,46,931-938.
    123. De Datta S K, Abilay W P and Kalwar G. Tress effects in flooded tropical rice. In:Water management in Philippine irrigation systems:research and operations: papers presented at the water management workshop, December 11-14,1972. International Rice Research Institute, Los Banos,1973a,19-36.
    124. De Datta S K, Krupp H K, Alvarez E I, et al. Water management practices in flooded tropical rice. In:Water management in Philippine irrigation systems: research and operations:papers presented at the water management workshop, December 11-14,1972. International Rice Research Institute, Los Banos,1973b, 1-18.
    125. Dobermann A, Cassman K G, Peng S, Tan P S, Phung C V, Sta Cruz P C, Bajita J B, Adviento M A A, Olk D C. Precision nutrient management in intensive irrigated rice systems. In:Proc. Of the International Symposium on Maximizing Sustainable Rice Yields Through Improved Soil and Environmental Management. November 11-17,1996, Khon Kaen, Thailand. Dept of Agriculture, Soil and fertilizer Society of Thailand, Bangkok,1996,133-154.
    126. Feng L, Bouman B A M, Tuong T P, Cabangon R J, Yalong L, Lu G., Feng Y. Exploring options to grow rice under water-short conditions in northern China using a modelling approach. I. Field experiments and model evaluation. Agric. Water Manage,2007,88,1-13.
    127. Gebbing T, Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol,1999,121:871-878.
    128. George T, Magbanua R, Garrity D P, Tubana B S. Quiton, J. Rapid yield loss of rice cropped successively in aerobic soil. Agron. J,2002,94,981-989.
    129. Greenwood D J, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson J J. Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann. Bot,1990, 66,425-436.
    130. Haefele S M, Jabbar S M A, Siopongco J D L C, Tirol-Padre A, Amarante S T, Sta Cruz P C, Cosico W C. Nitrogen use efficiency in selected rice (Oryza stiva L.) genotypes under different water regimes and nitrogen levels. Field Crop Res, 2008,107:137-146.
    131. Hasegawa T, Horie T. Leaf nitrogen, plant age and crop dry matter production in rice. Field Crops Res,1996,47,107-116.
    132. Hira G S, Singh R and Kukal S S. Soil matrix suction:a criterion for scheduling irrigation to rice (Oryza sativa). Indian Journal of Agricultural Sciences,2002, 72:236-237.
    133. Horie T, Lubis I, Takai T, Ohsumi A, Kuwasaki K, Katsura K, Nii A. Physiological traits associated with high yield potential in rice. In:Mew, T.W., Brar, D.S., Peng, S., Dawe, D., Hardy, B. (Eds.), Rice Science:Innovations and Impact for Livelihood. IRRI, Los Ban-os, Philippines,2003, pp.117-145.
    134. Huang J L, Peng S B. Influence of storage methods on total nitrogen analysis in rice leaves. Commun soil sci plant analysis,2004,35(5):879-888.
    135. Huber S C, Huber J L. Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol,1996,47:431-444
    136. Jin J, Lin B, Zhang W. Improving nutrient management for sustainable development of agriculture in China. In:Smaling E M A, Oenema Q and Fresco L Q ed. Nutrient Disequilibria in Agroecosystems. CAB International,1999, 157-174.
    137. Jing Q, Bouman B A M, Hengsdijk H, Keulen H V, Cao W. Exploring potions to combine high yields with high nitrogen use efficiencies in irrigated rice in China. Europ. J. Agronomy,2007,26,166-177.
    138. Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, and Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems.PNAS,2009,106(9): 3041-3046.
    139. Kamoshita A. Historical changes in urban rice production systems in Tokyo, Japan. Plant Prod. Sci,2007,10,245-269.
    140. Kashiwagi T, Hirotsu N, Ujiie K, Ishimaru K. Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.). Field Crops Res,2010,115,107-115.
    141. Katsura K, Maeda S, Horie T, Shiraiwa T. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Res,2007,103,170-177.
    142. Katsura K, Okami M, Mizunuma H, Kato Y. Radiation use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture. Field Crops Res,2010,117(1):81-89.
    143. Kato Y, Abe J, Kamoshita A, Yamagishi J. Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil,2006,287,117-129.
    144. Kato Y, Kamoshita A, Yamagishi J. Preflowering spikelet abortion reduces spikelet number in rice (Oryza sativa L.) under water stress. Crop Sci,2008,48, 2389-2395.
    145. Kato Y, Okami M, Katsura K. Yield potential and water use efficiency of aerobic rice(Oryza sativa L.) in Japan. Field Crops Res,2009,113,328-334.
    146. Kato Y, Okami M. Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions. Field Crops Res,2010a, 117,9-17.
    147. Kato Y, Katsura K. Panicle architecture and grain number in irrigated rice, grown under different water management regimes. Field Crops Res,2010b,117(2-3): 237-244.
    148. Khush G S. Green revolution:preparing for the 21st century. Genome,1999,42, 646-655.
    149. Kobata T, Takami S. Maintenance of the grain growth in rice subjected to water stress during the early grain filling. Japanese Journal Crop Sci,1981,50:536-545.
    150. Kobayashi K, Yamane K, Imaki T. Effects of non-structural carbohydrates on spikelet differentiation in rice. Plant Prod. Sci,2001,4,9-14.
    151. Kumagai E, Araki T, Kubota F. Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. Plant Prod. Sci,2009,12(1):50-53.
    152. Ladha J K, Kirk G J D, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U. Opportunities for increased nitrogen use-efficiency from improved lowland rice germplasm. Field Crops Res,1998,56,41-71.
    153. Li Y, Barker R. Increasing water productivity for paddy irrigation in China. Paddy Water Environ,2004,2,187-193.
    154. Li Y, White R, Chen D L, Zhang J B, Li B G, Zhang Y M, Huang Y F, Edis R. A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecological modelling,2007,203:395-423.
    155. Li YH. Research and practice of water-saving irrigation for rice in China. In: Barker R, Loeve R, Li Y, Toung TP, eds. Proceedings of an international workshop on water-saving irrigation for rice. Wuhan, China:Hubei Science Press, 2001,135-144.
    156. Lin S, Tao H, Dittert K, Xu Y, Fan X, Shen Q and Sattelmacher B. Saving water with the ground cover rice production system in China. In "Technological and Institutional Innovations for Sustainable Rural Development." Conference on International Agricultural Research for Development. Deutscher Tropentag,8-10 October 2003, Gottingen,2003a.
    157. Lin S, Dittert K, Tao H, Kreye C, Xu Y, Shen Q, Fan X and Sattelmacher B. The ground-cover rice production system (GCRPS):A successful new approach to save water and increase nitrogen fertilizer efficiency. In "Technological and Institutional Innovations for Sustainable Rural Development." Conference on International Agricultural Research for Development. Deutscher Tropentag,8-10 October 2003, Gottingen,2003b.
    158. Lu J, Ookawa T, Hirasawa T. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant Soil,2000, 223,207-216.
    159. Luo L. Breeding for water-saving and drought-resistance rice (WDR) in China. J. Exp. Bot,2010,61,3509-3517.
    160. Ma B L, Morison M J and Videng H D. Leaf greenness and photosynthetic rates in soybean. Crop Sci,1995,35,1411-1414.
    161. Mae T. Physiological nitrogen efficiency in rice:nitrogen utilization, photosynthesis, and yield potential. Plant Soil,1997,196,201-210.
    162. Maclean J L, Dawe D C, Hardy B, Hettel G P. Rice Almanac, Third Edition, International Rice Research Institute (IRRI), Los Banos, Philippines,2002,1-253.
    163. Mao Z. Study on evolution of irrigation performance in China. Maintenance and operation of irrigation/drainage scheme and improved performance. Proceedings of Asian Regional Symposium, Water Conservancy and Electricity Press of China, Beijing,1993, pp.6-35.
    164. Matsuo N, Mochizuki T. Growth and yield of six rice cultivars under three water-saving cultivations. Plant Prod. Sci,2009,12,514-525.
    165. Matsushima S. Rice Cultivation for the Million. Japan Scientific Societies Press, Tokyo, Japan,1980, pp.1-380.
    166. Mikkelsen D S, Jayaweera R G, Rolston D E. Nitrogen fertilization practices of lowland rice culture. In:Bacon P E ed. Nitrogen Fertilization in the Envrionment. Marcel Dekker, Inc. New York, USA,1995,171-223.
    167. Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Aust J Plant Physiol.1993,20: 231-242.
    168. Morgan P W, Drew M C. Ethylene and plant responses to stress.Physiology Plant,1997,100:620-630.
    169. Monsi M and Saeki T. On the factor light in plant communities and its importance for matter production. Japanese Journal of Botany,1953.14:22-52.
    170. Morita S, Yamazaki K. Root system. In:Matsuo, T., Hoshikawa, K. (Eds.), Science of the Rice Plant, vol.1:Morphology. Food and Agriculture Policy Research Center, Tokyo,1993, pp.161-186.
    171. Morita S, Iwabuchi A and Yamazaki K. Relationships between the growth direction of primary roots and shoot growth in rice plants. Japanese Journal of Crop Sci,1987,56:530-535.
    172. Mulder E G. Effect of mineral nutrition on lodging of cereals. Plant Soil,1954,5, 246-306.
    173. Nguyen V Q, Tan P S, Chu V H, Pham V D and Zhong X. Healthy rice canopy for optimal production and profitability. Omonrice,2004,12,69-74.
    174. Norman R.J, Guindo D, Wells B R, Wilson J C E. Seasonal accumulation and partitioning of nitrogen-15 in rice. Soil Sci. Soc. Am. J,1992,56,1521-1527.
    175. Passioura J B. Roots and drought resistance. Agric Water Manag,1983,7, 265-280.
    176. Patel D P, Anup D, Munda G C, Ghosh P K, Juri S B, Manoj K. Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agric Water Manag, 2010,97:1269-1276.
    177. Peng S B, Cassman K G, Kropff M J. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics.Crop Sci,1995,35:1627-1630.
    178. Peng S B and Cassman KG. Upper thresholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agron. J,1998, 90:178-195.
    179. Peng S B, Bouman B, Visperas R M, et al. Comparison between aerobic and flooded rice in the tropics:agronomic performance in an eight-season experiment. Field Crops Res,2006a,96 (2/3),252-259.
    180. Peng S B, Buresh R J, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res,2006b, 96:37-47.
    181. Peng S B, Bouman B A M. Prospects for genetic improvement to increase lowland rice yields with less water and nitrogen. In:J.H.J. Spiertz, P.C. Struik and H.H. van Laar (eds.), Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations,2007,251-266.
    182. Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res.2008,108:32-38.
    183. Peng S Q. Water resources strategy and agricultural development in China. J. Exp. Bot,2011,6:1709-1713.
    184. Rahman M S, Yoshida S. Effect of water stress on grain filling in rice.Soil Science Plant Nutrition,1985,31:497-511.
    185. Ramasamy S, Ten Berge H F M, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res,1997,51,65-82.
    186. Reddy T Y, Kuladaivelu R. Root growth of rice (Oryza sativa) as influenced by soil-moisture regime and nitrogen. Indian J. Agron,1992,37,694-700.
    187. Ruuska S A, Lewis D C, Kennedy G, Furbank R T, Jenkins C L D, Tabe L M. Large-scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate in reproductive-stage wheat. Plant Mol Biol, 2008,66:15-32
    188. Saini H S, Sedgley M S, Aspinall D. Developmental anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Aust J Plant Physiol, 1984,11,243-253.
    189. Saini H S, Westgate M E. Reproductive development in grain crops during drought. Adv Agron,2000,68,59-96.
    190. Sakamoto T, Matsuoka M. Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol,2008,11,209-217.
    191. Sakaigaichi T, Morita S, Abe J, Yamaguchi T. Diurnal and phonological changes in the rate of nitrogen transportation monitored by bleeding in fieldgrown rice plants (Oryza sativa L.). Plant Prod. Sci,2007,10,270-276.
    192. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Science and Plant Nutrition,2004,50 (4):545-554.
    193. Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the New Plant Type of tropical rice lines. Journal of Plant Nutrition,2005,28: 835-850.
    194. SAS Institute. SAS Version 9.1.22002-2003. SAS Institute, Inc., Cary, NC,2003.
    195. Sheehy J E, Dionora M J A, Mitchel P L, Peng S, Cassman K G, Lemaire G, Williams R L. Critical nitrogen concentrations:implications for high-yielding rice (Oryza sativa L.) cultivars in the tropics. Field Crops Res,1998,59,31-41.
    196. Singh U, Ladha J K, Castillo E G, et al. Genotypic variation in nitrogen use efficiency in medium-and long-duration rice. Field Crops Res,1998,58 (1), 35-53.
    197. Smucker A J M, Aiken R M. Dynamic root responses to water deficits. Soil Science,1992,154 (4):281-289.
    198. Stoop W A, Uphoff N and Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar:Opportunities for improving farming systems for resource-poor farmers. Agric. Syst,2002,71, 249-274.
    199. Tabbal D F, Bouman B A M, Bhuiyan S I, et al. On-farm strategies for reducing water input in irrigated rice:case studies in the Philippines. Agric Water Manag, 2002,56(2),93-112.
    200. Takai T, Matsuura S, Nishio T, Ohsumi A, Shiraiwa T, Horie T. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Res,2006,96,328-335.
    201. Tanaka S, Yamanchi A, Kono Y. Root system morphology of four cultivars: response of different component roots to nitrogen application. Japanese Jpn. J. Crop Sci,1995,64(1),148-155.
    202. Ten Berge H F M, Thiyagarajan T M, Drenth D P, Jansen M J W. Numerical optimization of nitrogen application to rice. Part. I. Description of MANAGE-N. Field Crops Res,1997,51,29-42.
    203. Tirol-Padre A, Ladha J K, Singh U, et al. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res,1996,46 (1/3),127-143.
    204. Tuong T P and Bouman B A M. Rice production in water-scarce environments. In:Kijne, J.W., Barker, R. and Molden, D. eds. Water productivity in agriculture: limits and opportunities for improvement. CABI Publishing, Wallingford,2003, 53-67.
    205. Tuong T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod. Sci,2005,8,231-241.
    206. Tuong T P, Bouman B A M, Lampayan R. A Simply Tool to Effectively Implement Water Saving Alternate Wetting and Drying Irrigation for Rice. ICID newsletter,2009.
    207. Ulrich A. Physiological bases for assessing the nutritional requirements of plants. Ann. Rev. Plant Physiol,1952,3,207-228.
    208. Villa J E, Henry A, Xie F M, Serraj R. Hybrid rice performance in environments of increasing drought severity. Field Crops Res,2011,125:14-24.
    209. Virk P S, Balasubramanian V, Virmani S S, et al. Enhancing water and land productivity in irrigated rice in two Asian river basins. Poster presented at baseline conference for the CGIAR challenge program on water and food, Nairobi,2-6 November 2003,2003.
    210. Wada G. The effect of nitrogenous nutrition on the yield determining process of rice plant. Bull. Nat. Inst. Agric. Sci. Al,1969,6,27-167.
    211. Wang H, Bouman B A M, Zhao D, et al. Aerobic rice in northern China: opportunities and challenges. In:Bouman, B.A.M., Hengsdijk, H., Hardy, B., et al. eds. Water-wise rice production:proceedings of a thematic workshop on water-wise rice production,8-11 April 2002 at IRRI headquarters in Los Banos, Philippines. International Rice Research Institute, Los Banos,2002,143-154.
    212. Wu X. Populization of water-saving irrigation technique to farmers. In:Xu Z, ed. Proceedings of the International Symposium on Water-saving Irrigation for Paddy Rice, Guilin, China,1999, pp.41-46.
    213. Wu X J. Prospects of developing hybrid rice with super high yield. Agron. J, 2009,101:688-695.
    214. Xu Y F, Ookawa T, Ishihara K. Analysis of the dry matter production process and yield formation of the high-yielding rice cultivar Takanari, from 1991 to 1994. Jpn. J. Crop Sci,1997,66,42-50.
    215. Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul. 2000,30:261-270.
    216. Yang J C, Zhang J H, Wang Z Q, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology,2001,127: 315-323.
    217. Yang J C, Zhang J H. Grain filling of cereals under soil drying. New Phytologist, 2006,169(2):223-236.
    218. Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H. Water-Saving and High-Yielding Irrigation for Lowland Rice by Controlling Limiting Values of Soil Water Potential. Journal of Integrative Plant Biology,2007b,49,1445-1454.
    219. Yang J C, Zhang J H. Grain-filling problem in'super'rice. J Exp Bot,2010, 61:1-5.
    220. Yang W, Peng S B, Laza R C, Visperas R M, Dionisio-Sese M L. Grain yield and yield attributes of new plant type and hybrid rice. Crop Sci,2007a,47: 1393-1400.
    221. Yang X G, Bouman B A M, Wang H Q, et al. Performance of temperate aerobic rice under different water regimes in North China. Agric Water Manag,2005,74 (2),107-122.
    222. Yoshida S. Physiological aspects of grain yield. Annu. Rev. Plant Physiol,1972, 23,437-464.
    223. Yoshida S, Forno D A., Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Manila:International Rice Research Institute,1976, 83.
    224. Yun S L, Wada Y, Maeda T, Miura K, Watanabe K. Growth and yield of japonica ×indica hybrid cultivars under direct seeding and upland cultivation conditions. Jpn. J. Crop Sci,1997,66,386-393.
    225. Zhai H, Cao S, Wan J, Zhang R, Lu W, Li L, Kuang T, Min S, Zhu D, Cheng S. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yielding hybrid rice. Sci. China Series C-Life Sci,2002,45, 637-646.
    226. Zhang H, Xue Y G, Wang Z Q, et al. Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice. Field Crop Res, 2009b,113:31-40.
    227. Zhang J, Yang J. Crop yield and water use efficiency. In:Bacon MA, ed. Water use efficiency in plant biology. Oxford, UK:Blackwell Publishing,2004, 189-218.
    228. Zhang Q. Strategies for developing green super rice. PNAS, USA,2007,104, 16404-16409.
    229. Zhang Y, Tang Q, Zou Y, Li D, Qin J, Yang S, Chen L, Xia B, Peng S. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions. Field Crops Res,2009a,114,91-98.
    230. Zhong X, Peng S and Buresh R. Rice canopy development and disease. Developing Integrated Nutrient Management Options for Delivery Course, March, IRRI,2003.
    231. Zhu Z L,1997. Fate and management of fertilizer nitrogen in agroecostems. In: Zhu Z, Wen Q, and Freney J R ed. Nitrogen in soils of China. Kluwer Academic Publishers, Dordrecht, The Netherlands.1997,239-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700