用户名: 密码: 验证码:
河南中部不同年代主栽冬小麦品种水分利用特性差异及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河南省是我国黄淮海地区冬小麦主要生产省份,2011年小麦种植面积532.3万hm2,总产量0.31亿t,分别占全国总量的21.9%和26.6%。水资源短缺是影响冬小麦高产稳产的重要因素,在河南中部地区冬小麦生育期降水无法满足正常生长发育需要,补充灌溉需求强烈。因此,培育和种植高产节水优质的冬小麦品种,并配合适宜的田间用水管理措施,是提高该区域冬小麦农田水分利用效率,缓解水资源供需矛盾,确保冬小麦生产持续稳定发展的重要途径。本文通过研究品种改良过程中,冬小麦需水特性、农艺性状、产量构成和根系特性的变化规律,以及对水分胁迫的响应,初步揭示了冬小麦品种更替过程中水分利用特性的变化规律及其生理机制,研究成果对于制定冬小麦抗旱节水育种目标和指导有限农业水资源的优化配置具有重要意义。
     本项研究选取河南省中部地区20世纪50年代初至2007年间大面积推广的6个主栽品种,在2010~2011和2011~2012年两个生长季,采用测坑与田间试验相结合的方法,系统的研究了不同水分处理下冬小麦品种的耗水特性、光合特性、农艺性状和根系特性的演变特征。测坑试验设置3个水分梯度:充分供水(CK,整个生育期充分供水,土壤含水量控制在田间持水量的75%~80%)、轻度水分亏缺(MD,田间持水量的60%~70%);重度水分亏缺(SD,田间持水量的45%~55%);田间试验设置3个灌水处理:W0,返青后不灌水,冬小麦生长完全依靠自然降水;W1,冬后拔节期灌一水;W2,冬后拔节期和灌浆期分别灌一次水。主要研究结果如下:
     1、在测坑条件下,各冬小麦品种耗水量为CK>MD>SD,籽粒产量在CK下最高,水分利用效率在SD下最高;在大田条件下,各冬小麦品种的耗水量为W2>W1>W0,籽粒产量在W2下最高,水分利用效率则在W0或W1下最高。发生水分胁迫时,冬小麦耗水量的降低幅度要高于籽粒产量的降低幅度,因此WUE得到提高。冬小麦品种的耗水量随着年代递增呈现了一定的降低趋势,但幅度不大;随品种更替籽粒产量潜力则呈现了明显的增加趋势;两者共同作用,使得冬小麦的WUE不断增加。数据显示,冬小麦WUE增加的主要贡献来自于产量潜力的增加。在水分胁迫条件下,现代品种的WUE普遍高于早期品种。
     2、冬小麦的日均耗水强度、阶段耗水量和耗水模系数在拔节至开花阶段最高,开花至成熟阶段次之,越冬至返青阶段最低。在测坑条件下,现代品种的日均耗水强度、阶段耗水量和耗水模系数在拔节至开花阶段和开花至成熟阶段均表现出低于早期品种的趋势。大田试验中,现代品种的阶段耗水量、日均耗水强度和耗水模系数在拔节至开花期阶段低于早期品种,而在开花至成熟阶段高于早期品种,测坑试验与田间试验结果的差异主要因为灌水时期和灌水量不同所致。
     3、品种更替过程中,冬小麦旗叶叶绿素含量呈现明显的增加趋势,但现代品种旗叶的光合速率(Pn)在各生育期并没有表现出明显的优势。在测坑条件下,随着年代的推移,冬小麦品种的旗叶蒸腾速率(Tr)在开花至灌浆中期表现为先增加后降低的趋势,20世纪70~80年代品种的平均Tr最高。现代品种的胞间二氧化碳浓度(Ci)和平均气孔导度(Gs)均高于50~60年代品种。现代品种的原初光能转换效率(Fv/Fm)在孕穗期和灌浆期相对较高,在花后防御光抑制能力相对较强。
     4、现代品种旗叶的丙二醛(MDA)含量降低,膜脂过氧化程度要轻于早期品种。现代品种旗叶可溶性蛋白在花后0~7天高于早期品种,且降解速度慢。现代品种的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性在花后的测定中均明显增强,表明现代品种具有更强的活性氧清除能力,可减缓叶片衰老速度,有利于叶片维持较强的光合功能,更有利于叶片光合产物的合成与运输,为千粒重及最终籽粒产量的增加奠定了生理基础。
     5、随着品种的不断改良,冬小麦都表现了株高降低,节间距缩短,千粒重、产量和收获指数明显提高的趋势,而穗长、基部茎节直径、单位面积穗数和穗粒数并没有表现出明显的变化规律。田间试验测定结果显示,在不同水分处理下,冬小麦的株高由20世纪50年代的100~120cm降低到现代的54~80cm,降低幅度达到25.6%~49.3%;穗下节由50年代的34.8~40.4cm降低到22.4~25.3cm,降幅为35.5%~38.3%;千粒重由50年代的28.0~29.2g增加到现在的46.4~47.6g,增幅为63.0%~66.0%;籽粒产量由50年代的4069~5206kg·hm-2增加到现在的6443~6880kg·hm-2,增幅为44.4%~58.3%,平均每次品种更替产量增加279~395kg·hm-2;收获指数由50年代的0.27~0.32增加到2002年的0.35~0.37,增幅为17.9%~35.8%;WUE由50年代的1.15~1.42kg·m-3增加到2002年1.78~1.81kg·m-3,增幅为35.2%~55.3%。品种改良提高了花前和花后干物质转运量、花前干物质转运率及贡献率,现代品种叶片的物质积累和优化分配同化产物的能力强,是千粒重持续增长的基础,而产量的增加主要源自千粒重的增加和收获指数的提高。
     6、水分胁迫会降低冬小麦根系活力,但会增加冬小麦的根长密度和根尖数,尤其是0~0.05mm和0.5~2.0mm径级的根长密度,根长密度的增加主要来自于细根的增加。在水分胁迫下,现代品种土壤耕层的根系活力要明显高于早期品种,现代品种比早期品种表现的更为适应干旱。借助微根管技术进行的原位监测显示,现代冬小麦品种根系直径增加,大于0.45mm径级的根长密度所占比例明显增加,提高了植株对主要耕层土壤水分的利用,是其抗旱性提高的主要原因。
Henan (HN) Province, located in southern part of the Yellow River, Huaihe River andHaihe River plain, is the most important winter wheat producer in China, with a yield of31million tons from an arable area of5.32million ha, occupied about21.9%and26.6%ofthe national total amount in2011. In central Henan province, water shortage is the mainfactor of limiting sustainable development of winter wheat production. Selecting cultivarswith high water use efficiency is an important way to relieve water competition and toensure the suistanable development of winter wheat production in the region. Theobjectives of this study were to analyze the changes of water requirement, agronomic traits,yield and its components and root features, to analyze the differences in water useefficiency and responses to different water stress conditions among winter wheat cultivarsreleased in defferent decades, and to understand the genetic and physiological mechanismsbehind these changes and differences. The results would be helpful for furtherimprovement of drought resistance and water saving capacity in breeding new winterwheat cultivars and improvement of optimal utilization of limited agricultural waterresources in central Henan.
     Six representative winter wheat cultivars released from early1950s to2007for centralpart of Hennan province were selected and tested during2010~2011and2011~2012growing seasons. With experiments carried out in leaching ponds under rain shelter andplots in field, water consumption features, photosynthetic characteristics, agronomic traitsand roots features under different water situations were studied. In leaching pondexperiment, three water situations were set as follows: control check (CK): Irrigating whensoil moisture was less than75%~85%of field capacity (FC); Mild water deficit (MD): lessthan60%~70%of FC; Serious water deficit (SD): less than45%~55%of FC. In fieldexperiment, three water situations were set as: W0: no irrigation after returning green stage;W1: only an irrigation at the jointing stage; W2: two irrigations at jointing stage and milkystage respectively. The main results were as followings:
     1. Water consumptions of winter wheat under different water situations can be ranked asCK>MD>SD. The highest grain yield for different winter wheat cultivars appeared inCK treatment, and the highest WUE occurred in SD treatment in pond experiment. Underfield experiment, water consumption can be ranked as W2>W1>W0, the highest grainyield was investigated in W2treatment, and the highest WUE in W0or W1treatment. Thepercentage of water consumption decreasing was obviously greater than that of grain yielddecreasing under water stress, which resulted in an increasing of WUE. There was a veryweak trend that water consumption decreased gradually, but an obvious trend that grainyield increased gradually with winter wheat cultivars changed, which resulted in aremarkable increasing thend for WUE of winter wheat. Data showed that the WUE increasing of winter wheat cultivars was mainly due to grain yield increasing. WUE ofmodern cultivars were generally higher than those of early cultivars under water stress.
     2. The greatest stage water consumption amount(CA), average daily water consumption(CD) and percentage of stage water consumption to total water consumption (CP) occurredin stage of jointing to flowering and stage of flowering to maturity, and the least valuesappeared in stage of overwintering to jointing. The CA, CD and CP of the modern cultivarswere less than those of the early cultivars in period of jointing to flowering and period offlowering to maturity in pond experment. The CA, CD and CP of early cultivars weregreater than those of the modern cultivars in period of jointing to flowering. Under fieldexperiment, the CA, CD and CP of early cultivars were less than those of modern cultivarsin period of flowering to maturity. The differences in CA, CD and CP between pondexperiement and field experiment were mainly caused by the differences in irrigation timeand irrigation quota for the two experiments.
     3. The chlorophyll content of flag leaf of winter wheat cultivar increased with itsreleased year, but the modern cultivars had no significant advantages in photosynthetic rateof flag leaf under all growing stages. In pond experiment, transpiration rate (Tr) of flag leafincreased at early and then decreased afterward during flowering to middle filling period.The winter wheat cultivars released in1970s and1980s had higher transpiration rates. Theintracellular CO2concentration (Ci) and stomatal conductance (Gs) of winter wheatcultivars tended to increase with released year. PSII maximum photochemical efficiency(Fv/Fm) of the modern cultivars was relatively greater than those of the early cultivars,which was related to a stronger ability of avoiding photoinhibition after flowering.
     4. The malondialdehyde (MDA) concentrations of the modern cultivars weresignificantly lower than those of the early cultivars under all water treatments. Themembrane lipid peroxidation was remarkably serious in the early cultivars. Soluble proteincontent in flag leaves of modern cultivars was higher in period of0to7days after anthesisand with a slower degradation afterward. Activities of superoxide dismutase (SOD),peroxidase (POD), and catalase (CAT) of the modern cultivars increased more quicklythan those of the early cultivars after flowering, which shown that the modern cultivars hadstronger capacity of scavenging oxygen free radical. This characteristic was helpful for themaintenance of stronger photosynthetic capability, and was beneficial to the compositionand transportation of arbohydrated, and laid a good physiological foundation for high1000-grain weight and grain yield.
     5. Under all water treatments, It were shown clearly that plant height was reduced,internode length shorten, and1000-grain weight, grain yield and harvest index improvedremarkably with the cultivar changed, but there were no significant differences in spikelength, diameter of low internodes, spike number per unit land, and grain number per spike.The plant height was decreased from100~120cm for early cultivars to50~70cm for modern cultivars, percentage of reduction was from25.6%to49.3%. The spike internodelength decreased from34.8~40.4cm to22.4~25.3cm, a reduction by35.5%~38.3%percent; The1000-grain weight increased from28.0~29.2g to46.4~47.6g, a63.0%~66.0%improvement, or a3.06~3.29g increment for each generation; The grain yield increasedfrom4069~5206kg·hm-2to6443~6880kg·hm-2, a44.4%~58.3%improvement, or a279~395kg·hm-2increment for each generation; The HI increased from0.27~0.32to0.35~0.37, a17.9%~35.8%increase; The WUE increased from1.15~1.42kg·m-3to1.78~1.81kg·m-3, a35.2%~55.3%improvement. The significant genetic improvement wasbenifitial to dry matter accumulation and translocation before and after anthesis. Themodern cultivars demonstrated a stronger ability for dry matter accumulation and optimaldistribution, which was a very important foundation of the increasing of1000-grain weight.The1000-grain weight and harvest index have a significant positive relationship with yieldimprovement.
     6. Root vigor was decreased, but root length density, especially for the roots rangingfrom0~0.05mm and0.5~2.0mm in diameter, and root tip number was increased underwater stress. The root vigor of the modern cultivars was higher than that of the earlycultivars in cultivating layer under water stress, which made modern cultivars with bettertolerance to soil drought. By fine root measurement, it was shown that modern cultivarshad greater average root diameter, and the percentage of length density of roots withdiameter more than0.45mm increased significantly under water stress, which was helpfulfor improving water uptake and utilization in cultivating layer and maybe the main reasonsof the drought tolerance improvement for the modern cultivars
引文
1.毕建杰.山东小麦品种更替过程中品种的光合特性及农艺性状更替趋势研究[硕士学位论文].泰安:山东农业大学,2006
    2.毕明,李福海,毕建杰.山东省小麦七次品种更替中株高与上三叶面积变化规律研究[J].山东农业科学,2012,44(6):63-65
    3.曹广才.华北小麦[M].北京:中国农业出版社,2001,27-28
    4.曹廷杰.河南省近二十年来小麦育成品种主要农艺性状遗传演变规律[硕士学位论文].郑州:河南农业大学,2009
    5.曹廷杰,王绍中,郑天存,等.河南小麦育种栽培研究进展[M].北京:中国农业科学技术出版社,2007
    6.陈贵,胡文玉,谢甫绨,等.提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯,1991,27(1):44-46
    7.陈少裕.膜脂化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90
    8.陈旭,郝明德,许晶晶.渭北旱塬70年来冬小麦品种更替中光合特性的研究[J].西北农业学报,2011,20(11):42-46
    9.陈旭.黄土旱源小麦品种更替过程中光合特性和营养特性的研究[硕士学位论文].杨凌:西北农林科技大学,2009
    10.陈玉华.不同栽培模式对旱作冬小麦根系生长及水分利用的影响[博士学位论文].杨凌:西北农林科技大学,2010
    11.段爱旺,张寄阳.中国灌溉农田粮食作物水分利用效率的研究[J].农业工程学报,2000,16(4):41-44
    12.董宝娣,刘孟雨,张正斌.不同灌水对冬小麦农艺性状及水分利用效率的影响研究[J].中国生态农业学报,2004,12(1):140-143
    13.董宝娣,张正斌,刘孟雨.小麦不同品种的水分利用特性及对灌溉制度的响应[J].农业工程学报,2007,23(9):27-33
    14.董剑,赵万春,高翔,等.水氮调控对小麦植株干物质积累、分配与转运的影响[J].华北农学报,2012,27(3):196-202
    15.董树亭.高产小麦群体光合能力与产量关系的研究[J].作物学报,1991,17(6):461-468
    16.樊虎玲.陕西小麦品种性状演变及其营养特性研究[博士学位论文].杨凌:西北农林科技大学,2009
    17.范濂等.河南省小麦品种志[M].郑州:河南科技出版社,1983
    18.冯广龙,刘昌明.人工控制土壤水分剖面调控根系分布的研究[J].地理学报,1997,52(5):461-469
    19.冯玉龙,张亚杰,朱春全.根系渗透胁迫时杨树光合作用光抑制与活性氧的关系[J].应用生态学报,2003,14(8):1213-1217
    20.冯伟森,张园,罗煜良,等.黄淮冬麦区不同年代旱地小麦萌发期抗旱性与根系活力研究[J].中国农学通报,2012,28(33):30-34
    21.福德平.北京地区小麦品种更换与产量及其组分的演变[J].北京农业科学,2000,18(2):16-19
    22.高俊凤.植物生理学试验指导[M].北京:高等教育出版社,2006
    23.耿志训.武功地区小麦品种改进在生产中作用大小的估算[J].陕西农业科学,1981,(3):17-19
    24.耿志训.关于陕西省东渭北旱原小麦品种选育与种子工作的认识[A].渭北旱源小麦育种学术讨论会文集[C].西安:陕西人民出版社,1987,1-4
    25.关军锋,马春红,李广敏.干旱胁迫下小麦根冠生物量变化及其与抗旱性的关系[J].河北农业大学学报,2004,27(1):1-5
    26.国家小麦产业技术研发中心产业经济研究室.小麦产业研究报告,2010年第15期
    27.郭天财,宋晓,马冬云,等.氮素营养水平对冬小麦碳氮运转的影响[J].西北植物学报,2007,27(8):1605-1610
    28.韩庚辰.玉米主要光合形状与产量的关系及遗传效应分析[J].作物学报.1982,(4):237-244
    29.郝晓玲等.小麦不同根群对产量形成的作用-中国小麦栽培研究新进展[M].北京:农业出版社:1993,473-479
    30.胡美君,王义芹,张亮,等.不同基因型小麦及其优选杂交后代的光合作用特性[J].作物学报,2007,33(11):1879-1855
    31.胡梦芸,张正斌,徐萍,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报,2007,33(11):1884-1891
    32.胡田田,康绍忠,原丽娜,等.不同灌溉方式对玉米根毛生长发育的影响[J].应用生态学报,2008,19(6):1289-1295
    33.胡延吉,赵檀芳,刘同考.山东省小麦品种产量性状的更替与现状分析[J].种子,1996,3:32-34
    34.胡延吉,樊广华,赵檀芳.不同时期三个小麦主栽品种叶片光合作用的研究[J].种子,1997,4:15-19
    35.胡延吉,兰进好,赵檀芳.不同时期三个主栽小麦品种干物质积累及分配特性的研究[J].山东农业大学学报,1999,30(4):404-408
    36.黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报,2002,18(1):53-56
    37.黄玲,高阳,李新强,等.水分对不同年代冬小麦品种干物质积累和转移的影响[J].灌溉排水学报,2012,31(6):75-80
    38.黄修桥,王景雷.河南省节水潜力及实施半旱地农业可行性研究[J].中国工程科学2012,14(3):46-52
    39.姜东,于振文,李永庚,等.高产小麦营养器官临时贮存物质积运及其对粒重的贡献[J].作物学报,2003,29(1):31-36
    40.姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182
    41.金善宝.中国小麦学[M].北京:中国农业出版社,1996.
    42.金善宝.中国小麦品种志[M].北京:中国农业出版社,1986.
    43.金善宝.中国小麦品种志(1983-1993)[M].北京:中国农业出版社,1996.
    44.康安新,康建宏,吴宏亮.宁夏灌区春小麦品种更替中群体光合性能的演替规律研究[J].农业科学研究,2008,29(2):9-14
    45.康建宏.宁夏平原春小麦品种更替中光合特性的演替规律研究[硕士学位论文].银川:宁夏大学,2004
    46.康绍忠,许迪.我国现代农业节水高新技术发展战略的思考[J].中国农村水利水电,2001,10:76-81
    47.康绍忠,胡笑涛,蔡焕杰,等.现代农业与生态节水的理论创新及研究重点[J].水利学报,2004,12(12):1-7
    48.兰进好,张宝石,周鸿飞.不同年代冬小麦品种光合特性差异的研究[J].沈阳农业大学学报,2003,34(1):12-15
    49.雷振生,林作揖.河南小麦品种农艺性状演变及今后育种方向[J].中国农业科学,1995,28(增刊):25-53
    50.李鸿斐,胡廷积,王晨阳.不同品质类型冬小麦根系基本性状的比较研究[J].河南农业大学学报,2001,35(2):107-110
    51.李鲁华.水分胁迫对不同年代品种春小麦生长特性的影响[硕士学位论文].杨凌:西北农林科技大学,2001
    52.李话,张大勇.半干旱地区春小麦根系形态特征与生长冗余的初步研究[J].应用生态学报,1999,10(1):26-30
    53.李鲁华,陈树宾,秦莉.不同土壤水分条件下春小麦品种根系功能效率的研究[J].中国农业科学,2002,35(7):867-871
    54.李雁鸣,刘莹,张立言.华北地区小麦品种更替过程中光合器官细胞形态和光合性能演替规律的研究Ⅱ.旗叶光合性能的演替[J].河北农业大学学报,1998,21(4):7-11
    55.李宗智.国外小麦品质育种现状[J].河北农业情报,1989,(1):35-38
    56.梁银丽,陈培元.土壤水分和磷营养对小麦根系生长生理特性的影响[J].西北植物学报,1994,14(5):56-60
    57.刘殿英,石立岩,董庆裕.不同时期施肥水对冬小麦根系活性和植株性状的影响[J].作物学报,1993,19(2):149-155
    58.刘合芹.不同年代推出的冬小麦(Triticum astivumL.)农艺性状以及光合生理生态特性[博士学位论文].北京:中国科学院研究生院,2002
    59.刘鹏起,奕玉成.冬小麦品种更换过程中农艺性状变化趋势的研究[J].莱阳农学院学报,1996,13(4):257-260
    60.刘莹,李雁明,张立言.华北地区小麦品种更替过程中叶片细胞形态和光合性能演替规律的研究I.叶片细胞形态的演替[J].河北农业大学学报,1998,21(3):7-11
    61.闫永銮,郝卫平,梅旭荣,等.拔节期水分胁迫-复水对冬小麦干物质积累和水分利用效率的影响[J].中国农业气象,2011,32(2):190-195
    62.骆兰平,于振文,王东,等.土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响[J].作物学报,2011,37(6):1049-1059
    63.马富举,李丹丹,蔡剑.干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J].应用生态学报,2012,23(3):724-730
    64.马守臣,徐炳成,王和洲,等.根系冗余对小麦籽粒产量和水分利用效率的影响[J].应用与环境生物学报,2010,16(3):305-308
    65.马元喜.小麦的根[M].北京:中国农业出版社,1999
    66.苗果园,张云亭,尹钧等.黄土高原旱地冬小麦根系生长规律的研究[J].作物学报,1989,15(2):104-115
    67.彭芹.山东小麦品种更替过程中遗传多样性和光合特性演变的研究[硕士学位论文].泰安:山东农业大学,2012
    68.齐军仓,母国建,曹连莆.新疆春小麦品种演替规律的调查与分析[J].石河子大学学报(自然科学版),2006,2(3):182-185
    69.钱曼懋,孙洪伟.北部冬小麦品种农艺性状演变研究[J].作物品种资源,1989,(1):3-5
    70.邱新强,黄玲,高阳,等.不同年代冬小麦品种水分利用效率差异分析[J].灌溉排水学报,2012,31(2):25-29
    71.山仑,徐萌.节水农业及其生理生态基础.应用生态学报,1991,2(1):70~76
    72.山仑,陈培元.旱地农业生理生态基础[M].北京:中国科学出版社,1998.
    73.山仑.逆境生物学研究如何为发展我国旱地农业服务[J].河南农业大学学报(自然科学版),2003,33(3):1-3.
    74.单长卷,梁宗锁.土壤干旱对冬小麦幼苗根系生长及生理特性的影响[J].中国生态农业学报,2007,15(5):38-41
    75.宋家永.河南省小麦品种演变分析[J].中国种业,2008.6:12-14
    76.宋海星.水、氮供应对作物根系生理特性及吸收养分的影晌[博士学位论文].杨凌:西北农林科技大学,2002
    77.沈学善,朱云集,李国强,等.施硫对不同筋力型品种小麦碳氮运转和产量的影响[J].水土保持学报,2007,21(4):135-139
    78.苏佩,山仑.多变低水环境下高粱高产节水生理基础的研究[J].应用与环境生物学报,1997,3(4):305-308
    79.隋娜,李萌,田纪春.超高产小麦品种(系)生育后期光合特性的研究[J].作物学报,2005,31(6):808-814
    80.汤一卒.作物栽培学[M].南京:南京大学出版社,2000
    81.汤章城.植物的抗逆性和节水栽培[J].植物生理学通讯,1997,33(6):473-474
    82.田中伟,王方瑞,戴廷波,等.小麦品种改良过程中物质积累转运特性与产量的关系[J].中国农业科学,2012,45(4):801-808
    83.王晨阳,马元喜.不同土壤水分条件下小麦根系生理生态效应的研究[J].华北农学报,1992,7(4):1-81
    84.王晨阳.干旱胁迫对冬小麦根系活性氧代谢的影响[J].华北农学报,1997,18(4):31-36.
    85.王德梅,于振文.灌溉量和灌溉时期对小麦耗水特性和产量的影响[J].应用生态学报,2008,19(9):1965-1970.
    86.王法宏,王旭清,刘素英,等.根系分布与作物产量的关系研究进展[J].山东农业科学1997,4:48-51
    87.王桂良,叶优良,李欢欢,等.施氮量对不同基因型小麦产量和干物质累积的影响[J].麦类作物学报,2010,30(1):116-122.
    88.王红光,于振,张永丽.推迟拔节水及其灌水量对小麦耗水量和耗水来源及农田蒸散量的影响[J].作物学报,2010,36(7):183-1191
    89.王江春,于波,王荣,等.山东省小麦品种演变及产量性状的遗传分析[J].山东农业科学,2007,2:5-9
    90.王瑞英,高峻岭,王月福.灌溉对小麦—玉米周年栽培中花后水分与干物质积累的影响[J].山东农业科学,2011,5:21-24,28
    91.王士红,荆奇,戴廷波,等.不同年代冬小麦品种旗叶光合特性和产量的演变特征[J].应用生态学报,2008,19(6):1255-1260.
    92.王绍中,郑天存,郭天财.河南小麦育种栽培研究进展[M].北京:中国农业科学技术出版社,2007.
    93.王淑芬,张喜英,裴东.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响.农业工程学报,2006,22(2):27-32
    94.王义芹,谭伟,杨兴洪.不同年代小麦品种旗叶的光合特性及抗氧化酶活性研究[J].西北植物学报,2007,27(12):2484-2490
    95.王勇.黄淮海地区小麦生产布局演变研究[硕士学位论文].北京:中国农业科学院,2010
    96.王征宏,邓西平,刘立生,等.土壤干旱对小麦茎秆贮藏物质积累与再转运的影响[J].灌溉排水学报,2009,28(4):48-51
    97.王振华,张喜英,陈素英,等.不同年代冬小麦品种产量性状和生理生态指标差异分析[J].中国生态农业学报,2007,15(3):75-79.
    98.王振华,张喜英,陈素英,等.分层施肥和供水对冬小麦生理特性、根系分布和产量的影响[J].华北农学报,2008,23(6):176-180
    99.王忠.植物生理学[M].北京:中国农业出版社,2000,168-182
    100.王之杰,郭天财,王化岑.种植密度对超高产小麦生育后期光合特性及产量的影响[J].麦类作物学报,2001,21(3):64-67
    101.魏道智,宁书菊,林文雄.小麦根系活力变化与叶片衰老的研究[J].应用生态学报,2004,15(9):1565-1569
    102.吴兆苏.小麦育种进展[J].种子世界,1989,(2):13-1
    103.谢海松,董祖淦,洪菊莲.浙江省小麦品种性状演变方向研究[J].浙江农村技术师专学报,1995,12:85-91
    104.谢祝捷,姜东,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182.
    105.行翠平,张哲夫,安林利.晋南冬小麦品种更替与再高产潜力分析[J].山西农业科学2001,29(3):14-16
    106.熊淑萍,王小纯,李春明,等.冬小麦根系时空分布动态及产量对不同氮源配施的响应[J].植物生态学报,2011,35(7):759-768.
    107.许晶晶.陕西小麦品种更替过程中光合特性演变及其抗旱性研究[硕士学位论文].杨凌:西北农林科技大学,2010
    108.许为钢,胡琳,周春菊.陕西关中地区不同小麦品种光合特性及其演变[J].西北农业学报,1999,8(2):11-15
    109.许为钢,胡琳,吴兆苏,等.关中地区小麦品种产量与产量结构遗传改良的研究[J].作物学报,2000,26(3):352-355
    110.许世蛟.江苏省小麦品种资源农艺性状演变规律研究[硕士学位论文].南京:南京农业大学,2009
    111.薛丽华,张英华,段俊杰.调亏灌溉下冬小麦根系分布与耗水的关系[J].麦类作物学报,2010,30(4):693-697
    112.薛丽华,段俊杰,王志.不同水分条件对冬小麦根系时空分布、土壤水利用和产量的影响[J].生态学报,2010,30(19):5296-5305
    113.薛丽华,张英华,段俊杰,等.调亏灌溉下冬小麦根系分布与耗水的关系[J].麦类作物学报,2010,30(4):693-697
    114.杨春玲,侯军红,宋志均.河南省主要小麦品种系谱研究及核心种质利用[J].山东农业科学,2009,1:27-31
    115.杨文雄.甘肃省春小麦品种演变及有关性状遗传分析[J].西北农业学报,2001,10(2):60-63
    116.杨文雄,张怀刚,介晓磊.西北地区春小麦品种更换特点及育种策略[J].西北农业学报,2004,13(3):22-25
    117.杨武广.不同年代小麦品种籽粒产量与品种差异及其对氮肥的响应[硕士学位论文].南京:南京农业大学,2009
    118.杨永辉,胡玉昆,张喜英.农业节水研究进展及未来发展战略[J].中国科学院院刊.2012,27(4):455-461
    119.姚素梅,康跃虎,刘海军.喷灌与地面灌溉冬小麦干物质积累、分配和运转的比较研究[J].干旱地区农业研究,2008,26(6):51-56
    120.殷美.不同年代小麦品种碳氮物质积累与运转特性的差异[硕士学位论文].南京:南京农业大学,2008
    121.俞世蓉,吴兆苏,杨竹平.江苏淮南地区70年代以来小麦品种产量及产量因素的演变[J].中国农业科学,1988,21(4):15-21
    122.张大勇,姜新华,赵松龄,等.半干旱区作物根系生长冗余的生态学分析[J].西北植物学报,1995,15(5):110-114.
    123.张德奇,季书勤,李向东.水分调控对冬小麦根系与叶片生理特性及产量和品质的影响[J].华北农学报,2012,27(1):124-127
    124.张平治,徐继萍,范荣喜.安徽省小麦品种演变分析[J].中国农学通报,2009,25(23):195-199
    125.张荣,张大勇.半干旱区春小麦不同年代品种根系生长冗余的比较实验研究[J].植物生态学报,2000,24(3):298-300
    126.张荣,孙国钧,李凤民.两春小麦品种竞争能力、水分利用效率及产量关系的研究[J].西北植物学报2002,22(2):235-242
    127.张喜英,袁小良.冬小麦根系吸水与土壤水分条件关系的田间试验研究[J].华北农学报,1995,10(4):99-104
    128.张喜英.提高农田水分利用效率的调控机制[J].中国生态农业学报.2013,21(1):8087
    129.张玉玲.氮素应用对不同年代小麦主栽品种产量和品质及其生理机理的影响[硕士学位论文].泰安:山东农业大学,2006
    130.张智猛,戴良香,董立峰.北方冬麦区小麦品种农艺性状演变与源库问题的探讨[J].河北农业技术师范学院学报,1997,11(3):1-7
    131.张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2003
    132.张正斌.中国旱地和高水效农业的研究与发展[M].北京:科学出版社,2006:5
    133.张正斌,徐萍.中国水资源和粮食安全问题探讨[J].中国生态农业学报.2008,16(5):1305-1310
    134.张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2003
    135.张正斌,段子渊.中国粮食安全路在何方[J].中国科学院院刊,2009,24(6):610-616
    136.赵辉,戴廷波,姜东,等.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响[J].应用生态学报,2007,18(2):333-338
    137.郑广华.植物栽培生理[M].济南:山东科学技术出版社,1980,1-61
    138.郑天存.建国50年来河南省小麦品种农艺性状演变规律及21世纪遗传改良方向探讨.郑州21世纪小麦遗传育种展望——小麦遗传育种国际学术讨论会文集,2001
    139.周桂莲.小麦抗旱性鉴定的形态指标及其分析评价[J].陕西农业科学,1996(4):33-34
    140.周阳,何中虎,陈新民,等.30余年来北部冬麦区小麦品种产量改良遗传进展[J].作物学报,2007,33(9):1530-1535
    141.邹琦,王学臣.作物高产高效生理学研究进展-《农作物高产高效抗逆生理基础研究》文集.科学出版社,1996,1-11
    142.褚鹏飞,王东,张永丽.灌水时期和灌水量对小麦耗水特性、籽粒产量及蛋白质组分含量的影响[J].中国农业科学,2009,42(4):1306-1315
    143.庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社,2003.1
    144.中国统计年鉴2012
    145. álvaro F, Isidro J, Villegas D, etal. Breeding effects on grain filling, biomass partitioning, andremobilization in Mediterranean durum wheat. Agronomy.2008,100:361-370
    146. Abbate P E, Andrade F H, Lazaro L, etal. Grain yield increase in recent Argentine wheat cultivars.Crop Science,1998,38:1203-1209
    147. Acreche M M, Brice no-Félix G, Martín Sánchez, etal. Physiologicalbases of genetic gains inMediterranean bread wheat yield in Spain. Europe. Journal Agronomy.2008,28:162-170
    148. Austin R B, Bingham J, Blackwell R D, etal. Genetic improvement in winter wheat yields since1900and associated physiological changes. Journal. Agriculture Science.(Camb.),1980.94:675-689
    149. Austin R B. Physiological limitations to cereal yields and ways of reducing them bybreeding[A].Opportunities for increasing crop yield[C],Cambridge: Cambridge UniversityPress,1980:13-19
    150. Austin R B, Ford M A, Morgan C L, Genetic improvement in the yieldof winter wheat: a furtherevaluation. Journal Agriculture Science.(Camb.)1989,112:295-301
    151. Babu R C, Manian K, Sridharan C S. Leaf chlorophyll, photosynthesis and dry matterAccumulation in sesame hybrids and their parents. Madras Agriculture J1996,83:726-729
    152. Barraclough P B, etal. The effects of prolonged drought and n-itrogen fertilizer on root and shootgrowth and water uptake by winter wheat. Journal of Agronomy and Crop Science,1989,163:352-360
    153. Bhatia V S, Tiwari S P, Joshi O P. Inter-relationship of leaf photosynthesis, specific leaf weight andleaf anatomical characters in soybean. Indian Journal of Plant physiol,1996,39:6-9
    154. Blaha L, Michalova A. Analysis of development of Physiological and yielding characters ofCzechoslovak winter wheat from the beginning of20th century. Rostlinna Vyroba,1993,39:923-929
    155. Blum A, Johnson J W. Transefr of water from roots into dyr soil and the effect on wheat waterrelation sand gorwth.Plant Soil,1992,145:141-149
    156. Boyadjieva D. A study on the wheat Productivity criteria for the breeding of droughttolerantcultivars. Cereal Research Communications,1996,24:299-305
    157. Brancourt-Hulmel M, Doussinault G, Leconte C, etal. Genetic improvement of agronomic traits ofwinter wheat cultivarsreleased in France from1946to1992. Crop Science,2003,43:37-45.
    158. Canevara M G, Romani M, Corbellini M. etal. Evolutionary trends in morphological, physiological,agronomical and qualitative traits of Triticum aestivum L. cultivars bred in Italy since1900.Europe Journal of Agronomy.1994.3:175-185
    159. Calderini D F, Dreccer M F, Slafer G A. Genetic improvement in wheat yieldand associated traits:A re-examination of previous results and the latest trends. Plant Breed.1995,114:08-112
    160. Canevara M G, Romani M, Corbellini M, Evolutionary trends in morphologieal, Physiologieal,agronomical and qualitative traits of Triticum aestivum L.cultivars bred in ltaly since1900.European Journal of Agonomy.1994,3:175-185
    161. Cox T S, Shroyer J P, Liu B H etal. Genetic improvementin agronomic traits of hard red winterwheat cultivars from1919to1987. CropSci.1988,28:756-760
    162. Crocker T L, Hendrick R L, Ruess R W, etal. Substituting root numbers for length: improving theuse of minirhizotrons to study fine root dynamics. Applied Soil Ecology,2003,23(2):127-135
    163. Costa C, Dwyer L M, Hamilton R I, etal. A sampling method for measurement of large rootsystems with scanner-based image a-nalysis. Agronomy Journal,2000, l92:621-627
    164. Donmez E, Sears R G., Shroyer J P, etal. Genetic gain in yield attributes of winter wheat in theGreat Plains. Crop Science.2001,41:1412-1419
    165. Depauw R M, Knox R E, Clarke F R, etal. Shifting undesirable correlations. Euphytica,2007,157:409-415
    166. Finney P L. Wheat quality: A quality assessor’s view. Cereal Food World,1987,32(4):313-319
    167. Fiseher R A, Rees D, Sayre K D.Wheat yield progress associated with higher stomatal conduetanceand photosynthetic rate, and cooler canopies. Crop Science.1998,38:1467-1475
    168. Fischer R A, Understanding the physiological basis of yield potential in wheat.Journal ofAgriculture Science,2007,145:99-113
    169. Fischer R A, Edmeades G O, Breeding and cereal yield progress. Crop Sci.2010,50:85-98.
    170. Foulkes M J, Snape J W, Shearman V J. Genetic progress in yield potential in wheat: recentadvances and future prospects. Journal of Agriculture Science,2007,145:17-29
    171. Graybosch R.A, Peterson C J, Genetic improvement in winter wheat yields in the great plains ofNorth America,1959-2008. Crop Science,2010.50:1882-1890
    172. Hucl P, Baker R J. A study of ancestral and modern Canadian spring wheat.Can. Journalof PlantScience,1987,67:87-97
    173. Jiang Y, Huang B. Drought and heat stress injury to two cool-season turfgrasses in relation toantioxidant metabolisms and lipid peroxidation, Crop Science i,2001,41:436-442
    174. Konjike E, Mathis P. Photosynthetic characteristics of some varieties and mutants of wheat as theyield components. Photosynthesis: from Light to Biosphere. VolumeV.proceedings of the XthInternational Photosynthesis Congress, Montpellier,Franee,20-25,August1995:801-804
    175. Kulshrestha V P, Jain H K, Eighty years of wheat breeding in India:Past selection pressures andfuture prospects. Z. P flanzenzuchtg1982.89:19-30
    176. Lawlor D W. Photosynthesis, Production and environment Journal of Experimental Botany,1995,46:1389-1396
    177. Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relationto water deficits in higher plants. Plant, Cell and Environment,2002,25:275-294
    178. Lakkineni K C, Sivasankar A, Kuma P A. Carbondioxide assimilation in urea treated wheatleaves. Journal of Plant Nutritionn.1995,18:2213-2217
    179. McCaig T N, Depauw R M. Breeding hard red spring wheat in western Canada: historicalTrends inyield and related variables. Canadian Journal of Plant Scienee,1995,75:387-393
    180. McCaig T N, DePauw, R.M. Breeding hard red spring wheat in western Canada: historical trendsin yield and related variables. Canadian Journal of Plant Scienee,1995,75:387-393
    181. Menz K M, Moss D D, Cannell R Q. Screening for photosynthetic efficieney. Crop Science,1969,9:692-694
    182. Mian MAR, etal. Root growth ofwheat genotypes in hydroponicculture and in the greenhouseunder different soil moisture regimes.Crop Science,1993,33:2,283-286
    183. Moral L F. Genetic changes in durum wheat yield components and associated traits in Italian andSpanish varieties during the20th century. Euphytica,2007,155:259-270
    184. McCaig T N, Clarke J M. Breeding durum wheat in western Canada: historical trends in yieldAndrelated variables. Canadian Journal of Plant Science.1995,75:55-60
    185. Moller I M, Jensen P. E, Hansson A. Oxidative modifications to cellular components in plants.Annual reviews of plant biology,2007,58:459-481
    186. Moss D N, Musgrave B P. Photosynthesis and crop production. In:Brady, N.C.(ed). AdvancesInAgronomy. Academic Press. New York and Lodon,1971,23:317-336
    187. Marx J L. Photorespiration: key to increasing Plant Productivity. Science.1973,179:365-367
    188. Munshi Siagh Y M. U Padhyaya.印度小麦的改良与育种[J].国外农学一麦类作物,1988,(l):22-24
    189. Mulshrestha V P, Jain H K.印度小麦育种的80年[J].国外农业科技,1983,(10):1-6
    190. Morgounova V, Zykinb I, etal. Genetic gains for grain yield in high latitude spring wheat grown inWesternSiberia in1900–2008A. Field Crops Research,2010,117:101–112
    191. Narayan D. Root growth and productivity of wheat cultivals under different soil moisture condition.International Journal of Ecology and environ-mental sciences.1991,17(1):19-26
    192. Otto W M, etal. Secondary root development of a winter wheatcultivar as influenced by soil watercontent. Applied Plant Science,1998,12(2):60-611
    193. Ortiz-Monasterio R, Sayre K D, Rajaram S, etal. Genetic progressin wheat yield and nitrogen useefficiency under four nitrogen rates. Crop Science,1997,37:898-904
    194. Pande P C, Gambhir P N, Nagarajan S. Physiological constraints in improvement of grain sizeand grain filling in wheat. Indian J Plant physiol,1995,38:121-125
    195. Peltonen-Sainio P, Peltonen J. Progress since the1930s in breeding for yield, its components, andquality traits of spring wheat in Finland. Plant Breeding.l994,113:177-186
    196. Peltonen-Sainio P, Jauhiainen L, Laurila P, Cereal yield trends in northernEuropean conditions:changes in yield potential and its realization. Field Crops Research,2009.110:85-90
    197. Peltonen-Sainio P, Muurinen S, Rajala A, etal. Variation in harvestindex of modern spring barley,oat and wheat cultivars adapted to northern growing conditions. Journal of Agricultural Sciences,2008,146:37-47
    198. Perry M W, D’Antuono M F. Yield improvement and associated characteristicsof some Australianspring wheat cultivars Introduced between1860and1982. Australian Journal of AgriculturalResearch,1989,40:457-472
    199. Rajaram S, Ginkel M. Yield potential debate: germplasm vs. methodologyor both. In: IncreasingYield Potential in Wheat: Breaking the Barriers,1996.CIMMYT, Mexico, D.F,11–18.
    200. Reynolds M P, Rajaram S, Sayre K D. Physiological and genetic changes of irrigated wheat in thepost-green revolution period and approaches for meeting projected global demand. From thesymposium ‘Post-Green-Revolution trends in crop yield potential:inereasing, stagnant, or greaterresistance to stress?’ Crop Science.1999,39:1611-1621
    201. Reynolds M P, Pfeiffer W H, Royo C. Applying physiological strategies to improve yield potential.Durum wheat improvement in the Mediterranean region: new challenges. Proceedings of aSseminar.Zaragoza,SPain,2000,(40):95-103
    202. Richards R A. Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot,2000,51:447-458
    203. Rizza F, Badeck F W, Cattivelli L, etal. Use of a waterstress index to identify barley genotypesadapted torainfed and irrigated conditions. Crop Science,2004,44:2127-2137
    204. Royo C, Martos V, Ramdani A. Changes in yield and carbon isotope discrimination of Italian andSpanishdurum wheat during the20th century. Agronomy Journal,2008,100:352-360
    205. Sayre K D, Rajaram S, Fiseher R A. Yield potential progress in short bread wheats in northwestMexieo.Crop Science,1997,37:36-42
    206. Shao Hongbo, Liang Zongsuo, Shao Mingan, etal.Investigation on dynamic changes ofphotosynthetic char-acteristics of10wheat (Triticum aestivumL.) genotypes during twovegetative-growth stages at water deficit.Colloids and Surfaces B: Biointerfaces,2005,43:221-227
    207. Sharma S K, Singh K R, Luthra O P. Influence of dwarf in genes on yield, yield components andharvest index of tall wheat varieties. Annals of Biology Ludhiana,1999,15:17-20
    208. Shearman V J, Sylvester-Bradley R, Scott R K, etal. Physiological processes associated with wheatyield progress in the UK. Crop Science,2005,45:175-185
    209. Siddique K H, Belford R K, Tennant D. Root: Shoot ratio of old and modern, tall and semidwarfwheat in a Meditertanean environment.Plant&Soil,1990,121:89-98
    210. Slafer G A, Andrade F H. Physiological attributes related to the generation of grain yield in breadwheat cultivars released at different eras. Field Crops Research,1993.31:351-367
    211. Siddique K H, Belford R K, Perry M W, etal. Growth, developmentand light interception of oldand modern wheat cultivars in a Mediterranean-type environment. Aust. J. Agric.Res,1989a.40:473-487
    212. Sun H Y, Liu C M, Zhang X Y, etal. Effects of irrigation on water balance yield and WUE of winterwheat in the North China Plain. Agricultural Water Management,2006,85:211-218
    213. Ustun A, Allen F L, English B.C, Genetic progress in soybean of the U.S.Midsouth. Crop Science,2001.41,993-998
    214. Underdahl J L, Mergoum M, Ransom J K.etal. Agronomic traits improvement and associations inHard Red Spring Wheat cultivars released in North Dakota from1968to2006. Crop Science,200848,158-166
    215. Vamerali T, Ganis A, Bona S, etal. An approach to minirhizotron root image analysis.Plant andSoil,1999,217:183-193
    216. Waddington S R, Ransom J K, Osmanzai M, etal. Improvement in yield potential of bread wheatadapted to northwest Mexico. Crop Science,1986,26,698-703
    217. Waddington S R.1960年至1984年墨西哥发放的硬粒小麦品种的产量.国外农学一麦类作物,1989,(6):15-20
    218. Wang H, McCaig T N, Depauw R M, etal. Physiological characteristics of recent Canada WesternRed Spring wheat cultivars: yield components and dry matter production. Canadian Journal ofPlant Science,2002,82:299-306
    219. Y Jiang, B Huang. Drought and heat stress injury to two cool-season turfgrasses in relationtoantioxidantmetabolisms and lipid peroxidation, Crop Science,2001,41:436-442
    220. Zheng T C, Zhang X K, Yina G H. Genetic gains in grain yield, net photosynthesis and stomatalconductanceachieved in Henan Province of China between1981and2008. Field CropsResearch,2011,12:225-233
    221. Zhongwei Tian, Qi Jing, Tingbo Dai, etal. Effects of genetic improvements on grain yield andgronomic traits of winterwheat in the Yangtze River Basin of ChinaField Crops Research,2011,124:417-425
    222. Zhou Y, He Z H, Sui X X, etal. Genetic improvementof grain yield and associated with traits in thenorthern China winter wheatregion from1960to2000. Crop Science,2007a.47,245-253
    223. Zhou Y, Zhu H Z, Cai S B, etal. Genetic improvement of grain yield and associated traits in thesouthern China winter wheat region:1960to2000. Euphytica,2007,157:465-473
    224..Zhang X Y, Chen S Y, Liu M.Y,etal Improved water use efficiency associated with cultivars andagronomic management in the North China Plain. Agronomy Journal,2005,97(3):783-790
    225. Zhang X Y, Chen S Y, Sun H Y, etal. Water use efficiency andassociated traits in winter wheatcultivars in the North ChinaPlain, Agriculture Water Manage,2010,97(8):1117-1125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700