用户名: 密码: 验证码:
中国汉族人类风湿关节炎易感基因及Th17细胞的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿关节炎(Rheumatoid Arthritis,RA)是一种系统性自身免疫性疾病,以关节的炎症为主要特点,主要的病理变化为慢性滑膜炎和血管炎,当累及关节软骨和骨质时,逐渐形成关节畸形和强直,导致关节功能丧失。在我国的患病率约为0.4%。RA的病因尚不明确,遗传、环境和免疫因素共同发挥作用。
     RA作为一种具有遗传倾向的多基因性疾病,遗传率高达53-65%,同卵双胞胎患病的相对危险度为2-12,而MHC在整个遗传效应中作用约占30%。目前已知的RA的易感基因包括:HLA-DR,PTPN22,TNFAIP3和STAT4等,但还有一半以上的易感基因和多态性位点未被发现。此外,RA的遗传特征具有明显的异质性,在主要的种族尤其是白种人和亚洲人之间,遗传学研究的结果常常不一致。之前高加索人的全基因组扫描发现了大量潜在的危险等位基因,需要在不同的种族中进行验证。
     Th17细胞作为一个新型的辅助性T细胞亚群,其分化、发育和功能均受其特定的细胞因子调控,能产生IL-17A,IL-17F和IL-22等细胞因子。动物实验发现,Th17细胞在清除病原体感染和诱导自身免疫性炎症中发挥着重要作用,同时有资料显示一些自身免疫病患者如炎性肠病、多发性硬化和银屑病等,存在着Th17细胞数量和(或)功能异常。
     本研究拟通过大样本的病例-对照相关性研究,在中国汉族人群中对之前已报道的与高加索人RA相关的基因位点和可能存在种族差异的易感基因的多态性进行鉴定;此外,观察RA患者外周血Th17细胞数量和功能的变化,以及抗TNF-α治疗对该细胞亚群的影响,探讨RA的发病机制和治疗机理。
     第一部分中国汉族人类风湿关节炎易感基因的大样本研究
     目的:在中国汉族人群中对已报道过的与高加索人RA相关的基因变异体或可能存在种族差异的易感基因的多态性进行鉴定,包括了IL2RA、PADI4、IL2RB、CDK6、TRAF1、STAT4、IL2、IL21、CTLA4、MMEL1、PTPN22等16个基因的142个SNPs位点。
     方法:以821例中国汉族RA患者和1000例种族相匹配的健康正常人为研究对象。应用多重PCR和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术,对142个SNPs位点进行了基因分型。应用Haploview 4.1软件进行SNPs与疾病的关联分析,连锁不平衡和单倍体相关性分析。
     结果:单个SNPs位点与RA关联分析显示:在中国汉族RA患者中,STAT4的2个位点(rs11685878和rs7574070)等位基因频率及基因型频率与对照组有显著性差异(P=0.0459和0.0045、0.0007和0.0005);CDK6的rs42041等位基因频率及基因型频率在RA组和对照组有显著性差异(P=0.0199,0.018);位于PADI4的4个位点(rs1886302、rs2477131、rs11203326和rs1635561)等位基因频率和基因型频率与对照组均无显著性差异(P>0.05);IL2RB的rs228979等位基因频率及基因型频率在病例组和对照组存在显著差异(P=0.0043,0.0112); IL21的rs2221903等位基因频率及其基因型频率与健康对照组有显著性差异(P=0.0273,0.0478)。连锁不平衡和单倍体关联性分析发现,CDK6基因rs42041/rs42042组成的单倍体CT、单倍体GT在RA患者和对照组间存在显著性差异(P=0.0322,0.0263);STAT4基因rs11685878/rs7574070组成的单倍体TA、单倍体CC在RA患者和对照组之间存在显著性差异(P=0.0167,0.0019)。此外结果还显示,MMEL1基因与RA具有很强的关联性,PTPN22基因与RA无相关性。
     结论:IL-21很有可能是中国汉族人RA的易感基因。CDK6、STAT4和MMEL1是不同种族中RA共同的非MHC易感基因。在中国汉族人群中PTPN22基因与RA无相关性。
     第二部分Th17细胞与类风湿关节炎相关性的研究
     第一节RA患者外周血Th17细胞相关细胞因子的表达
     目的:Th17细胞的分化发育以及功能的发挥依赖于特定的细胞因子。通过检测血清中IL-17、IL-23、IL-1β、IL-6以及TGFβ-1的蛋白含量,以及PBMC相应细胞因子mRNA的表达水平,研究RA患者外周血Th17细胞的功能状况。
     方法:选择RA患者74例并按照疾病活动性分组,正常对照者82例。运用酶联免疫吸附测定以及实时荧光定量PCR方法,分别从蛋白和mRNA水平对外周血中IL-17、IL-23、IL-1β、IL-6以及TGFβ-1进行检测。
     结果:①活动期RA患者血清中IL-17含量明显高于稳定期RA和对照组(41.33±1.40 vs27.54±2.81 vs 17.66±1.40pg/ml,P<0.001),活动期RA患者PBMC的IL-17mRNA表达明显高于正常对照组(P<0.05);②活动期RA患者血清中IL-23含量与稳定期RA和对照组无显著性差异(116.60±23.30 vs128.00±43.72 vs140.85±27.32 pg/ml,P>0.05),活动期RA患者PBMC的IL-23mRNA表达与对照组无显著性差异(P>0.05);③活动期RA和稳定期RA患者血清中IL-1β含量均明显高于对照组(23.65±2.89 vs20.68±5.61 vs 6.82±2.76 pg/ml,P<0.05),活动期RA患者PBMC的IL-1βmRNA表达明显高于正常对照组(P<0.001);④活动期RA患者血清中IL-6含量明显高于稳定期RA和对照组(32.43±4.92 vs3.43±1.75 vs 3.37±0.70 pg/ml,P<0.001),活动期RA患者PBMC的IL-6mRNA表达明显高于正常对照组(P<0.001);⑤活动期RA、稳定期RA和对照组3组间血清中TGFβ-1含量均有显著性差异(1117.04±232.25 vs403.59±93.35 vs 134.92±71.38 pg/ml,P<0.05);活动期RA患者PBMC的TGFβ-1mRNA表达明显高于正常对照组(P<0.001)。
     结论:在活动期RA患者体内,Th17细胞的主要效应性细胞因子IL-17水平明显升高,并与疾病活动性相关;促进初始CD4+T细胞向Th17细胞分化的细胞因子IL-1β、IL-6以及TGFβ-1的水平也明显升高,这些结果均提示活动性RA患者外周血中Th17细胞功能活跃。而IL-23主要是维持Th17细胞的存活和扩增,其功能的发挥无“剂量依赖性”。
     第二节RA患者外周血Th17细胞的比例以及在体外不同微环境中的分化状态
     目的:IL-17是Th17细胞标志性的细胞因子。通过检测CD4+IL-17+T细胞的比例研究RA患者外周血Th17细胞的数量。同时,观察在体外不同的细胞因子微环境对Th17细胞分化的影响。
     方法:选择活动性RA患者10例,缓解期RA患者8例,正常对照10例。Ficoll密度梯度离心法分离外周血单个核细胞(PBMC),用佛波酯和钙离子载体刺激5小时后,抗CD4-FITC和抗IL-17-PE标记,流式细胞仪检测CD4+IL-17+T细胞的比例。将分离出的一部分PBMC加入不同的细胞因子微环境(IL-1β+IL-6、IL-1β+IL23、IL-6+IL23、IL-1β+IL23+IL-6、TGF-β)体外培养5天,抗CD4-FITC和抗IL-17-PE标记,流式细胞仪检测CD4+IL-17+T细胞的比例。
     结果:①活动期RA、稳定期RA患者和正常对照外周血CD4+IL-17+细胞的百分率分别为0.52±0.04%,0.28±0.03%,0.06±0.02%,RA患者外周血CD4+IL-17+细胞比例升高(P<0.001),且在不同疾病活动性的RA患者之间存在差异(P<0.001)。②分离出的PBMC在体外不同的细胞因子微环境中培养后,流式细胞术检测出的CD4+IL-17+T细胞的比例存在差异,其中经细胞因子IL-1β加IL-6共培养后CD4+IL-17+T细胞的比例最高。
     结论: RA患者外周血Th17细胞的数量增多,并且与疾病活动性有关。在体外,细胞因子IL-1β加IL-6可有效的刺激人Th17细胞分化,诱导IL-17的表达。
     第三节抗TNF-α治疗对Th17细胞数量和功能的影响
     目的:观察活动期RA在接受人源化抗TNF-α单克隆抗体(adalimumab)治疗后,其外周血Th17细胞数量和功能的变化情况。研究抗TNF-α抗体发挥治疗作用的机制。
     方法:选取参加Adalimumab药物临床试验的活动期RA患者7例,随访6个月。应用荧光定量PCR检测治疗前后外周血Th17相关的细胞因子mRNA的变化,流式细胞术检测治疗前后外周血中CD4+IL-17+T细胞比例的改变。
     结果:荧光定量PCR结果显示adalimumab治疗6月以后,活动期RA患者PBMC的IL-23mRNA ( 0.0873±0.01589 vs0.0225±0.00445 )、IL-1βmRNA( 22.9281±3.95391 vs0.7859±0.44970 )和IL-6mRNA ( 395.9832±110.8752 vs102.2152±22.5869 )表达水平较治疗前明显降低( P<0.05 ),而IL-17和TGFβ-1mRNA表达水平无明显变化( 0.0061±0.00262 vs0.0038±0.00212 ,1.0547±0.33605 vs0.6669±0.10660,P>0.05)。流式结果显示,adalimumab治疗后RA患者外周血中CD4+IL-17+细胞的比例无明显降低(0.5286±0.00516% vs 0.4857±0.04592%,P>0.05)。
     结论:Adalimumab能够直接中和TNF-α,使得位于TNF-α下游的IL-1β和IL-6水平降低,同时adalimumab有效地降低了RA患者PBMC中IL-23mRNA的表达水平,这可能是抗TNF-α抗体的又一种治疗机制。Adalimumab对Th17细胞的数量和效应因子IL-17的水平没有直接的影响。由此推测,TNF-α抑制剂和以Th17细胞为靶点的治疗在治疗机制上并没有重叠,两种生物制剂的合用可能是治疗RA的一条新的途径。
Rheumatoid arthritis (RA) is a chronic autoimmune arthritis characterized by progressive joint destruction. In China the occurrence of RA is somewhat lower (about 0.4 percent), whereas it is substantially higher in other ethnic groups. Although the etiology of RA remains a mystery, a variety of studies suggest that a blend of environmental , immunological and genetic factors is responsible.
     Similar to what has been postulated for the majority of common diseases, a polygenic mode of inheritance has been proposed for RA. The heritability of RA estimated from twin studies is 53-65%, and the contribution from the MHC is estimated at ~30% of the total genetic effect. Previous genetic studies have identified and validated some risk loci for autoantibody-positive RA including HLA-DR,PTPN22,TNFAIP3 , STAT4 and so on. Less than half of genetic variation can be explained by the known RA risk alleles. However, previous results of genetic variation studies have not always been consistent between Caucasians and Asians. These divergent results suggest genetic heterogeneity of RA across the major racial groups. As such, a number of candidate risk alleles of RA found in Caucasians by genome-wide association scanning of functional SNPs should be replicated in major racial groups.
     Th17 cell, which has been identified as a new subset of CD4+T cells, can produce IL-17, IL-22 and other effective cytokines. IL-17 is a proinflammatory cytokine that plays an important role in host defense against extracellular bacteria, protozoa, and fungi. It has also become recognized as a key mediator of chronic inflammation in animal models of immune-mediated inflammatory diseases such as RA, multiple sclerosis, inflammatory bowel disease and psoriasis. And now, there is growing evidence that Th17 cell is important in the human disease counterparts.
     The aim of this study is to test the hypothesis that genes associated with RA in Caucasians are also associated with RA in Han Chinese. Another purpose of this study is to study on the role of Th17 cell in peripheral blood of patients with RA and observe the effect of anti- TNF-αtherapy on the number and function of Th17 cell.
     Part I: Study on the genetic risk factors for rheumatoid arthritis in Chinese Han population
     Objective: To test the hypothesis that genes associated with RA in Caucasians are associated with RA in Han Chinese. Specifically, we will perform case-control association testing of genes previously reported to be associated with RA in Caucasians in a large cohort of RA cases and controls, assessing the role of genes already implicated in the disease in other populations.
     Methods:We genotyped the initial 821 RA cases and 1000 healthy controls for 142 SNPs covering the genes previously implicated in the disease including the SNPs in the genes PADI4, PTPN22, STAT4,CDK6, IL2RA, IL2RB, TRAF1, IL2, IL21,MMEL1, CTLA-4 and so on. For SNPs genotyping, Sequenom iPLEX and MALDI-TOF MS were used. Association tests for SNPs and haplotypes in patients and control subjects and the regional linkage disequilibrium structure for analyzed SNPs were determined using Haploview software, version 4.1.
     Results: RA association tests: The STAT4 SNPs(rs11685878和rs7574070)were noted to be disease-associated, with a P value of 0.0459,0.0045 respectively. The CDK6 SNPs(rs42041),IL21 SNPs(rs2221903), IL2RB SNPs(rs228979) were also associated with disease. After analyzing the linkage disequilibrium structure of the SNPs, we found 4 blocks. CDK6 haplotype constructed by rs42041 and rs42042 is associated with RA. STAT4 haplotype constructed by rs11685878/rs7574070 is also associated with RA. Further more, the gene of MMEL1 is showed strong association with RA. In contrast, a negative result was obtained on analyzing SNPs in the gene of PTPN22.
     Conclusions: IL21 is possibly a susceptible gene in Chinese Han RA patients. CDK6, STAT4 and MMEL1 are the common risk genes in both Caucasians and Asians. PTPN22 gene shown to be significantly associated with disease in Caucasians appears not play a role in Chinese patients with RA..
     Part II: Study on the role of Th17 cell in peripheral blood of patients with rheumatoid arthritis
     1. Expression of cytokines related with Th17 cell in peripheral blood of patients with rheumatoid arthritis
     Objective: To find out the effectiveness of Th17 cell in the RA pathogenic mechanism.
     Methods: 74 RA patients are collected and dived into two groups based on their disease activity. Normal controls are 82 samples. The levels of cytokines including IL-17、IL-23、IL-1β、IL-6, and TGFβ-1 in serum were measured by ELISA. The expression levels of these cytokines mRNA were evaluated by real-time quantitative PCR.
     Results: Quantitative realtime PCR and ELISA analysis demonstrated elevated mRNA expression levels and protein concentrations of four cytokines including IL-17(41.33±1.40 vs 17.66±1.40pg/ml,P<0.001), IL-1β(23.65±2.89 vs 6.82±2.76 pg/ml,P<0.05)、IL-6(32.43±4.92 vs 3.37±0.70 pg/ml,P<0.001)and TGFβ-1(1117.04±232.25 vs 134.92±71.38 pg/ml,P<0.05). In addition, ELISA analysis showed that the concentration of IL-17(41.33±1.40 vs 27.54±2.81 pg/ml)、IL-1β(23.65±2.89 vs 20.68±5.61 pg/ml)and TGFβ-1(1117.04±232.25 vs 403.59±93.35 pg/ml)in the serum of active patients were much higher than that in stable patients(P<0.05).
     Conclusions: As the main effect cytokine induced by Th17 cell, the level of IL-17 is remarkably elevated in active RA patients and correlated with disease activity. As IL-1β,IL-6 and TGFβ-1 can promote na?ve CD4+T cells to differentiate into Th17 cell, the levels of these cytokines were also elevated in RA patients. The function of IL-23 is to maintain the survival and expansion of Th17 cell, which did not depend on the dose of IL-23.
     2. The proportion of Th17 cell in PBMC in RA patients and effects of different cytokine environments on Th17 cell differentiation
     Objective: To investigate the proportion of CD4+IL-17+T cells in PBMC in RA patients and effects of different cytokine environments on Th17 cell differentiation.
     Methods: 10 active RA patients, 8 stable RA patients and 10 normal controls were recruited for study. PBMC was isolated by Ficoll desity gradient centrifugation methods first, then the PBMC was stimulated 5 hours by phorbol ester and calcium ionophore. The cells were stained by CD4-FITC and anti IL-17-PE, and CD4+IL-17+T cell was detected by Flow Cytometry. Part of PBMC has been cultured in different cytokine environment: such as IL-1β+IL-6、IL-1β+IL23、IL-6+IL23、IL-1β+IL23+IL-6 for five days. Then the cells were stained by CD4-FITC and anti IL-17-PE and CD4+IL-17+T cell was detected by Flow Cytometry.
     Results: The proportion of CD4+IL-17+ lymphocyte in the peripheral blood of active RA patients is higher than in stable RA patients and normal controls(0.52±0.04% vs 0.28±0.03% vs 0.06±0.02%,P<0.001).IL-1βand IL-6 are stronger stimulator for Th17 differentiation.
     Conclusions: The proportion of CD4+IL-17+ lymphocyte in the peripheral blood of active RA patients is much higher. IL-1βand IL-6 are stronger stimulator for Th17 differentiation..
     3. The effect of anti- TNF-αtherapy on the number and function of Th17 cell Objective: To analyze the effect of of anti- TNF-α(adalimumab)therapy on the number and function of Th17 cell.
     Methods: seven patients with RA were recruited and administrated adalimumab 40mg once two weeks for more than six months. The proportion of Th17 cell and mRNA expression levels of cytokines including IL-17, IL-23, IL-1β, IL-6 and TGFβ-1 at the baseline and at 6 months were evaluated.
     Results: A significant decrease in mRNA expression levels of IL-23(0.0873±0.01589 vs 0.0225±0.00445 ) ,IL-1β( 22.9281±3.95391 vs 0.7859±0.44970 ) and IL-6 (395.9832±110.8752 vs 102.2152±22.5869)was observed at 6 months after initial treatment of adalimumab(P<0.05). The expression levels of IL17 mRNA and TGFβ-1 mRNA did not show a significant change at 6 months after the initial injection compared with pretreatment levels, respectively(0.0061±0.00262 vs0.0038±0.00212,1.0547±0.33605 vs0.6669±0.10660,P>0.05).The flow cytometry. analysis also showed that the number of CD4+IL-17+ lymphocyte in the peripheral blood of RA patients did not decrease significantly after treatment(0.5286±0.00516% vs 0.4857±0.04592%,P>0.05). Conclusions: This study demonstrated that the reduction of IL-23 production in RA patients was a newly determined function of adalimumab. IL-17 production in RA patients in vivo may not depend on the direct stimulation by TNF-α. Combination use of TNF-αinhibitor and anti-IL17 may control the disease effectively in future.
引文
[1] Bellamy N, Duffy D, Martin N, et al. Rheumatoid arthritis in twins: a study of aetiopathogenesis based on the Australian twin registry. Ann Rheum Dis,1992, 51: 588-93.
    [2] Aho K, Koskenvuo M, Tuominen J, et al. Occurrence of rheumatoid arthritis in a nationwide series of twins. J Rheumatol, 1986, 13: 899-902.
    [3] MacGregor, A.J, Snieder H, Rigby AS,et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000, 431: 30-7.
    [4] Newton JL, Harney SM, Wordsworth BP, et al. A review of the MHC genetics of rheumatoid arthritis. Genes Immun, 2004, 5: 151-7.
    [5] Consortium, W.T.C.-C. Genome-wide association study of 14000 cases of seven common diseases and 3000 shared controls. Nature, 2007, 447: 661-84.
    [6] Suzuki A, Yamada R, Chang X, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet, 2006, 34: 395-402.
    [7] Kang CP, Lee HS, Ju H, et al. A functional haplotype of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans. Arthritis Rheum, 2006, 54: 90-6.
    [8] Yamamoto K, Yamada R. Genome-wide single nucleotide polymorphism analyses of rheumatoid arthritis. J Autoimmun, 2005, 25 Suppl: 12-5 .
    [9] Swanberg M, Lidman O, Padyukov L, et al. MHC2TA is associated with differential MHC molecule expressin and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet ,2005, 37: 486-94.
    [10] Ikari K, Momohara S, Nakamura T, et al. Supportive evidence for a genetic association of the FCRL3 promoter polymorphism with rheumatoid arthritis.Ann Rheum Dis, 2006, 65: 671-3.
    [11] Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet, 2005, 37: 478-85
    [12] Yamada R, Tokuhiro S, Chang X, et al. SLC22A4 and RUNX1: identification of RA susceptible genes. J Mol Med, 2004, 82: 558-64.
    [13] Han S, Li Y, Mao Y, et al. Meta-analysis of the association of CTLA-4 exon-1 +49A/G polymorphism with rheumatoid arthritis. Hum Genet, 2005, 118: 123-32 .
    [14] Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K. Ethnic differences in allelefrequency of autoimmune-disease-associated SNPs. J. Hum. Genet. 2005, 50: 264–6.
    [15] Gregersen PK, Silver J, Winchester RJ, et al. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum, 1987, 30: 1205-13.
    [16] Suzuki A, Yamada R, Chang X, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 2003, 34: 395–402.
    [17] Tokuhiro S, Yamada R, Chang X, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 2003, 35: 341–8.
    [18] Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat. Genet. 2005, 37: 478–85.
    [19] Plenge RM, Padyukov L, Remmers EF, et al. Replication of putative candidate-gene associations with rheumatoid arthritis in > 4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet. 2005 ,77: 1044–60.
    [20] Barton A, Bowes J, Eyre S, et al. A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum. 2004, 50: 1117–21.
    [21] Yamada R, Suzuki A, Chang X, et al. Peptidylarginine deiminase type 4: identification of a rheumatoid arthritis-susceptible gene. Trends Mol Med ,2003, 9: 503-8.
    [22] Begovich AB, Carlton VE, Honegberg LA et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet, 2004, 75: 330-7.
    [23] Ikari K, Momohara S, Inoue E, et al. Haplotype analysis revealed no association between the PTPN22 gene and RA in a Japanese population. Rheumatology 2006, 45: 1345-8.
    [24] Kawasaki E, Awata T, Ikeqami H, et al. Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am. J. Med. Genet. A. 2006, 140: 586–93.
    [25] Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype andantigenic specificity ofhuman interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8: 639–646.
    [26] Happel KI, Dubin PJ, Zheng M, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 2005, 202: 761–769.
    [27] LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007, 8: 630–638.
    [28] Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17cytokine axis in murine Pneumocystis carinii infection. Infect Immun, 2007, 75: 3055–3061.
    [29] McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol, 2007, 8: 1390–1397.
    [30] Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005, 201: 233–240.
    [31] Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem, 2003, 278: 1910–1914.
    [32] Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol, 2007, 25: 221–242.
    [33] Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity, 2008, 28: 29–39.
    [34] Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000, 13: 715–725.
    [35] Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 2003, 421: 744–748.
    [36] Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med, 2003, 198: 1951–1957.
    [37] Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol, 2003, 171: 6173–6177.
    [38] Lock C, Hermans G, Pedotti R, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med, 2002, 8: 500–508.
    [39] Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatorybowel disease. Gut, 2003, 52: 65–70.
    [40] Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest, 1999, 103: 1345–1352.
    [41] Matusevicius D, Kivisakk P, He B, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler , 1999, 5: 101–104.
    [42] Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 2003, 52: 65–70.
    [43] Nielsen OH, Kirman I, Rudiger N, et al. Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol, 2003, 38: 180–185.
    [44] Honorati MC, Meliconi R, Pulsatelli L, et a1.High in vivo expression of interleukin·17 receptor in synovial endothelial cells and chondrocytes from arthritis patients. Rheumatology, 2001, 40: 522-527.
    [45] Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest, 1999, 103: 1345–1352.
    [46] Arend WP, Dayer JM. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum, 1995, 38: 151-160.
    [47] Genovese MC, Bathon JM, Fleischmann RM, et al. Longterm safety, efficacy, and radiographic outcome with etanercept treatment in patients with early rheumatoid arthritis. J Rheumatol, 2005, 32: 1232-1242.
    [48] Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med, 2004, 200: 277-285.
    [1] Arnett FC, Edworthy SM, Bloch DA. The American rheumatism association 1987 revised criteria for the classification of the rheumatoid arthritis.Arthritis Rheum, 1988, 31:315-324.
    [2]刘嘉玲,鲍春德.风湿病疑难问题第一版.北京:人民卫生出版社,2004;127..
    [3] Mimori T. Clinical significance of anti-CCP antibodies in rheumatoid arthritis.Intern Med, 2005, 44:1122-1126.
    [4] Masson-Bessiere C,Sebbag M,Durieux JJ,et a1.In the rheumatoid pannus, anti-filaggrin autoantibodies ale produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum.Clin Exp Immunol, 2000,119:54-552.
    [5] Chang X, Zhao Y, Sun S, et al. The expression of PADI4 in synovium of rheumatoid arthritis. Rheumatol Int, 2009; Feb 8: in press.
    [6] Katsunori Ikari, Mahito Kuwahara, Takahiro Nakamura, et al. Association between PADI4 and rheumatoid arthritis. Arthritis Rheumatism, 2005, 52:3054-3057.
    [7] Changsoo Paul Kang, Hye-Soon Lee, Hyoungseok Ju, et al. A functional haplotype of PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans. Arthritis Rheumatism, 2006, 54:90-96.
    [8] Barton A, Bowes J, Eyre S, et al. A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum, 2004, 50:1117-21.
    [9] Martinez A, Valdivia A, Pascual-Salcedo D, et al. PADI4 polymorphisms are not associated with rheumatoid arthritis in the Spanish population .Rheumatology, 2005, 44:1263-1266.
    [10] Seongwon Cha, Chan-Bum Choi, Tae-Un Han, et al. Association of anti-cyclic citrullinated peptide antibody levels with PADI4 haplotypes in early rheumatoid arthritis and with shared epitope alleles in very late rheumatoid arthritis. Arthritis Rheumatism, 2007, 56:1454-1463.
    [11] Mehta DS, Wurster AL, Grusby MJ. Biology of IL-21 and the IL-21 receptor. Immunol Rev, 2004, 202:84–95.
    [12] Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature, 2000, 408:57–63.
    [13] Brandt K, Bulfone-Paus S, Foster DC, et al. Interleukin-21 inhibits dendritic cell activation and maturation. Blood, 2003, 102:4090–8.
    [14] Ozaki K, Kikly K, Michalovich D, Young PR, Leonard WJ. Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci USA, 2000, 97:11439–44.
    [15] Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, et al. Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol, 2001,167:1–5.
    [16] Mehta DS, Wurster AL, Whitters MJ, et al. IL-21 induces the apoptosis of resting and activated primary B cells. J Immunol, 2003, 170:4111–18.
    [17] Ozaki K, Spolski R, Ettinger R, et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol, 2004, 173:5361–71.
    [18] Pene J, Gauchat JF, Lecart S, et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol, 2004, 172:5154–7.
    [19] Raychaudhuri S, Remmers EF, Lee AT, et al.Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet, 2008, 40:1216-23.
    [20] Ye Y, Yang H, Grossman HB, et al. Genetic variants in cell cycle control pathway confer susceptibility to bladder cancer. Cancer, 2008, 112:2467-74.
    [21] Song H, Hodgdall E, Ramus SJ, et al. Effects of common germ-line genetic variation in cell cycle genes on ovarian cancer survival. Clin Cancer Res, 2008, 14:1090-5.
    [22] Driver KE, Song H, Lesueur F, et al. Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis, 2008, 29:333-41.
    [23] Yoshiya Tanaka, Masashi Nomi, Koichi Fuji, et al. Intercellular adhesion molecule 1 underlies the functional heterogeneity of synovial cells in patients with rheumatoid arthritis. Arthritis Rheumatism, 2000, 43:2513-2522.
    [24] Firestein GS, Yeo M, Zvaifler NJ. Apoptosis in rheumatoid arthritis synovium. J Clin Invest, 1995, 96:1631–8.
    [25] Aupperle KR, Boyle DL, Hendrix M, et al. Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol, 1998, 152:1091–8.
    [26] Amos CI, Chen WV, Lee A, et al. High-density SNP analysis of 642 White families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33. Genes Immun, 2006, 7:277–86.
    [27] Remmers EF, Plenge RM, Lee AT, et al. STAT4 and risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med, 2007, 357:13–22.
    [28] Gregersen PK, Lee HS, Batliwalla F, Begovich AB.(2006) PTPN22: setting thresholds for autoimmunity. Semin Immunol, 18:214–23.
    [29] Mori M, Yamada R, Kobayashi K, et al. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet, 2005, 50:264–6
    [30] Kawasaki E, Awata T, Ikeqami H, et al. Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet, 2006, 140:586–93.
    [31] Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol, 2002, 2:933–44.
    [32] Mathur AN, Chang HC, Zisoulis DG, et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol, 2007, 178:4901-7.
    [33] Miossec P. Interleukin-17 in fashion, at last: Ten years after its description, its cellular source has been identified. Arthritis Rheum, 2007, 56:2111–5.
    [34] Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol, 2007, 8:639–46.
    [35] Chen Z, Tato CM, Muul L, Laurence A, O’Shea JJ. Distinct regulation of IL-17 in human helper T lymphocytes. Arthritis Rheum, 2007, 56:2936–46.
    [36] Hildner KM, Schirmacher P, Atreya I, et al. Targeting of the transcription factor STAT4 by antisense phosphorothioate oligonucleotides suppresses collagen-induced arthritis. J Immunol, 2007, 178:3427–36.
    [1] Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype andantigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8:639–646.
    [2] Happel KI, Dubin PJ, Zheng M, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 2005; 202:761–769.
    [3] Leibund Gut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9 -dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007; 8:630–638.
    [4] Rudner XL, Happel KI, Young EA,et al. Interleukin-23 (IL-23)-IL-17cytokine axis in murine Pneumocystis carinii infection. Infect Immun 2007;75:3055–3061.
    [5] Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003;2:155–74.
    [6] Weaver CT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007;25:821–852.
    [7] Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233–240.
    [8] Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007; 25:221–242.
    [9] Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo diferentiation of IL-17-producing T cells.Immunity 2006; 2:179–89.
    [10] Livak KJ,Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2^[ -deltadelta C(T) ] Method. Methods 2001;25(4): 402-408.
    [11] Antonella Naldini, Daria Leali, Annalisa Pucci, et al. Cutting Edge: IL-1βmediates the proangiogenic activity of osteopontin-activated human monocytes. The Journal of Immunology 2006;177:4267-4270.
    [12] Robyn G, Daniel J, Darren J, et al. Transforming growth factor-βin human diabetic nephropathy. Diabetes Care 2006,29:2670-2675.
    [13] HR Kim, ML Cho, KW Kim, et al. Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by IL-17 through PI3-kinase-,NF-κB- and p38 MAPK-dependent signalling pathways. Rheumatology 2007,46:57-64.
    [14] Annapula G, Lut O. An overview of real-time PCR: application to quantify cytokine gene expression. Method 2001; 25: 386-401.
    [15] Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204:1849–1861.
    [16] Wilson NJ,Boniface K,Chan JR,et a1.Development,cytokine profile and function of human interleukin 17-producing helper T cells.Nat ImmunoL 2007,8(9) :950-957.
    [17] Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factorbeta induces development of the TH17 lineage. Nature 2006; 441:231–234.
    [18] McGeachy MJ,Bak-Jensen KS,Chen Y,et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat Immunol 2007; 8:1390–1397.
    [19] Arend WP, Dayer JM. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum,1995,38:151-160.
    [20] Klareskog L, van der Heijde D, de Jager JP, et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet. 2004; 363: 675-681.
    [21] Genovese MC, Bathon JM, Fleischmann RM, et al. Longterm safety, efficacy, and radiographic outcome with etanercept treatment in patients with early rheumatoid arthritis. J Rheumatol. 2005; 32: 1232-1242.
    [22] Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004; 200: 277-285.
    [23] Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the diverentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 6:1121–33.
    [24] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 11:1123–32.
    [25] Veldhoen M, Hocking RJ, Atkins CJ,et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo diferentiation of IL-17-producing T cells. Immunity.2006; 2:179–89.
    [26] Nakae, S., Nambu, A., Sudo, K. et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003. 171: 6173-6177.
    [27] Tremelling M, Cummings F, Fisher SA, et al. IL23R variation determines susceptibility but notdisease phenotype in inflammatory bowel disease. Gastroenterology 2007; 132:1657–1664.
    [28] Arend WP, Dayer J-M .Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 1995;38:151–160.
    [29] Zhang HG, Hyde K, Page GP, et al. Novel tumor necrosis factor alpha-regulated genes in rheumatoid arthritis. Arthritis Rheum 2004;50:420–431.
    [30] Woo CH, Kim TH, Choi JA, et al. Inhibition of receptor internalization attenuates the TNF alpha-induced ROS generation in non-phagocytic cells.Biochem Biophys Res Commun 2006;351:972–978.
    [31] Sakon S, Xue X, Takekawa M, et al. NF-kappa B inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 2003;22:3898–3909.
    [32] Gottlieb AB, Chamian F, et al.TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol 2005;175:2721–2729.
    [33] Glabinski AR, Bielecki B, Kawczak JA, et al.Treatment with soluble tumor necrosis factor receptor (sTNFR):Fc/p80 fusion protein ameliorates relapsing- remitting experimental autoimmune encephalomyelitis and decreases chemokine expression. Autoimmunity 2004;37:465–471.
    [34] Madhusudan S, Foster M, Muthuramalingam SR, et al. A phase II study of etanercept (Enbrel), a tumor necrosis factor alpha inhibitor in patients with metastatic breast cancer. Clin Cancer Res 2004;10:6528–6534.
    [35] Catrina AI, Lampa J, Ernestam S, et al.Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology 2002;41:484–489.
    [36] Feldmann M, Maini RN.Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001;19:163–196.
    [37] Pittoni V, Bombardieri M, Spinelli FR, et al.Anti- TNF-alpha treatment of rheumatoid arthritis (infliximab) selectively down regulates the production of interleukin (IL) 18 but not of IL12 and IL13. Ann Rheum Dis 2002;61:723–725.
    [38] Klimiuk PA, Sierakowski S, Domyslawska I, et al. Effect of repeated infliximab therapy on serum matrix metalloproteinases and tissue inhibitors of metallo- proteinases in patients with rheumatoid arthritis. J Rheumatol 2004 ;31:238–242.
    [39] Ida Ricciardelli,Keith J.Lindley,Marco Londei, et al. Anti tumuor necrosis-alpha therapyincrease the number of FOXP3+ regulatory T cells in children affected by Crohn’s disease. Immunology 2008,125: 178-183.
    [40] Chen Y, Langrish CL, McKenzie B, et al. Anti-IL-23 therapy inhibits multiple inXammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006;116:1317–1326.
    [41] Yasunori Kageyama, Tetsuya Ichikawa, Tetsuyuki Nagafusa, et al. Etanercept reduces the serum levels of interleukin-23 and macrophage inflammatory protein-3 alpha in patients with rheumatoid arthritis. Rheumatol Int, 2007,28:137-143.
    [42] Cho ML, Kang JW, Moon YM, et al. STAT3 and NF-B signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deWcient mice. J Immunol 2006;176:5652–5661.
    [43] Sheibanie AF, Tadmori I, Jing H, et al.Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J 2004;18:1318–1320.
    [44] Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial Xuids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999;103:1345–1352.
    [1] Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype andantigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8:639–646.
    [2] Happel KI, Dubin PJ, Zheng M, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 2005; 202:761–769.
    [3] LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9- dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007; 8:630–638.
    [4] Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 2007; 75:3055–3061.
    [5] Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediatedcolitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006;116:1310–1316.
    [6] Uhlig HH, McKenzie BS, Hue S, et al. Differential activity of IL-12 and IL-23 inmucosal and systemic innate immune pathology. Immunity 2006; 25:309–318.
    [7] Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233–240.
    [8] Chen Y, Langrish CL, McKenzie B, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006; 116:1317–1326.
    [9] Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007; 445:648–651.
    [10] Yao Z, Painter SL, Fanslow WC, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol 1995; 155:5483–5486.
    [11] Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995;3:811–821.
    [12] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4t effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6:1123–1132.
    [13] Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6:1133–1141.
    [14] Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007; 25:821–852.
    [15] Langrish CL, McKenzie BS, Wilson NJ, et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202:96–105.
    [16] Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factorbeta induces development of the T(H)17 lineage. Nature 2006; 441:231–234.
    [17] McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007; 8:1390–1397.
    [18] Sutton C, Brereton C, Keogh B, et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006; 203:1685–1691.
    [19] Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17t T helper cells. Cell 2006; 126:1121–1133.
    [20] Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28:29–39.
    [21] Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 278:1910–1914.
    [22] Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007; 25:221–242.
    [23] Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8:950–957.
    [24] Hoeve MA, Savage ND, de Boer T, et al. Divergent effects of IL-12 and IL-23 on theproduction of IL-17 by human T cells. Eur J Immunol 2006; 36:661–670.
    [25] Amadi-Obi A, Yu CR, Liu X, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 2007; 13:711–718.
    [26] Chu CQ, Swart D, Alcorn D, et al. Interferon-gamma regulates susceptibility to collagen-induced arthritis through suppression of interleukin-17. Arthritis Rheum 2007; 56:1145–1151.
    [27] Laurence A, Tato CM, Davidson TS, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007; 26:371–381.
    [28] Stumhofer JS, Laurence A, Wilson EH, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006; 7:937–945.
    [29] Batten M, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 2006; 7:929–936.
    [30] Fitzgerald DC, Zhang GX, El-Behi M, et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 2007; 8:1372–1379.
    [31] Awasthi A, Carrier Y, Peron JP, et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 2007; 8:1380–1389.
    [32] Stumhofer JS, Silver JS, Laurence A, et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 2007; 8:1363–1371.
    [33] Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317:256–260.
    [34] Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 2008; 111:1013–1020.
    [35] Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421:744–748.
    [36] Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203:2271–2279.
    [37] Ma HL, Liang S, Li J, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 2008; 118:597–607.
    [38] Chen Z, Tato CM, Muul L, et al. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 2007; 56:2936–2946.
    [39] Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204:1849–1861.
    [40] Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003; 171: 6173–6177.
    [41] Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13:715–725.
    [42] Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003; 198: 1951–1957.
    [43] Lock C, Hermans G, Pedotti R, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002; 8:500–508.
    [44] Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52:65–70.
    [45] Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103:1345–1352.
    [46] Matusevicius D, Kivisakk P, He B, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999; 5:101–104.
    [47] Nielsen OH, Kirman I, Rudiger N, et al. Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol 2003; 38:180–185.
    [48] Honorati MC, Meliconi R, Pulsatelli L, et al. High in vivo expression of interleukin-17 receptor in synovial endothelial cells and chondrocytes from arthritis patients. Rheumatology (Oxford) 2001; 40:522–527.
    [49] Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J ExpMed 2006; 203:2673–2682.
    [50] Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 2006; 6:329–333.
    [51] Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as aninflammatory bowel disease gene. Science 2006; 314:1461–1463.
    [52] Dubinsky MC, Wang D, Picornell Y, et al. IL-23 receptor (IL-23R) gene protects against pediatric Crohn’s disease. Inflamm Bowel Dis 2007; 13:511–515.
    [53] Oliver J, Rueda B, Lopez-Nevot MA, et al. Replication of an association between IL23R gene polymorphism with inflammatory bowel disease. Clin Gastroenterol Hepatol 2007; 5:977–981.
    [54] Duerr RH. Genome-wide association studies herald a new era of rapid discoveries in inflammatory bowel disease research. Gastroenterology 2007; 132:2045–2049.
    [55] Baldassano RN, Bradfield JP, Monos DS, et al. Association of variants of the interleukin-23 receptor gene with susceptibility to pediatric Crohn’s disease. Clin Gastroenterol Hepatol 2007; 5:972–976.
    [56] Borgiani P, Perricone C, Ciccacci C, et al. Interleukin-23R Arg381Gln is associated with susceptibility to Crohn’s disease but not with phenotype in an Italian population. Gastroenterology 2007; 133:1049–1051.
    [57] Tremelling M, Cummings F, Fisher SA, et al. IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology 2007; 132:1657–1664.
    [58] Cummings JR, Ahmad T, Geremia A, et al. Contribution of the novel inflammatory bowel disease gene IL23R to disease susceptibility and phenotype. Inflamm Bowel Dis 2007; 13:1063–1068.
    [59] Buning C, Schmidt HH, Molnar T, et al. Heterozygosity for IL23R p.Arg381Gln confers a protective effect not only against Crohn’s disease but also ulcerative colitis. Aliment Pharmacol Ther 2007; 26:1025–1033.
    [60] Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007; 80:273–290.
    [61] Tsunemi Y, Saeki H, Nakamura K, et al. Interleukin-12 p40 gene (IL12B) 30-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci 2002; 30:161–166.
    [62] Lubberts E, Koenders MI. The role of T cell interleukin-17 in conducting destructive arthritis: lesson form animals models. Arthritis Res Ther 2005: 7: 29–37.
    [63] Chabaud M, Lubberts E, Joosten L. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 2001: 3:168–177.
    [64]Chabaud M., Page G. and Miossec P. Enhancing effect on IL-1, IL-17 and TNF-αon macrophages inflammatory protein-3αproduction in rheumatoid arthritis: regulation by soluble receptors and Th2 cytokines. J Immunol 2001;167:6015–6020.
    [65] Kehlen A, Pachnio A, Thiele K. Gene expression induced by interleukin-17 in fibroblastlike synoviocytes of patients with rheumatoid arthritis: upregulation of hyaluronan-binding protein TSG-6. Arthritis Res Ther 2003; 5:186–1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700