用户名: 密码: 验证码:
花后弱光对小麦产量和蛋白质品质的影响及氮素调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国黄淮冬麦区在小麦开花后常受阴雨寡照的影响,且小麦生产中存在群体过大,小麦生育后期群体内光照不足等问题,严重影响了小麦的产量和籽粒的品质。因此,本研究选用不同穗型和筋型的两品种,通过设置花后不同时期遮光、不同强度遮光和氮肥调节措施从农艺、生理和生化性状上系统研究花后弱光对小麦籽粒产量和蛋白质品质的影响及其生理基础。进一步明确花后弱光下,小麦生长发育的生理生化的变化,阐明了通过调节氮肥施用时期缓解这种不利影响的作用途径及生理、生化机制。主要研究结果如下:1花后不同时期遮光下小麦籽粒蛋白质品质变化的研究
     小麦籽粒花后不同时期遮光均提高了两不同筋型小麦品种籽粒蛋白质及各组分的含量。在两小麦品种中,小麦籽粒灌浆前期遮光对醇溶蛋白的影响更为显著,降低了麦谷蛋白和醇溶蛋白的比值;籽粒灌浆中期遮光对麦谷蛋白的影响更为显著,提高了麦谷蛋白和醇溶蛋白的比值。这与小麦籽粒醇溶蛋白在籽粒灌浆前期形成,而麦谷蛋白在籽粒灌浆中后期形成有关。
     两筋型小麦品种谷蛋白大聚合体(GMP)的含量在籽粒灌浆期内均呈先降低后增加的趋势,在花后21天达到最低值。在小麦两生长季内,强筋小麦品种济南17(JN17) GMP的含量在整个籽粒灌浆期内均高于中筋小麦品种泰农18(TN18)。说明强筋小麦品种JN17的优质特性与其较高的GMP含量有关。小麦花后各时期遮光处理均显著提高了籽粒GMP的含量。在小麦花后0-21天,籽粒灌浆前期遮光处理对GMP含量的影响更为显著,而花后21-35天,灌浆中期和后期遮光处理的作用更为显著,两品种表现相同的趋势。小麦籽粒灌浆期不同时期遮对GMP的粒度分布有着显著的影响。小麦籽粒灌浆前期遮光显著提高了籽粒小粒径的GMP颗粒所占的体积、数目和表面积百分比,降低了大粒径GMP颗粒所占的比例,而籽粒灌浆中期和后期遮光则表现出相反的趋势。说明GMP颗粒的形成对籽粒灌浆前期的弱光非常敏感,而在籽粒灌浆中期和后期短期的弱光处理则有助于加速大粒径GMP颗粒形成的超聚合过程,促进大粒径的GMP颗粒的形成。
     两筋型小麦品种各亚基均在花后14天开始积累,小麦籽粒灌浆各阶段遮光处理对各亚基的起始形成时间无显著影响,但均显著提高了籽粒各亚基的含量,且在籽粒灌浆后期差异更为显著。小麦花后不同时期遮光处理均提高了0-21天以前小麦籽粒总亚基及各亚基的积累量,但降低了花后21-35天以后籽粒总亚基的积累量,两品种表现趋势一致。两小麦品种Glu-A1、Glu-B1和Glu-D1位点上的各亚基含量和积累量均随小麦籽粒灌浆进程呈逐渐增加的趋势,在花后35天时达最大值。强筋小麦品种JN17的Glu-A1位点上1亚基的含量在整个籽粒灌浆期内均高于中筋小麦品种TN18的1亚基含量。
     小麦籽粒中HMW-GS的含量与粒径﹤10m和﹤100m的GMP颗粒的体积百分比呈显著的负相关,与粒径﹥100m的GMP颗粒呈显著的正相关。在遮光条件下,大粒径GMP颗粒的体积形成提高了籽粒中HMW-GS的含量。2花后不同强度遮光下小麦生长发育及机理的研究
     小麦花后轻度遮光通过小麦自身的补偿机制提高了两穗型小麦品种的籽粒产量,而中度和重度遮光均则显著降低了籽粒产量。在遮光条件下,小麦植株的补偿效应随着遮光强度的增强而逐渐降低,且多穗型品种JN17的补偿效应要高于大穗型品种TN18。小麦花后不同强度遮光均显著降低了两穗型小麦品种籽粒的最大灌浆速率,但推迟了两小麦品种最大籽粒灌浆速率形成的时间。小麦花后各强度遮光提高了多穗型品种JN17籽粒灌浆持续期,但降低了大穗型品种TN18籽粒灌浆持续期。
     小麦花后不同强度遮光均显著降低了花后干物质的积累,且随遮光强度的提高,花后干物质降低的幅度增大,两品种表现趋势一致。小麦花后中度和重度遮光均显著提高了花前同化物质向籽粒中的转运及对籽粒的贡献,而小麦花后轻度遮光处理则提高了花后小麦花后同化物质的积累及对籽粒的贡献。
     小麦花后轻度遮光处理显著提高了两小麦品种的上三叶的单叶净光合速率,而重度遮光处理均显著降低了两小麦品种上三叶单叶的净光合速率。小麦花后中度遮光处理显著降低了小麦旗叶的单叶净光合速率,但提高了倒二和倒三叶的光合速率。小麦花后不同强度遮光均降低了籽粒灌浆前期的叶面积指数,但提高了籽粒灌浆后期叶面积指数,两穗型小麦品种表现趋势一致。小麦花后重度遮光均提前了两穗型小麦品种的最大叶面积指数的形成时间。小麦花后轻度遮光提高了多穗型小麦品种JN17的冠层底部和大穗型品种TN18冠层上部叶面积所占的比例,而花后中度和重度遮光处理则均提高了两品种冠层上部叶面积所占的比例。在小麦花后各遮光条件下,多穗型小麦品种JN17的整个冠层和大穗型品种TN18的底部冠层的光能传递系数均显著提高。花后轻度遮光提高了上三叶光系统Ⅱ的Fv/Fo、 PS和ETR,降低了NPQ值,而重度遮光则显著降低了光系统Ⅱ的活性和光能的利用效率。表明花后轻度遮光提高了两穗型品种的光能的传递、吸收和利用的效率,从而提高了叶片的光合速率。
     在籽粒灌浆前期,小麦花后各强度遮光处理均降低了小麦上三叶片游离氨基酸的含量和GS活性,但提高了籽粒灌浆后期游离氨基酸的含量和GS活性。小麦花后遮光显著降低了籽粒灌浆前期上三叶中蛋白质的降解,延缓其衰老过程,提高了籽粒灌浆后期上三叶蛋白质降解酶的活性,提高营养器官中氮素的再转运及向籽粒中的分配和转运。3遮光条件下氮肥施用时期对小麦生长发育及机理的研究
     在小麦生产中增加小麦生育期氮肥的基追比例能显著提高小麦的单穗粒数和籽粒产量,但对单位面积的穗数无显著影响。说明通过提高小麦生育期氮肥的基追比例,特别是在孕穗期追施氮肥均显著提高小麦单穗的粒数和籽粒产量,缓解遮光对小麦籽粒产量的不利影响。
     在花后弱光条件下,推迟小麦氮肥追施时期及增加小麦中后期追肥比例,均能显著提高小麦品种JN17上三叶片的单叶净光合速率,且对倒二和倒三叶的影响更为显著。小麦品种JN17上三叶的最大光化学活性(Fv/Fm)在不同氮肥施用时期处理间均无显著性差异。而小麦上三叶的潜在光化学活性(Fv/Fo)、电子的传递速率(ETR)和实际光化学效率(PS)随着追肥时期的后移均呈逐渐提高的趋势,以拔节期和孕穗期追施氮肥处理最高,各施肥时期处理间的差异在倒二和倒三叶中更为显著。在遮光条件下,推迟施肥时期及追施比例均显著降低了其NPQ值。表明在花后弱光的条件下,推迟施肥时期及提高追施比例均能有效提高小麦上三叶片吸收光能的利用效率从而提高叶片的光合速率,增加干物质的积累。
     在遮光条件下,施肥时期后移及后期追施比例的增加均显著降低了小麦品种JN17上三叶籽粒灌浆前期谷氨酰胺合成酶和蛋白质降解酶的活性,但提高了在籽粒灌浆后期的活性。上三叶游离氨基酸的含量在籽粒灌浆前期随着施肥时期的后移及追施比例的增加而降低,而在籽粒灌浆后期则显著提高。表明在花后遮光条件下,推迟氮肥的施用时期及提高氮肥的追施比例能显著降低了籽粒灌浆前期上三叶叶片蛋白质的降解,延缓其衰老,提高了籽粒灌浆后期上三叶蛋白质降解酶的活性,加速了营养器官中氮素的再转运及向籽粒中的分配。
Shading after anthesis as a result of cloudy or rainy days and big population density oftenoccurs in the the Huang-Huai-Hai plain of China, and has negative influence on wheat grainyield and quality. In the present study, two different gluten winter wheat cultivars withdifferent subunit compositions, and two different spike-types cultivars were used to evaluatethe effect of shading at different grain filling stages, different shading intensities and nitrogenregulatory measures on changes in wheat grain yield and quality at agronomy, physiology andbiochemistry levels. Information obtained will help to determine the physiology andbiochemistry changes in wheat growth and development and how to alleviate the negativeeffect of shading on wheat development from adjusting the nitrogen application times, whichwill provide a theoretical basis for obtaining higher grain yield and superior grain quality inwheat. The main results were as follows:
     1The study of changes of wheat grain protein quality at different grain filling stages
     Shading at different grain filling stage increased the protein content and its componentsat the maturity. The gliadin are more sensitive to shading at early grain filling stage thanshading at other grain filling stages, the content of glutenin increases most to the shading atmiddle shading grain filling stage for two cultivars. The ratio of glutenin to gliadin wasincreased by shading at the early grain filling stage and decreased by shading at the middlegrain filling. This could be explained that the gliadin protein was formed at early grain fillingstages, while the glutenin protein was formed at middle and late grain filling stages.
     The changes of GMP content during the grain filling showed the “V” model with thelowest content at21DAA for the two cultivars. This may be caused by the lower proteinaccumulation rate than the starch accumulation rate which had dilution effect on the GMPcontent. For the comparison of the two cultivars in the two seasons, the GMP content inJinan17was higher than that in Tainong18in different treatments during the grain filling,especially at the maturity. Shading at different grain filling stages all increased the GMPcontent during the grain filling. The GMP content under shading at early grain filling stagewas higher than shading at middle grain filling stages before and in21DAA and then was lower than shading at middle and late grain filling stages. The proportion (by volume, numberand surface area) of larger granules in GMP was decreased by shading at early grain fillingstage and increased by shading at middle and late grain filling stages. In general, the presentresult suggested that the formation of larger GMP particles was more sensitive to shading atearly grain filling stage and short-term dim light at the middle and late grain filling stageswere helpful to accelerate the hyper-aggregation process and promote the formation of largerGMP granules.
     HMW-GS accumulation in grain started at about14DAA in Jinan17and Tainong18, theinitial formation time of individual subunits was not influenced by shading at different grainfilling stages, however the content of each it was increased by shading at different grainfilling stages, especially at middle grain filling stage, though the amount per grain of eachindividual subunit was decreased by shading which was due to the decreased grain weight atmaturity. The content and accumulation amount of Glu-A1、Glu-B1and Glu-D1subunitsshowed the increasing trend during the grain filling stages and attained the maximum valuesat the35DAA. The content of Glu-A1subunits of stronger gluten cultivars JN17were higherthan that of TN18during the whole grain filling stages. The present result indicated thatshading during grain filling had no effect on the origination formation time of HMW-GS, butincreased the HMW-GS content and decreased the HMW-GS amount per grain in wheat grainat maturity.
     The HMW-GS content was negatively correlated with the volume proportion of granules<10and <100m and positively correlated with the volume proportions of GMPgranules>100m, while the total HMW-GS content was not significantly correlated with theproportion by volume of GMP granules10-100m, which indicated that the correlationbetween larger GMP granules and HMW-GS content may account for a positive relationshipbetween GMP and HMW-GS. The present result showed that an increase in the totalHMW-GS content enhanced the volume proportion of larger GMP granules induced byshading.
     2The study of wheat growth and development mechanism at different shading intens-ities
     Low-intensity shading increased grain yield by9.9%and6.6%in Jinan17and Tainong18respectively, while the grain yield was reduced significantly by mid and serious shading afteranthesis in both Jinan17(multiple-spikes cultivar) and Tainong18(Larger-spikes cultivar) inthe present study. There had compensation effect on grain yield under shading, and the compensation effect decreased with the increasing shading intensity. In addition, thecompensation was higher in the multiple-spikes cultivar (Jinan17) than the larger-spikescultivar (Tainong18) under low shading. The different shading intensities treatmentssignificantly decreased the maximum grain filling rates and postponed the time of themaximum grain filling rates. The grain filling duration times in JN17were increased byshading after anthesis, while it was decreased by shading after anthesis in TN18.
     The different shading intensities treatments especially serious shading treatment alldecreased the dry matter accumulation after anthesis, the two cultivars showed the sametrends. The mid and serious shading increased the redistribution of stored dry matter fromvegetative organs into grains, while low shading increased the contribution of dry matteraccumulated from anthesis to maturity to the grain. In addition, under all shading treatments,the multiple-spike cultivar Jinan17could remobilize more dry matter stored in vegetativeorgans into grains than the larger-spike cultivar Tainong18to compensate the loss ofphotosynthesis after anthesis ascribed to shading.
     In the present study, we found that serious shading decreased photosynthesis of top threeleaves during the whole grain filling stages for both cultivars, while under low shading,photosynthesis of the top three leaves in both cultivars all increased during the whole grainfilling stages compared with control. In addition, mid shading reduced Pn of flag leaf andincreased Pn of penultimate and third leaves in both cultivars. Shading reduced the leaf areaindex at the early grain filling stages, however, LAI was increased at the late grain fillingstages for both cultivars by shading. In addition, serious shading brought forward theformation of the maximum LAI for the both cultivars. Low shading increased the fraction ofbottom leaf area in Jinan17and the fraction of top leaf area in Tainong18respectively, whilemid and serious shading all increased the fraction of top leaf area in both cultivars. However,better light transmission was found in the whole canopy in Jinan17and bottom layer of wheatcanopy in Tainong18under shading than the control. The PS system centre was found not tobe essentially damaged by shading, and inversely low shading increased Fv/Fm, PS andETR, and decreased NPQ in the top three leaves. However serious shading damaged PS system activity of top three leaves including decreasing Fv/Fo, PS and ETR, andincreasing the light energy which was dispersed via heat. This indicated that low shadingincreased the light absorption and use efficiency, and then increased the photosynthesis.
     The different shading intensities treatments decreased the free amino acid content andglutamate synthetase activity of top three leaves in JN17during the early grain filling stages, however increased them at late grain filling stages. This indicated that shading after anthesissignificantly decreased the protein degradation and postponed senescence of top three leavesduring the early grain filling stages. While during the late grain filling stages, shading afteranthesis increased remobilization of accumulated protein in leaves and it’s contribution tograin.
     3The study of effect of nitrogen application times on wheat growth and developmentmechanism under shading
     The increased ratio of nitrogen application at late grain filling could significantlyincrease the kernels per spike and grain yield, while had no effect on spikes per area. Thisindicated that increasing ratio of nitrogen application at late grain filling, especially at headingstages could increase the grain yield from augmenting the kernels per spike to alleviate theharmful effect of shading on wheat grain yield.
     Under shading, the increased ratio of nitrogen application at late grain filling couldsignificantly increase the photosynthesis of top three leaves in JN17, especially at thepenultimate and third leaves. Increasing ratio of nitrogen application at late grain fillingsignificantly increase the Fv/F0, ETR and PS, while had no effect on Fv/Fm. NPQ was alsodecreased by increasing ratio of nitrogen application at late grain filling stages. This indicatedthat increasing ratio of nitrogen application at late grain filling stages increased the lightabsorption and use efficiency, and then increased the photosynthesis.
     Increasing the ratio of nitrogen application at late grain filling stages decreased thedegradative enzymet and glutamate synthetase activity of top three leaves in JN17during theearly grain filling stages, however increased them at late grain filling stages. Free amino acidcontent of top three leaves showed increasing trend with increasing the ratio of nitrogenapplication at late grain filling stages. This indicated that increasing the ratio of nitrogenapplication at late grain filling stages significantly decreased the protein degradation andpostponed senescence of top three leaves during the early grain filling stages. While duringthe late grain filling stages, increasing the ratio of nitrogen application at late grain fillingstages under shading increased remobilization of accumulated protein in leaves and it’scontribution to grain.
引文
伯云,李华伟,姜东等.拔节至成熟期遮荫对小麦籽粒高分子量麦谷蛋白亚基积累及GMP含量的影响.中国农业科学,2009,42(10):3451-3458
    曹卫星,郭文善,姜东等.小麦品质生理生态及调优技术.北京:中国农业出版社,2005
    曹承富,汪芝寿,刘伟民等.氮素与密度对优质小麦产量和品质的影响.安徽农业科学,1997,25(2):115-117
    蔡一霞,王维,朱智伟等.结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响.应用生态学报,2006,17(7):1201-1206
    崔志青,贺德先,蔡铁等.喷施ABA对小麦籽粒谷蛋白组分含量及GMP粒度分布的影响.中国农业科学,2010,43(12):2595-2602
    邓志瑞,陆巍,张荣铣等.水稻叶片光合功能衰退过程中内肽酶活力的变化.中国水稻科学,2003,17(1):47-51
    邓志英,田纪春,张永祥等.冬小麦高低分子量谷蛋白亚基形成时间和积累强度及其与沉降值的关系.作物学报,2005,31(3):308-315
    丁四兵,朱碧岩,吴冬云等.温光对水稻抽穗后剑叶衰老和籽粒灌浆的影响.华南师范大学学报,2004,(1):117-128
    杜金哲,李文雄,白祥和等.春小麦籽粒蛋白质积累和产量形成规律及施氮的调节作用.东北农业大学学报,1999,30(1):1-9
    杜金哲,李文雄,胡尚连,刘锦红.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系.作物学报,2001,27(2):253-260
    杜金哲,胡尚连,李文雄等.不同品质类型春小麦HMW-GS形成时间和积累强度及与品质的关系.作物学报,2003,29(1):111-118
    高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析.西北植物学报,2002,22(4):771–779
    贺明荣,王振林,高淑萍.不同小麦品种千粒重对灌浆期弱光的适应性分析.作物学报,2001,27(5):640-644
    黄禹,晏本菊,任正隆.不同品种小麦籽粒蛋白质组分及谷蛋白大聚合体的积累规律.西南农业学报,2007,20(4):591-595
    黄绍敏,皇甫湘荣,宝德俊等.优质专用小麦高产高效的施肥技术研究.河南农业大学学报,1999,33
    何照范.粮油籽粒品质及其分析技术.北京:中国农业出版社,1985,144-150
    姜鸿明,余松烈,于振文.小麦谷蛋白聚合作用对增施氮肥的反应.麦类作物学报,2003,23(2):43-46
    姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182
    蒋梅林.拔节孕穗肥对小麦后期生长的影响.江苏农机与农艺,1998,(6):8-9
    康国章,郭天财,朱云集等.不同生育时期追氮对超高产小麦生育后期光合特性及产量的影响.河南农业大学学报,2000,34(2):103-106
    李东方,李紫燕,李世清等.施氮对不同品种冬小麦植株硝态氮和硝酸还原酶活性的影响.西北植物学报,2006,26(1):104-109
    李永庚,于振文,张秀杰等.小麦产量和品质对对灌浆不同阶段高温胁迫的响应.植物生态学报,2005,29(3):461-466
    李永庚,于振文,梁晓芳等.小麦产量和品质对灌浆期不同阶段低光照强度的响应.植物生态学报,2005,29(5):807-813
    李向阳,朱云集,郭天财.不同小麦基因型灌期冠层和叶面温度与产量和品质关系的初步分析.麦类作物学报,2004,21(2):88-91
    李世清,邵明安,李紫燕等.小麦籽粒灌浆特征及影响因素的研究进展.西北植物学报,2003,23(11):2031-2039
    凌启鸿,张洪程,苏祖芳等编著.作物群体质量.上海:上海科学技术出版社.2000
    梁荣奇,孙义荣,尤明山等.小麦谷蛋白聚合体的MS-SDS-PAGE及其与面包烘烤品质的关系.作物学报,2002,28(5):609-614
    梁太波,尹燕枰,蔡瑞国等.不同土壤条件下山农12小麦籽粒HMW-GS积累及GMP粒度分布特.作物学报,2008,34(12):2160-2167
    刘丽,甘志军,王宪泽.植物氮代谢硝酸还原酶水平调控机制的研究进展.西北植物学报,2004,24(7):1355-1361
    刘丽,周阳,何中虎等.高、低分子量麦谷蛋白亚基等位变异对小麦加工品质性状的影响.中国农业科学,2004,37(1):8-14
    马新明,熊淑萍,李琳等.土壤水分对不同专用小麦后期光合特性及产量的影响.应用生态学报,2005,16(1):83-87
    牛惠民,刘素琴,任同琦.优质专用小麦肥水管理技术研究初报.河南农业科学,2000,(11):4-11
    倪英丽,王振林,李文阳等.磷肥对小麦籽粒HMW-GS积累及GMP粒度分布的影响.作物学报,2010,36(6):1055-1060
    任万军,杨文钰,张国珍等.弱光对杂交稻氮素积累、分配与子粒蛋白质含量的影响.植物营养与肥料学报,2003,9(3):288-293
    史忠良,马爱萍,仇松英等.光照强度对小麦不同品种结实率及千粒重的影响.山西农业科学,1998,26(4):16-18
    石培春,张薇,曹连莆.小麦籽粒蛋白质组分的研究进展.种子,2005,24(10):38-41
    石书兵,马林,石庆华等.不同施氮时期对冬小麦籽粒蛋白质组分及其动态变化的影响.植物营养与肥料学报,2005,11(4):456-460
    石玉,张永丽,于振文.施氮量对不同品质类型小麦籽粒蛋白质组分含量及加工品质的影响.植物营养与肥料学报,2010,16(1):33-40
    孙辉,姚大年,李宝云等.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998,13(6):13-16
    孙辉,姚大年,刘广田等.普通小麦胚乳蛋白质与面包烘烤品质关系的研究与利用.注(I)蛋白质及其各组分的含量与烘烤品质的关系研究.中国粮油学报,2001,16(2):28-30
    孙霞,吴秀菊,胡尚连等.氮肥形态对不同HMWGS类型春小麦高分子量谷蛋白聚合体积累的效应.作物学报,2005,31(4):463-468
    孙彦坤,王丽娟,严红.子粒灌浆过程气候因子对不同品质类型春小麦产量和蛋白质含量的影响之三:光照的影响.中国农业气象,2003,24:5-6
    同延安,赵营,赵护兵等.施氮量对冬小麦氮素吸收、转运及产量的影响.植物营养与肥料学报,2007,13(1):64-69
    肖凯,谷俊涛,张荣铣等.杂种小麦碳同化特性及籽粒产量性状的研究.中国农业科学,1997,30(5):34-41
    王东,于振文.不同施氮量下籽粒灌浆不同阶段遮光对小麦氮素积累和转移的影响.植物营养与肥料学报,2008,14(4):615-622
    王燕,王芳,赵辉等. HMW-GS组成不同小麦品种各种亚基形成和积累规律研究.西北植物学报,2004,24(7):1233-1236
    王月福,于振文,李尚霞等.土壤肥力对小麦籽粒蛋白质组分含量及加工品质的影响.西北植物学报.2002,22(6):743-748
    王月福,于振文,余松烈等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响.中国农业科学,2002,35(9):1071-1078
    王月福,陈建华,曲健磊等.土壤水分对小麦籽粒品质和产量的影响.莱阳农学院学报,2002,19(1):7-9
    王晨阳,朱云集,夏国军等.氮肥后移对超高产小麦产量及生理特性的影响.作物学报,1998,24(6):978-983
    王立秋,靳占忠,曹敬山.氮肥不同追肥比例和时期对春小麦籽粒产量和品质的影响.麦类作物学报,1996,6:45-47
    魏益民.小麦籽粒的蛋白质组分.种子,1988,(34):1-2
    夏镇澳,王祝华.作物学报,1964,3(2):158-167
    叶优良,韩燕来,谭金芳等.中国小麦生产与化肥施用状况研究.麦类作物学报,2007,27(1):127-133
    岳鸿伟,秦晓东,戴廷波等.施氮量对小麦籽粒HMW-GS及GMP含量动态的影响.作物学报,2006,32(11):1678-1683
    杨根海,张起刚,陈佑良等.用15N示踪研究小麦品质Ⅰ.后期氮肥对冬小麦产量和蛋白质含量的影响.北京农业大学学报,1986,12(1):39-46
    周治国,孟亚利,施培.苗期遮荫对棉苗茎叶结构及功能叶光合性能的影响.中国农业科学,2001,34(5):465-468
    周艳华,何中虎,阎俊等.中国小麦品种磨粉品质研究.中国农业科学,2003,36(6):615-621
    张雪梅,高玉振,桑涛等.拔节孕穗肥对小麦产量的影响.安徽农业科学,2000,28(1):80-82
    张春庆,李睛祺.影响普通小麦加工馒头质量的主要品质指标研究.中国农业科学,1993,26(2):39-46
    张定一,张永清,杨武德等.施氮量对不同小麦品种高分子量麦谷蛋白亚基表达量及品质影响的研究.植物营养与肥料学报,2008,14(2):235-241
    赵惠贤,胡胜武,吉万全等.小麦谷蛋白聚合体粒度分布与面粉揉面特性关系的研究.中国农业科学,2001,34(5):465-468
    赵广才,常旭虹,杨玉双等.群体和氮肥运筹对冬小麦产量和蛋白质组分的影响.植物营养与肥料学报,2009,15(1):16-23
    赵广才,李春喜,张保明,等.不同施氮比例和时期对冬小麦氮素利用的影响.华北农学报,2000,15(3):99-102
    赵广才,何中虎,田奇卓等.应用15N研究施氮比例对小麦氮素利用的效应.作物学报,2004,30(2):159-162
    张雪梅,高玉振,桑涛等.拔节孕穗肥对小麦产量的影响.安徽农业科学,2000,28(1):80-82
    朱金宝,刘广田,张树榛.基因型和环境对小麦烘烤品质的影响.作物学报,1995,21(6):679-684
    朱新开,郭文善,盛婧等.施氮叶龄期对中筋小麦籽粒产量和品质的调节效应.扬州大学学报,2002,23(2):55-58
    Ayoub M., Guertin S., Fregeau R. J.. Nitrogen fertilizer effect on breading quality of hard redspring wheat in eastern Canada. Crop Science Society of America,1994,34(5):1346-1352
    Acreche M. M., Briceno-Félix G. J., Sánchez A. M., et al. Grain number determination in anold and a modern Mediterranean wheat as affected by preanthesis shading. Crop PastureSci.2009,60,271-279
    Arisnabarreta S. and Miralles D. J. Radiation effects on potential number of grains per spikeand biomass partitioning in two-and six-rowed near isogenic barley lines. Field CropsRes.2008,107,203-210
    Barrett A. J. The many forms and funetions of cellular Proteinases. Fed Froc,1980,39:9-14
    Barber J. S., Tessop R. S. Factors affecting yield and quality in irrigated wheat. J.Agric.Sci.Camb,1987,109:19-26
    Basra A. S., Dhawan A. K., Goyal S. S. DCMU Inhibits in vivo nitrate reduction in illumine-ted barley (C3) leaves but not in maize (C4): A new mechanism for the role of light?Planta,2002,215:855-861
    Blechl A., Lin J., Nguyen S., et al. Transgenic wheats with elevated levels of Dx5and/orDy10high-molecular-weight glutenin subunits yield doughs with increased mixingstrength and tolerance. Journal of Cereal Science,2007,45:172-183
    Blumenthal C. S., Bekes F., Batey I.L., et al. Interpretation of grain quality results from wheatvariety trials with reference to higher temperature stress. Australian Journal ofAgricultural Research,1991,42:325-334
    Bidinger F., Musgrave R. B. and Fischer R. A. Contribution of stored pre-anthesis assimilateto grain yield in wheat and barley. Nature.1977,270,431-433
    Bell, C. J. and Incoll L. D.. The redistribution of assimilate in field-grown winter wheat. J.Exp. Bot.1990,41,949-960
    Blum A., Sinmena B., Mayer J., et al. Stem reserve mobilisation supports wheat-grain fillingunder heat stress. Funct. Plant Biol.1994,21,771-781
    Cabello P., de la Haba P., Gonzalez-Fontes A., et al. Induction of nitrate reductase, nitritereductase, and glutamine synthetase's forms in sunflower cotyledons as affected bynitrate, light, and plastid integrity. Protoplasma,1998,201(1-2):1-7
    Don C., Lichtendonk W., Plijter J. J., et al. Glutenin macropolymer: agelformed by gluteninparticles. J Cereal Sci,2003a,37:1-7
    Don C., Lichtendonk W. J., Plijter J. J., et al. Understanding the link between GMP and dough:from glutenin particle in flour towards developed dough. J Cereal Sci,2003b,38:157-165
    Don C., Lichtendonk W. J., Plijter J. J., et al. The effect of mixing on glutenin particle propert-ies: aggregation factors that affect gluten function in dough. J Cereal Sci,2005a,41:69-83
    Don C., Lookhart G., Naeem H., et al. Heat stress and genotype affect the glutenin particles ofthe glutenin macropolymer gel fraction. J Cereal Sci,2005b,42:69-80
    Don C., Mann G., Bekes F., et al. HMW-GS affect the properties of glutenin particles in GMPand thus flour quality. J Cereal Sci,2006,44:127-136
    Demotes Mainard S., Jeuffroy M. H. Effects of nitrogen and radiation on dry matter andnitrogen accumulation in the spike of winter wheat. Field Crops Research,2004,87:221-233
    Du Pont F. M., Hurkman W. J., Vensel W. H., et al. Differential accumulation of sulfur-richand sulfur-poor wheat flour proteins is affected by temperature and mineral nutritionduring grain development. Journal of Cereal Science,2006,44:101-112
    Daniel C. and Triboi E. Changes in wheat protein aggregation during grain development:effects of tempratures and water stress. European Journal of Agronomy,2002,16:1-12
    Estrada-Campuzano G., Miralles D. J. and Slafer G. A. Yield determination in triticale asaffected by radiation in different development phases. Eur. J. Agron.2008,28,597-605
    Evans L. T., Wardlaw I. F. and Fischer R. A. Wheat. In: L. T. Evans (ed.), Crop Physiology,1975, pp.101-149. Cambridge University Press, London
    Gupta R. B., Khan K. and MacRitchie F. Biochemical basis of flour properties in breadwheats. Effects of variation in the quantity and size distribution of polymeric protein. Jof Cereal Sci.1993,18:23-41
    Genty B., Briantais J, M,, Baker N, R. The relationship between the quantum yield ofphotosynthetic electron transport and photochemical quenching of chlorophyll fluoresce-ence. Biochimicaet Biophysica Acta,1989,9:87-92
    Huffaker R. C. Proteolytic activity during senescence of plants. New Phytol.1990,116:199-231
    Hueber F. R., Wall J. S. Fractionation and quantitative differences of glutenin from wheatvarirties varying in baking Quality. Cereal Chem,1976,53:258-269
    Jedel, P. E. and Hunt L. A. Shading and thinning effects on multi-and standard-floret winterwheat. Crop Sci.1990,30,128-133
    Kanwar J. S., Das M.N., Sardana M.G., et al. Balanced fertilizer use for maximizing returnsfrom wheat on cultivators fields. Fertilizer News,1972,17(1):19-30
    Khan K., Frohber G. R., Olson T., et al. Inheritance of gluten protein components of high-protein hard red spring wheat lines derived from Triticum turgidum var. dicoccoides.Cereal Chem,1989,66:397-401
    Lejay L., Quillere I., Roux Y., et al. Abolition of posttranscriptional regulation of nitratereductase partially prevents the decrease in leaf NO-3reduction when photosynthesis isinhibited by CO2deprivation, but not in darkness. Plant Physiol.,1997,115:623-630
    León E., Marín S., Giménez M. J., et al. Mixing properties and dough functionality oftransgenic lines of a commercial wheat cultivar expressing the1Ax1,1Dx5and1Dy10HMW gluteninsubunit genes. Journal of Cereal Science,2009,49:148-156
    Lamattina L., Lezica R. P. and Conde R. D. Protein metabolism in senescing wheat leaves,Determination of synthesis and degradation rates and effects on protein loss. PlantPhysiol,1985,77:587-590
    Luo C., Branlard G., Griffin B., et al. The effect of nitrogen and sulphur fertilization and theirinteraction with genotype on wheat glutenins and quality parameters. Journal of Cerealcience,2000,31:185-194
    Li H. W., Jiang D., Wollenweber B., et al. Effect of shading on morphology, physiology andgrain yield of winter wheat. Eur. J. Agron,2010,33,267-275.
    Larios B., Aguera E., DelaHaba P., et al. A short-term exposure of cucumber plants to risingatmospheric CO2increases leaf carbohydrate content and enhances nitrate reductaseexpression and activity. Planta,2001,212:305-312
    Melzer J. M., Kleinhofs A., Warner R. L., Nitrate reductase regulation: effects of nitrate andlight on nitrate reductase mRNA accumulation. Mol. Gen. Genet.,1989,217:341-346
    Mu, H., Jiang D., Wollenweber B., et al. Long-term low radiation decreases leaf photosynthe-sis, photochemical efficiency and grain yield in winter wheat. J. Agron. Crop Sci,2010,196,38-47
    Mitchell, R., Gibbard C., Mitchell V., et al. Effects of shading in different developmentalphases on biomass and grain yield of winter wheat at ambient and elevated CO2. PlantCell Environ,2006,19,615-621
    McMaster G. S., Morgan J. A. and Willis W. O. Effects of shading on winter wheat yield,spike characteristics, and carbohydrate allocation. Crop Sci,1987,27,967-973
    Ohm J. B., Ross A. S., Peterson C. J., et al. Relationships of high molecular weight gluteninsubunit composition and molecular weight distribution of wheat flour protein with waterabsorption and color characteristics of noodle dough. Cereal Chemistry,2008,85(2):123-131
    Parrott D., Yang L., Shama L., et al. Senescence is accelerated, and several proteases areinduced by carbon “feast” conditions in barley (Hordeum vulgareL.) leaves. Planta,2005,222:989-1000
    Payne P. I., Corfield K. G. Subunits composition of wheat glutenin protein isolated by gelfiltration in a dissociating medium. Planta,1979,14:83-88
    Pirozi M. R., Margiotta B., Lafiandra D., et al. Composition of polymeric proteins andbread-making quality of wheat lines with allelic HMW-GS differing in number ofcysteines. J Cereal Sci,2008,48(1):117-122
    Paul W. U., Thomas C. K. Soil compaction and root growth: A Review. Agronomy Journal,1994,86:759-766
    Pirozi M. R., Margiotta B., Lafiandra D., et al. Composition of polymeric proteins andbread-making quality of wheat lines with allelic HMW-GS differing in number ofcysteines. Journal of Cereal Science,2008,48(1):117-122
    Peri P. L., McNeil D. L., Moot D. J., et al. Net photosynthetic rate of cocksfoot leaves undercontinuous and fluctuating shade conditions in the field. Grass and Forage Science,2002,57,157-170
    Rodrigo V. H. L., Stirling C. M., Teklehaimanot Z., et al. Intercropping with banana toimprove fractional interception and radiation-use efficiency of immature rubberplantations. Field Crops Res,2001,69,237-249
    Samarajeewa K. B., Kojima D. P. N., Sakagami J. I., et al. The effect of different timing of topdressing of nitrogen application under low light intensity on the yield of rice (Oryzasativa L.). J. Agron. Crop Sci,2005,191,99-105
    Spiertz J. H. The influence of temperature and light intensity on grain growth in relation to thecarbohydrate and nitrogen economy of the wheat plant. Netherlands J Agric Sci,1997,24:182-197
    Smith A. M. Evidence that the waxy protein of pea (pisum sativum L.) is not the majorstarch-granule-bound starch synthase. Planta,1990,182:599-604
    Shewry P. R., Sayanova O. and Tatham A. S. Structure, assembly and targeting of wheatstorage proteins. J Plant Physiol,1995,145:620-625
    Sapirstein H. D., Fu B. X. Intercultivar variation in the quantity of monomeric protiens,solubeand in soluble glutenin, and residue protein in wheat flour and relationships to breadmaking quality. Cereal Chem,1998,75(4):500-507
    Steffolani M. E, Perez G. T., Ribotta P. D., et al. Effect of transglutaminase on properties ofglutenin macropolymer and dough rheology. J Cereal Sci,2008,85:39-43
    Slafer G. A., Calderini D. F., Miralles D. J., et al. Preanthesis shading effects on the number ofgrains of three bread wheat cultivars of different potential number of grains. Field CropsRes.1994,26,31-39
    Triboi E., Abad A., Michelena A., et al. Environmental effects on the quality of two wheatgenotypes:1. Quantitative and qualitative variation of storage proteins. Eur J Agron,2000,13:47-64
    Vawser M., Cornish G. B. Over-expression of HMW glutenin subunitGlu-B17x in hexaploidwheat varieties (Triticum aestivum). Australian Journal of Agricultural Research,2004,55:577-588
    Vanherpen T. W. J. M., Cordewener J. H. G., Klok H. J., et al, Hamer R J.The origin and earlydevelopment of wheat glutenin particles. J Cereal Sci,2008,48:870-877
    Wang Z. L., Yin Y. P., and He M. R. Allocation of photosynthates and grain growth of twowheat cultivars with different potential grain growth in response to pre-and post-anthesisshading. J Agron Crop Sci,2003,189:280-285
    Wardlaw I. F. and Moncur L. The response of wheat to high temperature following anthesis.The rate and duration of kernel filling. Austr J Plant Physiol,1995,22:391-397
    Wu D. X., Wang G. X., Bai Y. F., et al. Effects of elevated CO2concentration on growth,water use, yield and grain quality of wheat under two soil water levels. AgricultureEcosystems and Environment,2004,104:493-507
    Wang Y. G., Khan K., Hareland G., et al. Quantitative glutenin composition from gelelectrophoresis of flour mill streams and relationship to breadmaking quality. CerealChemistry.2006,83:293
    Weegels P. L., Vandepijpekamp A. M., Graveland A., et al. Depolymerisation and repolymerisation of wheat glutenin during dough processing:I. Relationships between gluteninmacropolymer content and quality parameters. J Cereal Sci,1996,23:103-111
    Wieser H., and Seilmeier W. The influence of nitrogen fertilization on quantities andproportions of different protein types in wheat flour. J Sci Food Agric,1998,76:49-55
    Yue H. W., Jiang D., Dai T. B., et al. Effect of nitrogen application rate on content of gluteninmacropolymer and high molecular weight glutenin subunits in grains of two winterwheat cultivars. Journal of Cereal Science,2007,45:248-256
    Zhang P. P., He Z. H., Chen D. S., et al. Contribution of common wheat protein fractions todough properties and quality of northern-style Chinese steamed bread. Journal of CerealScience,2007,46:1-10
    Zhu J. B., and Khan K. Characterization of monomeric and glutenin polymeric proteins ofhard red spring wheats during grain development by multi stacking SDS-PAGE andcapillary zone electrophoresis. Cereal Chemistry,1999,76:261-269
    Zhu X. K., Guo W. S., Zhou J. L., et al. Effects of nitrogen on grain yield, nutritional qualityand processing quality in wheat for different end uses. Scientia Agricultrua Sinica,2003,2(6):609-616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700