用户名: 密码: 验证码:
新型纳米DNA转运体系的构建及其在软骨损伤治疗等方面的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过对高分子量壳聚糖进行控制性降解,使其成为低分子量壳聚糖,构建一种新型的纳米基因传送系统,能够在体内外安全高效地进行基因传递,表征其理化性质,为关节软骨损伤提供简便有效的治疗措施。研究纳米局部转运系统(Nanometer Local Delivery System, NLDS)在体内外的转运机制,评估局部的基因表达量及基因转染的持续性、安全性、有效性、可控性。检测其生物学特性。分离、培养、冻存、复苏和传代兔关节软骨细胞。评估该系统体内外转染软骨细胞的效果,以及对软骨缺损的动物模型的转染效果。探索体内外应用纳米局部转运系统传递生长因子基因来促进软骨损伤修复的条件和方法,并根据体外的实验数据进行必要的条件优化,进而利用其携带生长因子基因对软骨缺损的动物模型进行转染,促进软骨修复。同时,将其与抗TNF的反义核酸技术结合,对其在假体无菌性松动和类风湿关节炎的应用进行探索性研究。
     方法采用NaNO2氧化法降解,将HMWC降解为合适分子量的LMWC,以FITC标记壳聚糖后,用凝胶渗透层析(GPC)的方法测定壳聚糖的分子量。以Xylidine Tonceau 2R (C.I. Acid Red 26)为指示剂的比色滴定法测定氨基百分含量。以增强型绿色荧光蛋白(EGFP)质粒、β-半乳糖酐酶(β-Galactosidase)、TGF-β1质粒等作为目的基因,通过分子自组装的方法制备载基因纳米壳聚糖微粒。以透射电镜(TEM)和原子力显微镜(AFM)观察微粒的形态,以激光粒径分析仪测定其粒径和表面的Zeta电位,行DNaseⅠ酶切保护实验研究壳聚糖对质粒DNA的保护作用,行MTT试验研究纳米微粒对细胞的毒性作用。对体外培养的关节软骨细胞进行转染,评估该系统体外转染软骨细胞的效果;切取软骨组织薄片体外行组织培养,评价该系统对软骨组织体外转染的效果;在兔膝关节上复制关节软骨缺损的模型,用该系统携带生长因子基因对软骨缺损的动物模型进行转染,观察其促进软骨修复的效果,同时观察该目的基因表达的时空及丰度特征等指标。在体内转染的同时,对其安全性进行评估。另外,采用ICR小鼠建立磨损微粒诱导的骨溶解的动物模型,采用该系统给药,观察其在假体无菌性松动应用方面的效果。采用DBA1小鼠建立II型胶原诱导的类风湿关节炎模型,同样采用该系统给药,观察其抗类风湿方面的效果。
     结果随着与NaNO2反应时间增加,从GPC测定中得到的壳聚糖的分子量从145kD降到了18kD。相应地,通过比色滴定得到的各种壳聚糖的-NH2百分含量也从71%降低到了51%。壳聚糖可以和GFP质粒相互作用形成带有表面正电荷的纳米微粒,TEM和AFM观察到的纳米微粒的形状是近似球形的,大小较均一,表面光滑,粒径在70nm左右。该系统能在很大程度上保护质粒DNA不受DNaseⅠ的降解,对细胞的毒性小。体外对培养的软骨细胞的定性和定量转染均显示该系统有良好的转染特性;对体外培养的软骨组织转染结果与细胞转染结果相近;在体内时应用,LMWC/ TGF-β1基因纳米复合物可以提高目的基因的转移效率和延长相应蛋白的表达时程,目的基因表达的时程和分布特征良好,在软骨缺损动物模型的应用中取得了良好的治疗效果。该系统携带靶向TNF-α的ASO进行基因传递用于干预微粒诱导的骨溶解模型时,可抑制小鼠颅骨局部植入Co-Cr-Mo合金后TNF-α的mRNA的转录上调,与此同时TNF-α的蛋白定量测定也相应的下降,对应的破骨细胞数量,TRAP定量结果,以及骨吸收陷窝的数量,均有所下降。而且这种改变在再次给予了TNF-α后可以逆转。该系统携带靶向TNF-α的ASO进行基因传递用于干预II型胶原诱导的类风湿关节炎模型时,可以抑制造模小鼠的体重下降,明显缓解小鼠后足垫和前足腕部的肿胀,X线结果和功能学观察也表明该系统对类风湿关节炎具有明显的抑制作用。
     结论高分子量(HMWC)降解而成的低分子量壳聚糖(LMWC)具有很好的溶解性,对细胞基本无毒,在生理环境下可以有效结合质粒DNA和反义核酸药物,形成稳定存在的纳米复合物颗粒。基于LMWC的纳米核酸药物传输系统对软骨细胞在体内外均有良好的转染效率。在体外能够保护目的DNA并延长其作用时间,在体内则对软骨缺损区域表现出一定的被动靶向性,更易于在缺损附近进行转染。使用该系统携带TGF-β1质粒应用于兔关节软骨缺损模型,能够有效地表达治疗因子,促进软骨修复。使用该系统携带抗TNF-α的反义核酸(ASO),应用于假体无菌性松动的动物模型中,可以有效地抑制小鼠模型中由微粒诱导的骨溶解。使用该系统携带抗TNF-α的反义核酸(ASO),应用于鸡胶原诱导的类风湿关节炎(RA)模型,可以有效地缓解RA的病情,抑制病情的发展。载基因低分子量壳聚糖纳米微粒能够有效地输送目的DNA,是一个很有潜力的纳米局部传输系统(Nanometer Local Delivery System, NLDS)。
Objective To study the preparation of low molecular weight chitosan (LMWC) by controllable degradation of high molecular weight chitosan (HMWC). To construct a novel nanometer DNA transferring system to deliver gene in vitro and in vivo safely and efficiently with DNA-loaded low molecular weight chitosan nanoparticles. Physico-chemical property and biological characteristics were observed for the further application in the articular cartilage injury. To investigate the transferring mechanism of this nanometer local delivery system (NLDS). To evaluate the quantity and location of target gene expression with the premise of safe, controllable, persistent and validity transfection. And to study the separation, cultivation, freezing and preservation, resuscitation and passage of chondrocytes from rabbit’s cartilage articular. To evaluate the activities of transfection to chondrocytes in vitro and in vivo. To explore the necessary conditions and methods of developing this system into a clinically applicable approach to enhance natural repair mechanisms by in vivo transfection using a non-viral gene delivery system targeting at chondrocytes. And according to the experiment results, some modification should be made. At the same time, to investigated the effect of this system in other fields of joint surgery by combination of ASO: prosthesis failure and rheumatoid arthritis.
     Methods High molecular weight chitosan was chemically treated with NaNO2 in 0.1mol/L acetic acid at 25°C for 10h to produce low molecular weight chitosan. After marking LMWC with FITC, the average molecular weight of HMWC and LMWC were determined by HPLC. The average amino group content of chitosan was determined by metachromatic titration using Xylidine Tonceau 2R (C.I. Acid Red 26). The plasmids of EGFP,β-Galactosidase and TGF-β1 were used as target gene to generate DNA-loaded low molecular weight chitosan nanoparticles by molecular self-assembly. Transmission electron microscope (TEM) and atomic force microscope (AFM) were employed to observe these particles and a laser particle analyzer were used to survey the particle sizes and Zeta potentials. And DNase I assay was performed to test the gene protential of the nanopaticles. The cytotoxity of the nanopaticles was examined by the MTT assay. The transfection activities to the chondrocytes of the nanopaticles were valued by in vitro and in vivo gene transfection test. Then these nano-complexes then were employed to animal models with full-thick cartilage defect to demonstrate the feasibility of delivering the growth factor gene in vivo, with the aim to promoting cartilage healing by intra-articular injections. At the same time the quality and location of target gene expression also been observed, and their fluctuation changed with time as well. Before a in vivo transfection was performed, a safety assessment was done. Besides, the murine calvaria osteolysis model in ICR mice and type II collagen induced RA model in DBA1 mice also were employed to evaluate this system in wide rang.
     Results LMWC had far lower viscosity than HMWC, and could dissolve in the 0.1mol/L acetic acid quite easily. After being treated with NaNO2, the average molecular weight of HMWC decreased from 145 KDa to 18 KDa. Although the average amino group content of chitosan also decreased from 71% to 51% as one of the results of oxidation reaction. From the ultrastructure observation, we can find that LMWC can form stable complexes with DNA effectively, and the LMWC/ DNA complexes are found to be near spherical of 70 nm in diameter with homogeneous structure. Preliminary studies were also performed to identify the experimental conditions for the formation of LMWC/DNA complexes. Results show that LMWC can condense plasmid DNA effectively. When the N/P ratio of LMWC/DNA complex increased from 1 to 6, the zeta potential increased from -7 mV to 13 mV, and the effective diameter of complexes decreased from 340nm to 250nm. At the condition of N/P ratio of 5 , the zeta potential was 7.35mV±0.22mV and the average effective diameter of complexes was 258nm±2.5nm. Nanopaticles with positive charges could be formed by the interaction of chitosan and plasmid, that can protect the DNA from degradation by DNase I in certain degree. There is almost no toxicity to chondrocytes. Gene could be effectively expressed in the chondrocytes, when the latter were transfected by the gene-loaded low molecular weight chitosan nanoparticles. When used in vivo, LMWC/ TGF-β1 gene nano-complexes could enhance the transfection efficiency and prolong the expression of TGF-β1 gene. In the animal models of articular osteochondral defect of rabbits, much better healing and much gentler degeneration could be observed comparing with the controls. And when carrying ASO, this system also can suppress particle-induced osteolysis after the implantation of Co-Cr-Mo alloy particles. The expression of TNF-αmRNA and protein descented dramatically, and at the same time, the quantity of osteoclast, the quality of TRAP, and the area of resorption pit decented too. And this suppression can reestablish by the addition of TNF-α. When applied in the treatment of rheumatoid arthritis, this system with anti-TNF-αASO could suppress the body weight loosing in the type II collagen induced rheumatoid arthritis model mice. And arthrocele could be also suppressed by this system. X ray and functional test verified this suppression.
     Conclusion LMWC from HMWC has very good dissolubility and very low toxicity, and can carry DNA to form a nanometer local delivery system. Gene-Loaded Low molecular weight chitosan nanoparticles can delivery DNA effectively as a vectors to chondrocytes in vitro and in vivo. During this course, some superiority such as DNA protection, delayed release and passive targeting were observed. When carrying TGF-β1 plasmids, this system can delivery the therapeutic factor gene efficiently, and harvest very good result in rabbit’s articular cartilage defect model. When carrying anti- TNF-αASO, this system also can delivery oligonucleotide to cells, suppress the TNF-αdramatically, and provide a new treatment strategy for particle induced osteolysis and rheumatoid arthritis. Gene-Loaded Low molecular weight chitosan nanoparticles is a novel nanometer DNA transferring system and has a very nice prospect.
引文
[1] T. Kaehler, Clin. Chem, 1994, 40 (9), 1797-1799.
    [2] R. A. Freitas, Nanomedicine, Austin TX, 1999.
    [3] Duncan, R. Nanomedicines in action. Pharm. J. 273: 485–488, 2004.
    [4] Royal Society & Royal Academy of Engineering. Nanoscience and Nanotechnologies: Opportunities and Uncertainties (Royal Society, London, 2004)
    [5] Emerich DF, Thanos C. Nanotechnology and medicine: the here and now and future prospects. Expert Opin. Biol. Ther. 3: 655–663, 2003.
    [6] Santini J, Cima M, Langer R. A controlled-release microchip. Nature 397: 335–338, 1999.
    [7] Richards GSC, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, Langer R. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2: 767–772, 2003.
    [8] Prescott JH, Lipka S, Baldwin S, Sheppard NF, Maloney JM, Coppeta J, Yomtov B, Staples MA, Santini JT. Chronic, programmed polypeptide delivery from an implanted multireservoir microchip device. Nat. Biotechnol. 24: 437–438, 2006.
    [9] Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit. Rev. Ther. Drug Carrier Syst. 22: 419–464, 2005.
    [10] Yi DK, Kim DY. Polymer nanosphem lithography: fabrication of an ordered trlgona]polymeric nanostructure.Chen Comman(Camb), 21: 982-983, 2003.
    [11] Hoerauf H, Muller M, Huttmann G, Winter C, Schlote T, Real-time imaging of transscleral diodelaser cyclophotocoagulation by optical coherence tomography. Gra. Archiv. Clinic. Eexp. Ophthal. 245: 385-390, 2007
    [12] Silva GA. Introduction to nanotechnology and its application to medicine.Surg. Neurol. 61: 216-220, 2004.
    [13] Vo-Dinh T. Alarie JP, Cullum BM. Antibody-based nanoprobe for measurement of a fluorescent Analyte in a single cell.Nat Biotech. 18: 764-767, 2000.
    [14]秦仁义,裘法祖.纳米生物技术在实验外科的应用前景『J].中华实验外科杂志, 20(9):773-775, 2003
    [15] Paul S, Richard G, Eugene A. Fully multiplexed COMS biochip for DNA analysis.Sensorsand Actuators B. Chemica l64: 22-30. 2000.
    [16] Wang K, Gan L, Jefery E. Monitoring gene expressd profile changesin ovarian carcinomas using eDNA micmarray.Gene, 229: 101-1081999.
    [17] Hacia JG, Brodu LC, Chee MS. Detection of heterozygous mutations in BRCAI using high density oligonucleoticle arrays an d two colorfluorescence analysis. Nat. Genet. 14: 441-447, 1996.
    [18] Mintorovitch J, Shamsi K. Eovist injection and resovist injection:two new liver-specific contrast agents for MRI. Oncology, 14: 37-40, 2000.
    [19] Krause M, Kwong KK, Xion J. MRI of blood volumeand celluar uptake of superparamagnetic iron in an imal model of choroidal melanoma.Oph-thalmicRes, 34: 241-250, 2002.
    [20]康继超,沙木屯卡布,谢蜀生,等用免疫磁性微球从骨髓中分离癌细胞.药学学报, 33(1):52-54,1998
    [21] Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270:404–10.
    [22] Friedmann T. Medical ethics. Principles for human gene therapy studies.Science 2000;287:2163–5.
    [23] Leiden JM. Gene therapy—promise, pitfalls, and prognosis. N EnglJ Med 1995;333:871–3.
    [24] Ramondetta L, Mills GB, Burke TW, Wolf JK. Adenovirus-mediated expression of p53 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: potential application of gene therapy to endometrial cancer. Clin Cancer Res 2000;6:278–84.
    [25] Hamada K, Sakaue M, Alemany R, Zhang WW, Horio Y, Roth JA, et al. Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol Oncol 1996;63:219–27.
    [26] Anderson, W.F. et al. Nature.392(supp.),25-30 (1998).
    [27] HoSH, Hahn W, Lee HJ. Biochem Biophys Res Commun, 2004;321(4):759~766.
    [28] Duo, L.; Saltzman, W. M., Nature Biotech. 18(1), 33-37 (2000)
    [29] G. Lambert, E. Fattal, P. Couvreur, Adv. Drug Deliv. Rev., 2001, 47(1), 99-112.
    [30] S. S. Kumaresh, M. A. Tejraj, R. K. Anandrao, E. R. Walter, J. Cont. Rel. 2001 (70) 1–20.
    [31] Liu L, Zern M, Lizarzaburu M, Nantz MH, Wu J. Poly(cationic lipid)-mediated in vivo gene delivery to mouse liver. Gene Ther. 10: 180–187, 2003.
    [32] Zhang Y, Schlachetzkif F, Pardridge W. Global non-viral gene transfer to the primate brain following intravenous administration. Mol. Ther. 7: 11–18, 2003.
    [33] Remaut K, Lucas B, Braeckmans K, Sanders NN, Demeester J, DeSmedt SC.. Protection of oligonucleotides against nucleases by pegylated and non-pegylated liposomes as studied by fluorescence correlation spectroscopy. J. Control. Rel. 110: 212–226, 2005
    [34] Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Rel. 75: 211–224, 2001.
    [35] Berton M, Turelli P, Trono D, Stein CA, Allemann E, Gurny R. Inhibition of HIV-1 in cell culture by oligonucleotide-loaded nanoparticles. Pharm. Res. 18: 1096–1101, 2001.
    [36] Cohen-Sacks H, Najajreh Y, Tchaikovski V, Gao G, Elazer V, Dahan R, Gati I, Kanaan M, Waltenberger J, Golomb G. Novel PDGFbetaR antisense encapsulated in polymeric nanospheres for the treatment of restenosis. Gene Ther. 9: 1607–1616, 2002.
    [37] Gilles ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug. Discov. Today 10: 35–43, 2005.
    [38] Tziveleka LA, Kontoyianni C, Sideratou Z, Tsiourvas D, Paleos CM. Novel hyperbranched polyether polyols as prospective drug delivery systems. Macromol. Biosci. 6: 161–169, 2006.
    [39] Bos GW, Kanellos T, Crommelin DJ, Hennink WE, Howard CR. Cationic polymers that enhance the performance of HbsAg DNA in vivo. Vaccine 23: 460–469, 2004.
    [40] Kukowska-Latallo J, Raczka E, Quintana A, Chen C, Rymaszewski M, Baker JR. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum. Gene Ther. 11: 1385–1395, 2000.
    [41] Maksimento A, Mandroguine V, Gottikh M. Optimisation of dendrimer-mediated gene transfer by anionic oligomers. J. Gene Med. 5: 61–71, 2003.
    [42] J. C. Dubois, P. Exbrayat, M. L. Couble, J. Biomed. Mater. Res., 1998 (43), 215-225.
    [43] C. Rajaram, J. Surfaces and Colloids, 1998 (14), 124-136.
    [44] L. Samsavar, Dual stage instrument for scanning a specimen, United States Patent: 6267005, 2000-05-27.
    [45] J. Vandorpe, E. Schacht, Biotech. and Bioeng., 1996 (52), 89-95.
    [46] S. Kwon, Adv. Drug Del. Rev., 1996 (21), 107-125.
    [47] J. Black, New York, Marcell Dekker Inc., 1992, 25-109
    [48] E. Dunn, A. G. A. Coombes, J. Cont.Rel., 1997 (44), 65-71.
    [49] G. Lambert, E. Fattal, P. Couvreur, Adv. Drug Del. Rev., 2001, 47(1), 99-112.
    [50] N. Behan, C. Birkinshaw, N. Clarke, Proc. Int. Symp. Control. Rel. Bioact Mater. 1999 (26) 1134–1135.
    [51] P. Calvo, C. Remunan-Lopez, J. L. Vila-Jato, M. J. Alonso, Pharm. Res.,1997 (14) 1431–1436.
    [52] H. Tokumitsu, H. Ichikawa, Y. Fuukumori, Pharm. Res., 1999 (16) 1114–1118.
    [53] S. Gordon, Bioessays, 1995 (17) 977-986.
    [54] S. M. Moghimi, S. S. Davis, Crit. Rev. Ther. Drug Carrier Syst. 1994 (11) 31–59
    [55] H. M. Patel, Crit Rev Ther Drug Carrier Syst, 1992 (9) 39–90.
    [56] J. H. Maeda, T. Wu, Y. Sawa, J. Cont. Rel., 200, 65(2), 271-284.
    [57] E. T. M. Dams, M. J. Becker, W. J. G. Oyen, O. C. Boerman, G. Storm, P. Laverman, S. de Marie, J. W. M. van der Meer, I. N. J. M. Bakker-Woudenberg, F. H. M. Corstens, J. Nucl. Med., 1999 (40) 2066–2072.
    [58] E. T. M. Dams, W. J. G. Oyen, O. C. Boerman, G. Storm, P. Laverman, E. B. Koenders, J. W. M. van der Meer and F. H. M. Corstens, J. Nucl. Med., 1998 (39) 2172– 2178.
    [59] C. Boerman, W. J. G. Oyen, L. van Bloois, E. B. Koenders, J. W. M. van dereer, F. H. M. Corstens, G. Storm, J. Nucl. Med., 1997 (38) 489–493.
    [60] F. Yuan, M. Lwunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, R. K. Jain, Cancer Res., 1994 (54) 3352–3356.
    [61] D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, D. Papahadjopoulos, Pharm. Rev., 1999 (51) 691–743.
    [62] S. M. Moghimi, Bonnemain, Adv. Drug Del. Rev., 1999 (37) 295–312.
    [63] C. M. Ward, Curr Opin Mol. Ther., 2000, 2(2), 182-187.
    [64] R. J. Cristiano, Targeted, Front. Biosci., 1998, 3(10), D1161-1170.
    [65] J. C. Murray, in Radiation Biology of the Endothelial cell (Rubin D ed). 1997, 147–160, CRC Press, Boca Raton FL.
    [66] E. Thorin, S. M. Shreeve, Pharmacol. Ther., 1998 (78) 155–166.
    [67] W. J. Rettig, P. Garin-Chesa, J. H. Healey, S. L. Su, E. A. Jaffe, L. J. Old, Proc. Natl. Acad. Sci. USA. 1992 (89) 10832–10836.
    [68] D. Rajotte, W. Arap, M. Hagedorn, E. Koivunen, R. Pasqualini, E. Ruoslahti, J. Clin. Invest., 1998 (102) 430–437.
    [69] J. Lauren, Y. Gunji, K. Alitalo, Am. J. Pathol., 1998 (153) 1333–1339
    [70] Charpin, D. Bergeret, S. Garcia, L. Andrac, F. Martini, N. Horschowski, R. Choux, M. N. Lavaut, Int. J. Oncol., 1998 (12) 1041–1048
    [71] S. M. Moghimi, A. C. Hunter, J. C. Murray, Pharm. Rev., 2001 (53) 283-318
    [72] Passirani, G. Barratt, J. P. Devissaguet, Pharm. Res., 1998, 15(9), 1046-1050
    [73] De Jaeghere, E. Aliemann, J. Feijen, J. Drug Target., 2000, 8(1),143-153
    [74] Ciftci, R. Levy, Inter. J. Pharm., 2001, 218(1), 81-92
    [75] M. A. Zanta, P. Belguise-Valladier, J. P. Behr, Proc. Nat. Aso. Sci. USA, 1999, 96(1), 91-96
    [76] H. Braconnot, Ann. Chim. (Paris), 79(1811) 265.
    [77] A. Odier, Mém. Soc. Historire Nat. Paris, 1(1823) 29.
    [78] C. Rouget, Compt. Rend.,48 (1859) 792.
    [79] F. Hopper-Seyler, Ber., 27 (1894) 3329.
    [80] R.J. Mumper, J. Wang, J.M. Claspell, A.P. Rolland, Novel polymeric condensing carriers for gene delivery, Proc. Intern. Symp. Contol. Rel. Bioact. Mater. 22 (1995) 178.
    [81] T. Sato, N. Shirakawa, H. Nishi, Y. Okahata, Formation of a DNA/ polygalactosamine complex and its interaction with cells, Chem. Lett. 297 (1996) 725–726.
    [82] F.C. MacLaughlin, R.J. Mumper, J.Wang, J.M. Tagliaferri, I. Gill, M. Hinchcliffe, A.P. Rolland, Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery, J. Controlled Release 56 (1998) 259–272.
    [83] M. K?ping-H?gg?rd, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K.M. V?rum, and P. Artursson. Chitosan as a nonviral gene delivery system. Structure- property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo, Gene Ther. 8:1108--1121 (2002). [ 84 ] K. Roy, H.Q. Mao, S.K. Huang, K.W. Leong, Oral gene delivery with chitosan-pDNA nanoparticles generates im munologic protection in a murine model of peanut allergy, Nat. Med. 5 (4) (1999) 387–391.
    [1] Muzzarelli, R.A.A. Management of hypercholesterolemia Chapman, Haris P.I. (Eds.), New Biomedical Materials -Applied and Basics. POI Press, London, 1998.
    [2] Qaqish, R.B., Amiji,M.M., Carbohyd. Pol. 38, 99-107 (1999) .
    [3] Wu,A.C.M. et al. J. Chromatog.1976,128,87-92.
    [4] Gummow,B.D., Roberts,G.A.F., Makromol. Chem. 1985,186, 1239-1244.
    [5] Mumper,-R-J; Wang,-J; Klakamp,-S-L et al. Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle J-Control-Release. 1998 Mar 2; 52(1-2): 191-203.
    [6] Broussignac, P. Chem. Ind. Genie Chim., 99, 1241-1247 (1968).
    [7] Richardson,-S-C; Kolbe,-H-V; Duncan,-R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA.. Int-J-Pharm. 1999 Feb 15; 178(2): 231-43.
    [1] Hu DN, Yang PY, Ku Mc et al. Isolation and cultivation of human articular chondrocytes[J]. Kaohsiung J Med Sci, 2002; 18(3):113-120.
    [2]《细胞培养》,司徒镇强,吴军正,世界图书出版公司,1999
    [3] Molecular Cloning A Laboratory Manual, 2nd ed, J.Sambrook, E.F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press, 1989
    [4] Terry DE, Chopa RK, Ovenden J, et al. Differential use of alcian blue and toluidine blue dyes for quantification and isolation of anionic glycoconjugates from cell culture: application to proteoglycans and a high-molecular-glycoprotein synthesized by articular chondrocytes[J]. Analytical Biochemistry, 2000, 285:211-219.
    [5] Green WT. Behavior of articular chondrocyte in cell culture[J]. Clin orho, 1971,75(A):248-260.
    [1] F.D. Ledley, Hum. Gene Ther. 1995 (6) 1129-1144
    [2] L.X. Zhang, X.L. Li, M.A. Smith, R.M. Post, J.S. Han, Neuroscience 1997 (77) 15-22.
    [3] T. Byk, H. Haddada, W. Vainchenker, F. Louache, Human Gene Ther. 1998(9) 2493-2502.
    [4] K. Arai, T. Kinumaki, T. Fujita, Toxicity of chitosan, Bull. Tokai. Feg. Fish Res. Lab. 1968 (56) 89-95.
    [5] G. Di Colo, Y. Zambito, S. Burgalassi, I. Nardini, M.F. Saettone, Int. J. Pharm. 2004 (273) 37-44.
    [6] P. Artursson, T. Lindmark, S.S. Davis, L. Illum, Pharm. Res. 1994 (9) 1358-1361.
    [7] L. Illum, N.F. Farraj, S.S. Davis, Pharm. Res. 1994 (8) 1186-1189.
    [8] R.J. Mumper, J.J. Wang, J.M. Claspell, A.P. Rolland, Proceedings of the International Symposium on Controlled Release Bioactive Materials, 1995 (22) 178-179.
    [9] S.C.M. Richardson, H.V.J. Kolbe, R. Duncan, Int. J. Pharm. 1999 (178) 231-243.
    [10] FC MacLaughlin, RJ Mumper, J Wang, JM Tagliaferri, I Gill, M Hinchcliffe, AP. Rolland,J. Cont. Rel. 1998 (56) 259-272.
    [11] K. Roy, H.-Q. Mao, K.W. Leong, Proceedings of the International Symposium on Controlled Release Bioactive Materials, 1997 (24) 673.
    [12] Molecular Cloning A Laboratory Manual, 2nd ed, J.Sambrook, E.F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press, 1989
    [1] Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 2000; 51: 586-95.
    [2] Hulmes DJ, Marsden ME, Strachan RK, Harvey RE, McInnes N, Gardner DL. Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis & Cartilage. 2004; 12: 232-8.
    [3] Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005; 26:611-9.
    [1] Goessler UR, Bugert P, Bieback K, et al. In vitro analysis of the expression of TGFbeta superfamily members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol Biol Lett, 2005, 10(2):345-362.
    [1] Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20:1659–1688, 1999.
    [2] Silva MJ, Sandell LJ. What’s new in orthopaedic research. J. Bone Jt. Surg. Am. 84:1490–6, 2002.
    [3] Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20:1659–1688, 1999.
    [4]Knocha M, Wedemeyera C, Pingsmanna A, Knochb F, Hilkenc G, Sprecherd C, Henschkee F, Bardena B, L.oera F. The decrease of particle-induced osteolysis after a single dose of bisphosphonate.Biomaterials 26: 1803-1808, 2005.
    [5] Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103(9):1345–1352
    [6] Sabokbar A, Fujikawa Y, Neale S, et al. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells. Ann Rheum Dis, 1997, 56(7):414-420
    [1] Sugiyama M. Localization of apoptosis and expression of apoptosis-related proteins in the synovium of patients with rheumatoid arthritis. Ann. Rheum. Dis. 55: 442–449, 1995.
    [2] Lipsky PE. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med. 343: 1594–1602, 2000.
    [3] Fraser A, Fearon U, Reece R, Emery P, Veale DJ. Matrix metalloproteinase 9, apoptosis and vascular morphology in early arthritis. Arthritis. Rheum. 44: 2024–2028, 2001.
    [4] Feldmann M, Maini RN. Anti-TNFαtherapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19: 163–196, 2001.
    [5] Nakajima T. Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis. Rheum. 38: 485–491, 1995.
    [6] Harris ED Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N. Engl. J. Med. 322: 1277–1289, 1990
    [7] Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet 358: 903–911, 2001.
    [8] Feldmann M. Pathogenesis of arthritis: recent research progress. Nature Immunol. 2: 771–773, 2001.
    [9] Bathon JM. Comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343: 1586–1593, 2000.
    [10] Lipsky PE. 102-week clinical and radiological results from the ATTRACT trial: a two-year, randomized, controlled, phase III trial of infliximab (Remicade) in patients with active rheumatoid arthritis despite methotrexate. Arthritis Rheum. 47: S242, 2000
    [11] Firestein GS. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96: 1631–1638, 1995.
    [12] Matsumoto S, Muller-Ladner U, Gay RE, Nishioka K, Gay S. Ultrastructural demonstration of apoptosis, Fas and Bcl-2 expression of rheumatoid synovial fibroblasts. J. Rheumatol. 23: 1345–1352, 1996.
    [13] Thorbecke GJ. Involvement of endogenous tumor-necrosis factor-αand transforming growth factor-βduring induction of collagen type II arthritis in mice. Proc. Natl Acad. Sci. USA 89: 7375–7379, 1992.
    [14] Thorbecke GJ. Involvement of endogenous tumor-necrosis factor-αand transforming growth factor-βduring induction of collagen type II arthritis in mice. Proc. Natl Acad. Sci. USA 89: 7375–7379, 1992
    [1]Moskowitz RW. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis & Cartilage. 2006; 14: 1-2.
    [2] Gobbi A, Nunag P, Malinowski K. Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 2005; 13:213-21.
    [3] Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee: A prospective cohort study. J Bone Joint Surg Am 2005; 87:1911-20.
    [4] Dorotka R, Bindreiter U, Macfelda K, Windberger U, Nehrer S. Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis & Cartilage. 2005; 13: 655-64.
    [5] Naumann A, Dennis J, Staudenmaier R, Rotter N, Aigner J, Ziegelaar B. Mesenchymal stem cells: a new pathway for tissue engineering in reconstructive surgery. Laryngorhinootologie. 2002; 81: 521-7.
    [6] Shawn W, James S, Fitzsimmons BS, et al. The role of periosteum in cartilage repair. Clin Ortho Res, 2001; 391(suppl): 190-207.
    [7] Bouwmeester PS, Kuijer R, Homminga GN, Bulstra SK, Geesink RG. A retrospective analysis of two independent prospective cartilage repair studies: autogenous perichondrial grafting versus subchondral drilling 10 years post-surgery. J Orthop Res. 2002; 20: 267-73.
    [8] Kish G, Hangody L. A prospective, randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2004; 86: 619-20.
    [9] Buckwalter JA. Articular cartilage injuries. Clin Ortho 2002; 402: 21-37.
    [10] Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD. Tissue engineering of cartilageusing an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis & Cartilage. 2005; 13: 318-29.
    [11] Van den Berg WB, van der Kraan PM, Scharstuhl A, van Beuningen HM. Growth factors and cartilage repair. Clin Orthop 2001; 391(suppl): 244-50.
    [12] Brittberg, M., A. Nilsson, A. Lindahl, C. Ohlsson, L. Peterson . Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop. 1996; 326: 270–83.
    [13] Goessler UR, Bugert P, Bieback K, Deml M, Sadick H, Hormann K, et al. In vitro analysis of the expression of TGFbeta superfamily members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol Biol Lett 2005; 10:345-62.
    [14] Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, et al. Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 2004; 25:4163-73.
    [15] Bakker AC, van de Loo FA, van Beuningen HM, Sime P, van Lent PL, van der Kraan PM, et al. Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis & Cartilage. 2001; 9: 128-36.
    [16] Bos PK, van Osch GJ, Frenz DA, Verhaar JA, Verwoerd Verhoef HL. Growth factor expression in cartilage wound healing: temporal and spatial immunolocalization in a rabbit auricular cartilage wound model. Osteoarthritis & Cartilage. 2001; 9: 382-9.
    [17] Van Beuningen HM, Glansbeek HL, Vander Kraan PM, Vanden Berg WB. Osteoarthriti-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis & Cartilage 2000; 8:25–33.
    [18] Oligino TJ, Yao Q, Ghivizzani SC, Robbins P. Vector systems for gene transfer to joints. Clin Orthop 2000; 379(Suppl): 17-30.
    [19] Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther 2002; 9: 1647-52.
    [20] Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 1999; 178: 231-43.
    [21] Huang M, Fong CW, Khor E, Lim LY. Transfection efficiency of chitosan vectors: Effect of polymer molecular weight and degree of deacetylation. J Control Release. 2005; 106:391-406.
    [22] Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005; 26:611-9.
    [23] Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 2000; 51: 586-95.
    [24] Hulmes DJ, Marsden ME, Strachan RK, Harvey RE, McInnes N, Gardner DL. Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis & Cartilage. 2004; 12: 232-8.
    [25] Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005; 26:611-9.
    [26] Oligino TJ, Yao Q, Ghivizzani SC, Robbins P. Vector systems for gene transfer to joints. Clin Orthop 2000; 379(Suppl): 17-30.
    [27] Silva MJ, Sandell LJ. What’s new in orthopaedic research. J. Bone Jt. Surg. Am. 2002,84:1490–6
    [28] Rena WP, Markela DC, Zhang R, et al. Association between UHMWPE particle-induced inflammatory osteoclastogenesis and expression of RANKL, VEGF, and Flt-1 in vivo. Biomaterials 2006.27: 5161–5169.
    [29] Desai SB, Furst DE. Problems encountered during anti-tumour necrosis factor therapy. Best Pract Res Clen 2006.20: 757-790
    [30] Rice R, Rice DPC, Olsen BR, et al. Progression of calvarial bone development requires Foxc1 regulation of Msx2 and Alx4. Dev Biol 2003.262: 75-87
    [31] Boyce BF, Li P, Yao Z, Zhang Q, et al. TNF-αand pathologic bone resorption. Keio J Med 2005.54: 127–131
    [32] Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immuno 2002.2: 364-371
    [33] Taylor PC. Anti-TNF-αtherapy for rheumatoid arthritis: an update. Intern. Med. , 2003. 42: 15–20
    [34] Palladino MA, Bahjat FR, Theodorakis EA, et al. Anti-TNF-αtherapies: the next generation. Nat Rev Drug Disc 2003.2: 736-746
    [35] Schwarz EM, Benz EB, Lu AP, et al. Quantitative small-animal surrogate to evaluate drug efficacy in preventing wear debris-induced osteolysis. J Orthop Res 2000.18: 849-855
    [36] Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. , 2002, 1: 503– 514
    [37] Sullenger BA, Gilboa E. Emerging clinical applications of RNA. Nature , 2002. 418: 252– 258
    [38] Anderson KP, Fox MC, Brown-Driver V, Martin MJ, Azad RF. Inhibition of human cytomegalovirus immediate–early gene expression by an antisense oligonucleotide complementary to immediate–early RNA, Antimicrob. Agents Chemother. 1996. 40: 2004–2011,
    [39] Qiu S, Adema CM, Lane T. A computational study of offtarget effects of RNA interference. Nucleic Acids Res. 2005. 33: 1834–1847,
    [40] Aboul-Fadl T. Antisense oligonucleotides: The state of the art. Curr Med Chem 2005.12: 2193-2214
    [41] Myers KJ, Murthy S, Flanigan A, et al. Antisense oligonucleotide blockade of tumor necrosis factor-αin two murine models of colitis. J Pharmacol and Exp Ther 2003.304: 411-424
    [42] Sugiyama M. Localization of apoptosis and expression of apoptosis-related proteins in the synovium of patients with rheumatoid arthritis. Ann. Rheum. Dis. 55: 442–449, 1995.
    [43] Lipsky PE. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med. 343: 1594–1602, 2000.
    [44] Fraser A, Fearon U, Reece R, Emery P, Veale DJ. Matrix metalloproteinase 9, apoptosis and vascular morphology in early arthritis. Arthritis. Rheum. 44: 2024–2028, 2001.
    [45] Feldmann M, Maini RN. Anti-TNFαtherapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19: 163–196, 2001.
    [46] Nakajima T. Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis. Rheum. 38: 485–491, 1995.
    [47] Harris ED Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N. Engl. J. Med. 322: 1277–1289, 1990
    [48] Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet 358: 903–911, 2001.
    [49] Lipsky PE. 102-week clinical and radiological results from the ATTRACT trial: a two-year, randomized, controlled, phase III trial of infliximab (Remicade) in patients with active rheumatoid arthritis despite methotrexate. Arthritis Rheum. 47: S242, 2000
    [50] Feldmann M. Pathogenesis of arthritis: recent research progress. Nature Immunol. 2: 771–773, 2001.
    [51] Bathon JM. Comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343: 1586–1593, 2000.
    [52] Firestein GS. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96: 1631–1638, 1995.
    [53] Matsumoto S, Muller-Ladner U, Gay RE, Nishioka K, Gay S. Ultrastructural demonstration of apoptosis, Fas and Bcl-2 expression of rheumatoid synovial fibroblasts. J. Rheumatol. 23: 1345–1352, 1996.
    [1] Naumann,-A; Dennis,-J; Staudenmaier,-R; Rotter,-N; Aigner,-J; Ziegelaar,-B; Happ,-T; Rasp,-G; Caplan,-A-I. Adulte mesenchymale Stammzellen--neue Moglichkeiten der Gewebezuchtung fur die plastisch-rekonstruktive Chirurgie. [Mesenchymal stem cells--a new pathway for tissue engineering in reconstructive surgery]. [J] Laryngorhinootologie. 2002 Jul; 81(7): 521-7
    [ 2 ] Shawn W,James S,Fitzsimmons BS,et al :The role of periosteum in cartilage repair[J].Clin Ortho Res,2001;391(suppl):190-207
    [ 3 ] Luis A,Solchaga PD,Victor M et al:Cartilage regeneration using principles of Tissue engineering[J].Clin Orthop Res,2001;391(suppl):161-170
    [4] Van-Damme,-A; Vanden-Driessche,-T; Collen,-D; Chuah,-M-K Bone marrow stromal cells as targets for gene therapy. [J]Curr-Gene-Ther. 2002 May; 2(2): 195-209
    [5] Martin,-I; Padera,-R-F; Vunjak-Novakovic,-G; Freed,-L-E. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J-Orthop-Res. 1998 Mar; 16(2): 181-9
    [ 6] James R:Tissue Engineering with Chondrocytes[J]. Facial Plastic Surg,2002;18:59-68
    [7] Vunjak-Novakovic,-G; Searby,-N; De-Luis,-J; Freed,-L-E. Microgravity studies of cells and tissues.[J] Ann-N-Y-Acad-Sci. 2002 Oct; 974: 504-17
    [ 8 ] Wim B,Peter M,Henk M,et al:Growth factors and cartilage repair[J]. Clin Orthop Res,2001;391(suppl):244-250
    [9] Musgrave,-D,-S, Fu,-F,-H, Huard,-J. Gene therapy and tissue engineering in orthopaedic surgery[J] J Am Acad Orthop Surg, 2002;10(1):6
    [1] Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270:404–10.
    [2] Friedmann T. Medical ethics. Principles for human gene therapy studies.Science 2000;287:2163–5.
    [3] Leiden JM. Gene therapy—promise, pitfalls, and prognosis. N EnglJ Med 1995;333:871–3.
    [4] Ramondetta L, Mills GB, Burke TW, Wolf JK. Adenovirus-mediated expression of p53 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: potential application of gene therapy to endometrial cancer. Clin Cancer Res 2000;6:278–84.
    [5] Hamada K, Sakaue M, Alemany R, Zhang WW, Horio Y, Roth JA, et al. Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol Oncol 1996;63:219–27.
    [6] Iannone F, Lapadula G. Aging Clin Exp Res, 2003; 15(5);364~372
    [7] Iannone F, Lapadula G. Aging Clin Exp Res, 2003; 15(5);364~372
    [8] Fernandes JC, Martel-Pelletier J, Pelltier JP. Biorheology, 2002;39(1-2):237~246
    [9] Lotz M, Clin Orthop, 2001; 391(suppl):s108~s115 Fernandes JC, Martel-Pelletier J, Pelltier JP. Biorheology, 2002;39(1-2):237~246
    [10] HoSH, Hahn W, Lee HJ. Biochem Biophys Res Commun, 2004;321(4):759~766
    [11] Trono D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther 2000;7:20–3.
    [12] Ledley FD. Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther 1995;6:1129–44.
    [1] Luyten,-F-P; Dell'Accio,-F; De-Bari,-C. Skeletal tissue engineering: opportunities and challenges.[J]. Best-Pract-Res-Clin-Rheumatol. 2001 Dec; 15(5): 759-69
    [2]王跃,杨志明,解慧琪,等.人胎关节软骨细胞体外培养的生物学特性[J].中华实验外科杂志,2000,17(4):319-321.
    [3] Schaefer,-D; Martin,-I; Jundt,-G; Seidel,-J; Heberer,-M; Grodzinsky,-A; Bergin,-I; Vunjak-Novakovic,-G; Freed,-L-E. Tissue-engineered composites for the repair of large osteochondral defects. [J] Arthritis-Rheum. 2002 Sep; 46(9): 2524-34
    [4] Saadeh,-P-B; Brent,-B; Mehrara,-B-J; Steinbrech,-D-S; Ting,-V; Gittes,-G-K; Longaker,-M-T. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development.[J]. Ann-Plast-Surg. 1999 May; 42(5): 509-13
    [5] van-Osch,-G-J; van-der-Veen,-S-W; Verwoerd-Verhoef,-H-L. In vitro redifferentiation of culture-expanded rabbit and human auricular chondrocytes for cartilage reconstruction. [J] Plast-Reconstr-Surg. 2001 Feb; 107(2): 433-40
    [6] Naumann,-A; Dennis,-J; Staudenmaier,-R; Rotter,-N; Aigner,-J; Ziegelaar,-B; Happ,-T; Rasp,-G; Caplan,-A-I. Adulte mesenchymale Stammzellen--neue Moglichkeiten der Gewebezuchtung fur die plastisch-rekonstruktive Chirurgie. [Mesenchymal stem cells--a new pathway for tissue engineering in reconstructive surgery]. [J] Laryngorhinootologie. 2002 Jul; 81(7): 521-7
    [7] Ringe,-J; Kaps,-C; Schmitt,-B; Buscher,-K; Bartel,-J; Smolian,-H; Schultz,-O; Burmester,-G-R; Haupl,-T; Sittinger,-M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. [J] Cell-Tissue-Res. 2002 Mar; 307(3): 321-7
    [8] Pittenger,-M-F; Mosca,-J-D; McIntosh,-K-R. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. [J] Curr-Top-Microbiol-Immunol. 2000; 251: 3-11
    [9] Bianco,-P; Robey,-P-G. Stem cells in tissue engineering.[J]. Nature. 2001 Nov 1; 414(6859): 118-21
    [10] Bartholomew,-A; Sturgeon,-C; Siatskas,-M; Ferrer,-K; McIntosh,-K; Patil,-S; Hardy,-W; Devine,-S; Ucker,-D; Deans,-R; Moseley,-A; Hoffman,-R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.[J]. Exp-Hematol. 2002 Jan; 30(1): 42-8
    [11] Van-Damme,-A; Vanden-Driessche,-T; Collen,-D; Chuah,-M-K Bone marrow stromal cells as targets for gene therapy. [J]Curr-Gene-Ther. 2002 May; 2(2): 195-209
    [12] Martin,-I; Padera,-R-F; Vunjak-Novakovic,-G; Freed,-L-E. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J-Orthop-Res. 1998 Mar; 16(2): 181-9
    [13]呼莹,马丽,马冠杰.成人和胎儿骨髓间充质干细胞的比较研究[J]中华血液学杂志2002.23(12):645-649
    [14] Nevo,-Z; Robinson,-D; Horowitz,-S; Hasharoni,-A; Yayon,-A. The manipulated mesenchymal stem cells in regenerated skeletal tissues. Cell-Transplant. 1998 Jan-Feb; 7(1): 63-70
    [15] Conget,-P-A; Minguell,-J-J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.[J]. J-Cell-Physiol. 1999 Oct; 181(1): 67-73
    [16] Pittenger,-M-F; Mackay,-A-M; Beck,-S-C; Jaiswal,-R-K; Douglas,-R; Mosca,-J-D; Moorman,-M-A; Simonetti,-D-W; Craig,-S; Marshak,-D-R. Multilineage potential of adult human mesenchymal stem cells.[J] Science. 1999 Apr 2; 284(5411): 143-7
    [17] Thomson,-J-A; Marshall,-V-S. Primate embryonic stem cells.[j] Curr-Top-Dev-Biol. 1998; 38: 133-65
    [18] Kramer,-J; Hegert,-C; Guan,-K; Wobus,-A-M; Muller,-P-K; Rohwedel,-J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. [J] Mech-Dev. 2000 Apr; 92(2): 193-205
    [19] Newman,-A-P. Articular cartilage repair.[J] Am-J-Sports-Med. 1998 Mar-Apr; 26(2): 309-24
    [20]王万明,胡蕴玉,卢森桂.体外培养骨髓基质细胞向软骨细胞分化的研究[J].中华外科杂志,2000,38(2):160.
    [21] Hunziker,-E-B. Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements.[J] Clin-Orthop. 1999 Oct; (367 Suppl): S135-46.
    [22]赵强.王常勇.王永红.郭希民.刘爽.段翠密.方泽强.杜芝燕.范明[J]软骨细胞在微载体中的培养和快速扩增军事医学科学院院刊2001.25(3):219-222
    [23] Holy,-C-E; Shoichet,-M-S; Davies,-J-E. Engineering three-dimensional bone tissue in vitro using参考文献(references)biodegradable scaffolds: investigating initial cell-seeding density and culture period.[J] J-Biomed-Mater-Res. 2000 Sep 5; 51(3): 376-82
    [24] Ringe,-J; Kaps,-C; Burmester,-G-R; Sittinger,-M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs.[J] Naturwissenschaften. 2002 Aug; 89(8): 338-51
    [25] Freed,-L-E; Hollander,-A-P; Martin,-I; Barry,-J-R; Langer,-R; Vunjak-Novakovic,-G. Chondrogenesis in a cell-polymer-bioreactor system. [J] Exp-Cell-Res. 1998 Apr 10; 240(1): 58-65
    [26] Freed,-L-E; Pellis,-N; Searby,-N; de-Luis,-J; Preda,-C; Bordonaro,-J; Vunjak-Novakovic,-G. Microgravity cultivation of cells and tissues.[J] Gravit-Space-Biol-Bull. 1999 May; 12(2): 57-66
    [27] Vunjak-Novakovic,-G; Searby,-N; De-Luis,-J; Freed,-L-E. Microgravity studies of cells and tissues.[J] Ann-N-Y-Acad-Sci. 2002 Oct; 974: 504-17
    [28] Grande,-D-A; Breitbart,-A-S; Mason,-J; Paulino,-C; Laser,-J; Schwartz,-R-E. Cartilage tissue engineering: current limitations and solutions.[J] Clin-Orthop. 1999 Oct; (367 Suppl): S176-85
    [29] Musgrave,-D,-S, Fu,-F,-H, Huard,-J. Gene therapy and tissue engineering in orthopaedic surgery[J] J Am Acad Orthop Surg, 2002;10(1):6
    [30] Madry,-H. Gentransfer in der Kreuzbandchirurgie. Naturwissenschaftliche Grundlagen und klinische Anwendungsmoglichkeiten.[Gene transfer in cruciate ligament surgery. Natural science-based principles and possible clinical applications]. [J] Orthopade. 2002 Aug; 31(8): 799-809
    [31] Mason,-J-M; Breitbart,-A-S; Barcia,-M; Porti,-D; Pergolizzi,-R-G; Grande,-D-A. Cartilage and bone regeneration using gene-enhanced tissue engineering. [J] Clin-Orthop. 2000 Oct; (379 Suppl): S171-8
    [32] Bishop,-G-G; Wiegman,-P; McNamara,-C; Din,-S; Sanders,-J; Hesselbacher,-S; Feldman,-M; McPherson,-J-A; Humphries,-J-E; Hammarskjold,-M-L; Gimple,-L-W; Ragosta,-M; Powers,-E-R; Dickek,-D; Owens,-G-K; Sarembock,-I-J. Local adenovirus-mediated delivery of hirudin in a rabbit arterial injury model. [J] J-Vasc-Res. 1999 Sep-Oct; 36(5): 343-52; discussion 430-3
    [1] Grande,-D-A; Breitbart,-A-S; Mason,-J; Paulino,-C; Laser,-J; Schwartz,-R-E. Cartilage tissue engineering: current limitations and solutions.[J]. Clin-Orthop. 1999 Oct; (367 Suppl): S176-85.
    [2] Gautier,-E; Kolker,-D; Jakob,-R-P. Treatment of cartilage defects of the talus by autologousosteochondral grafts.[J]. J-Bone-Joint-Surg-Br. 2002 Mar; 84(2): 237-44
    [3] Aubin,-P-P; Cheah,-H-K; Davis,-A-M; Gross,-A-E. Long-term followup of fresh femoral osteochondral allografts for posttraumatic knee defects.[J]. Clin-Orthop. 2001 Oct; (391 Suppl): S318-27
    [4] Bouwmeester,-P-S; Kuijer,-R; Homminga,-G-N; Bulstra,-S-K; Geesink,-R-G. A retrospective analysis of two independent prospective cartilage repair studies: autogenous perichondrial grafting versus subchondral drilling 10 years post-surgery.[J]. J-Orthop-Res. 2002 Mar; 20(2): 267-73
    [5] O'Driscoll,-S-W. Articular cartilage regeneration using periosteum.[J]. Clin-Orthop. 1999 Oct; (367 Suppl): S186-203
    [6] Peterson,-L; Brittberg,-M; Kiviranta,-I; Akerlund,-E-L; Lindahl,-A. Autologous chondrocyte transplantation.[J]. Biomechanics and long-term durability. Am-J-Sports-Med. 2002 Jan-Feb; 30(1): 2-12.
    [7]刘尚礼,李卫平,宋卫东.软骨细胞移植治疗关节软骨缺损[J].广州医药,2000,31(2):1- 4.
    [8] Mikos AG, Sarakinos G, Lyman MD, et al. Sagittal ramus osteotomis fixed with biodegradable screws: a preliminary report[J] J Oral Maxillofac Surp, 1994,52:715-722
    [9] Wambach,-B-A; Cheung,-H; Josephson,-G-D Cartilage tissue engineering using thyroid chondrocytes on a type I collagen matrix. [J] Laryngoscope. 2000 Dec; 110(12): 2008-11
    [10]宋红星,刘淼,李佛保松质骨骨基质明胶负载软骨细胞体外培养的实验研究[J]骨与关节损伤杂志2002(17)1:37-39
    [11]傅捷,祝云利,吴海山,等.兔关节软骨细胞在纤维蛋白胶中体外培养[J].第二军医大学学报,2000,21(7):670-672.
    [12]夏万尧,曹谊林,商庆新壳聚糖作为组织工程软骨支架的实验研究[J]中华显微外科杂志2002.25(1):34-37
    [13]郭希民,王常勇,薄斌骨髓间质干细胞复合生物陶瓷构建组织工程化人工软骨中国修复重建外科杂志2003.17(2期):147-152
    [14] Liu,-Y; Chen,-F; Liu,-W; Cui,-L; Shang,-Q; Xia,-W; Wang,-J; Cui,-Y; Yang,-G; Liu,-D; Wu,-J; Xu,-R; Buonocore,-S-D; Cao,-Y. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage.[J] Tissue-Eng. 2002 Aug; 8(4): 709-21
    [15] Lohmann,-C-H; Schwartz,-Z; Niederauer,-G-G; Carnes,-D-L Jr; Dean,-D-D; Boyan,-B-D. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo.[J] Biomaterials. 2000 Jan; 21(1): 49-61
    [16]夏万尧;刘伟;崔磊;商庆新;刘彦春;钟伟;曹谊林壳聚糖-明胶多孔复合支架构建自体组织工程化软骨组织的实验研究[J]中华医学杂志2003.83(7):577-579
    [17] Agrawal,-C,-M, Athanasiou,-K,-A.Technique to control pH in vicinity of biodegrading PLA-PGA implants[J]. J Biomed Mater Res, 1997,38(2):105-14
    [18] Breitbart,-A-S; Grande,-D-A; Kessler,-R; Ryaby,-J-T; Fitzsimmons,-R-J; Grant,-R-T. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. [J] Plast-Reconstr-Surg. 1998 Mar; 101(3): 567-74; discussion 575-6
    [19]刘彦春,王炜,曹谊林包埋后的几丁质与软骨细胞体外培养的实验研究[J]中华外科杂志1998. 36(8):495-496
    [20]池光范;侯宜;侯立中;颜炜群;杨同书体外重建组织工程关节软骨的实验研究[J]中国地方病学杂志2002.21(3):171-173
    [21] Flemming,-R,-G, Murphy,-C,-J, Nealey,-P,-F, et al. Effect of synthetic micro-and nano-stuctured surfaces on cell behavior. Biomaterials,1999,20:573-88.
    [22]成国祥,蔡志江.纳米结构组织工程支架材料[J].中国医学科学院学报,2002,24(2):207~210
    [23] Nakata,-K; Shino,-K; Hamada,-M; Mae,-T; Miyama,-T; Shinjo,-H; Horibe,-S; Tada,-K; Ochi,-T; Yoshikawa,-H. Human meniscus cell: characterization of the primary culture and use for tissue engineering. [J] Clin-Orthop. 2001 Oct; (391 Suppl): S208-18
    [24] Park,-S-S; Chi,-D-H; Lee,-A-S; Taylor,-S-R; Iezzoni,-J-C. Biomechanical properties of tissue-engineered cartilage from human and rabbit chondrocytes.[J] Otolaryngol-Head-Neck-Surg. 2002 Jan; 126(1): 52-7
    [25] Brittberg,-M; Tallheden,-T; Sjogren-Jansson,-B; Lindahl,-A; Peterson,-L. Autologous chondrocytes used for articular cartilage repair: an update.[J] Clin-Orthop. 2001 Oct; (391 Suppl): S337-48
    [1]. T. Kaehler, Clin. Chem, 1994, 40 (9), 1797-1799.
    [2]. R. A. Freitas, Nanomedicine, Austin TX, 1999.
    [3]. Duncan, R. Nanomedicines in action. Pharm. J. 273: 485–488, 2004.
    [4]. Royal Society & Royal Academy of Engineering. Nanoscience and Nanotechnologies: Opportunities and Uncertainties (Royal Society, London, 2004)
    [5]. Emerich DF, Thanos C. Nanotechnology and medicine: the here and now and future prospects. Expert Opin. Biol. Ther. 3: 655–663, 2003.
    [6]. Santini J, Cima M, Langer R. A controlled-release microchip. Nature 397: 335–338, 1999.
    [7]. Richards GSC, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, Langer R. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2: 767–772, 2003.
    [8]. Prescott JH, Lipka S, Baldwin S, Sheppard NF, Maloney JM, Coppeta J, Yomtov B, Staples MA, Santini JT. Chronic, programmed polypeptide delivery from an implanted multireservoir microchip device. Nat. Biotechnol. 24: 437–438, 2006.
    [9]. Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit. Rev. Ther. Drug Carrier Syst. 22: 419–464, 2005.
    [10]. Yi DK, Kim DY. Polymer nanosphem lithography: fabrication of an ordered trlgona]polymeric nanostructure.Chen Comman(Camb), 21: 982-983, 2003.
    [11]. Hoerauf H, Muller M, Huttmann G, Winter C, Schlote T, Real-time imaging of transscleral diode laser cyclophotocoagulation by optical coherence tomography. Gra. Archiv. Clinic. Eexp. Ophthal. 245: 385-390, 2007
    [12]. Silva GA. Introduction to nanotechnology and its application to medicine.Surg. Neurol. 61: 216-220, 2004.
    [13]. Vo-Dinh T. Alarie JP, Cullum BM. Antibody-based nanoprobe for measurement of a fluorescent Analyte in a single cell.Nat Biotech. 18: 764-767, 2000.
    [14].秦仁义,裘法祖.纳米生物技术在实验外科的应用前景『J].中华实验外科杂志, 20(9):773-775, 2003
    [15]. Paul S, Richard G, Eugene A. Fully multiplexed COMS biochip for DNA analysis.Sensorsand Actuators B. Chemica l64: 22-30. 2000.
    [16]. Wang K, Gan L, Jefery E. Monitoring gene expressd profile changesin ovarian carcinomas using eDNA micmarray.Gene, 229: 101-1081999.
    [17]. Hacia JG, Brodu LC, Chee MS. Detection of heterozygous mutations in BRCAI using high density oligonucleoticle arrays an d two colorfluorescence analysis. Nat. Genet. 14: 441-447, 1996.
    [18]. Mintorovitch J, Shamsi K. Eovist injection and resovist injection:two new liver-specific contrast agents for MRI. Oncology, 14: 37-40, 2000.
    [19]. Krause M, Kwong KK, Xion J. MRI of blood volumeand celluar uptake of superparamagnetic iron in an imal model of choroidal melanoma.Oph-thalmicRes, 34: 241-250, 2002.
    [20].康继超,沙木屯卡布,谢蜀生,等用免疫磁性微球从骨髓中分离癌细胞.药学学报, 33(1):52-54,1998
    [21]. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270:404–10.
    [22]. Friedmann T. Medical ethics. Principles for human gene therapy studies.Science 2000;287:2163–5.
    [23]. Leiden JM. Gene therapy—promise, pitfalls, and prognosis. N EnglJ Med 1995;333:871–3.
    [24]. Ramondetta L, Mills GB, Burke TW, Wolf JK. Adenovirus-mediated expression of p53 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: potential application of gene therapy to endometrial cancer. Clin Cancer Res 2000;6:278–84.
    [25]. Hamada K, Sakaue M, Alemany R, Zhang WW, Horio Y, Roth JA, et al. Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol Oncol 1996;63:219–27.
    [26]. Anderson, W.F. et al. Nature.392(supp.),25-30 (1998).
    [27]. HoSH, Hahn W, Lee HJ. Biochem Biophys Res Commun, 2004;321(4):759~766.
    [28]. Duo, L.; Saltzman, W. M., Nature Biotech. 18(1), 33-37 (2000)
    [29]. G. Lambert, E. Fattal, P. Couvreur, Adv. Drug Deliv. Rev., 2001, 47(1), 99-112.
    [30]. S. S. Kumaresh, M. A. Tejraj, R. K. Anandrao, E. R. Walter, J. Cont. Rel. 2001 (70) 1–20.
    [31]. Liu L, Zern M, Lizarzaburu M, Nantz MH, Wu J. Poly(cationic lipid)-mediated in vivo gene delivery to mouse liver. Gene Ther. 10: 180–187, 2003.
    [32]. Zhang Y, Schlachetzkif F, Pardridge W. Global non-viral gene transfer to the primate brain following intravenous administration. Mol. Ther. 7: 11–18, 2003.
    [33]. Remaut K, Lucas B, Braeckmans K, Sanders NN, Demeester J, DeSmedt SC.. Protection of oligonucleotides against nucleases by pegylated and non-pegylated liposomes as studied by fluorescence correlation spectroscopy. J. Control. Rel. 110: 212–226, 2005
    [34]. Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Rel. 75: 211–224, 2001.
    [35]. Berton M, Turelli P, Trono D, Stein CA, Allemann E, Gurny R. Inhibition of HIV-1 in cell culture by oligonucleotide-loaded nanoparticles. Pharm. Res. 18: 1096–1101, 2001.
    [36]. Cohen-Sacks H, Najajreh Y, Tchaikovski V, Gao G, Elazer V, Dahan R, Gati I, Kanaan M, Waltenberger J, Golomb G. Novel PDGFbetaR antisense encapsulated in polymeric nanospheres for the treatment of restenosis. Gene Ther. 9: 1607–1616, 2002.
    [37]. Gilles ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug. Discov. Today 10: 35–43, 2005.
    [38]. Tziveleka LA, Kontoyianni C, Sideratou Z, Tsiourvas D, Paleos CM. Novel hyperbranched polyether polyols as prospective drug delivery systems. Macromol. Biosci. 6: 161–169, 2006.
    [39]. Bos GW, Kanellos T, Crommelin DJ, Hennink WE, Howard CR. Cationic polymers that enhance the performance of HbsAg DNA in vivo. Vaccine 23: 460–469, 2004.
    [40]. Kukowska-Latallo J, Raczka E, Quintana A, Chen C, Rymaszewski M, Baker JR. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum. Gene Ther. 11: 1385–1395, 2000.
    [41]. Maksimento A, Mandroguine V, Gottikh M. Optimisation of dendrimer-mediated gene transfer by anionic oligomers. J. Gene Med. 5: 61–71, 2003.
    [42]. J. C. Dubois, P. Exbrayat, M. L. Couble, J. Biomed. Mater. Res., 1998 (43), 215-225.
    [43]. C. Rajaram, J. Surfaces and Colloids, 1998 (14), 124-136.
    [44]. L. Samsavar, Dual stage instrument for scanning a specimen, United States Patent: 6267005, 2000-05-27.
    [45]. J. Vandorpe, E. Schacht, Biotech. and Bioeng., 1996 (52), 89-95.
    [46]. S. Kwon, Adv. Drug Del. Rev., 1996 (21), 107-125.
    [47]. J. Black, New York, Marcell Dekker Inc., 1992, 25-109
    [48]. E. Dunn, A. G. A. Coombes, J. Cont.Rel., 1997 (44), 65-71.
    [49]. G. Lambert, E. Fattal, P. Couvreur, Adv. Drug Del. Rev., 2001, 47(1), 99-112.
    [50]. N. Behan, C. Birkinshaw, N. Clarke, Proc. Int. Symp. Control. Rel. Bioact Mater. 1999 (26) 1134–1135.
    [51]. P. Calvo, C. Remunan-Lopez, J. L. Vila-Jato, M. J. Alonso, Pharm. Res.,1997 (14) 1431–1436.
    [52]. H. Tokumitsu, H. Ichikawa, Y. Fuukumori, Pharm. Res., 1999 (16) 1114–1118.
    [53]. S. Gordon, Bioessays, 1995 (17) 977-986.
    [54]. S. M. Moghimi, S. S. Davis, Crit. Rev. Ther. Drug Carrier Syst. 1994 (11) 31–59
    [55]. H. M. Patel, Crit Rev Ther Drug Carrier Syst, 1992 (9) 39–90.
    [56]. J. H. Maeda, T. Wu, Y. Sawa, J. Cont. Rel., 200, 65(2), 271-284.
    [57]. E. T. M. Dams, M. J. Becker, W. J. G. Oyen, O. C. Boerman, G. Storm, P. Laverman, S. de Marie, J. W. M. van der Meer, I. N. J. M. Bakker-Woudenberg, F. H. M. Corstens, J. Nucl. Med., 1999 (40) 2066–2072.
    [58]. E. T. M. Dams, W. J. G. Oyen, O. C. Boerman, G. Storm, P. Laverman, E. B. Koenders, J. W. M. van der Meer and F. H. M. Corstens, J. Nucl. Med., 1998 (39) 2172– 2178.
    [59]. C. Boerman, W. J. G. Oyen, L. van Bloois, E. B. Koenders, J. W. M. van dereer, F. H. M. Corstens, G. Storm, J. Nucl. Med., 1997 (38) 489–493.
    [60]. F. Yuan, M. Lwunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, R. K. Jain, Cancer Res., 1994 (54) 3352–3356.
    [61]. D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, D. Papahadjopoulos, Pharm. Rev., 1999 (51) 691–743.
    [62]. S. M. Moghimi, Bonnemain, Adv. Drug Del. Rev., 1999 (37) 295–312.
    [63]. C. M. Ward, Curr Opin Mol. Ther., 2000, 2(2), 182-187.
    [64]. R. J. Cristiano, Targeted, Front. Biosci., 1998, 3(10), D1161-1170.
    [65]. J. C. Murray, in Radiation Biology of the Endothelial cell (Rubin D ed). 1997, 147–160, CRC Press, Boca Raton FL.
    [66]. E. Thorin, S. M. Shreeve, Pharmacol. Ther., 1998 (78) 155–166.
    [67]. W. J. Rettig, P. Garin-Chesa, J. H. Healey, S. L. Su, E. A. Jaffe, L. J. Old, Proc. Natl. Acad. Sci. USA. 1992 (89) 10832–10836.
    [68]. D. Rajotte, W. Arap, M. Hagedorn, E. Koivunen, R. Pasqualini, E. Ruoslahti, J. Clin. Invest., 1998 (102) 430–437.
    [69]. J. Lauren, Y. Gunji, K. Alitalo, Am. J. Pathol., 1998 (153) 1333–1339
    [70]. Charpin, D. Bergeret, S. Garcia, L. Andrac, F. Martini, N. Horschowski, R. Choux, M. N. Lavaut, Int. J. Oncol., 1998 (12) 1041–1048
    [71]. S. M. Moghimi, A. C. Hunter, J. C. Murray, Pharm. Rev., 2001 (53) 283-318
    [72]. Passirani, G. Barratt, J. P. Devissaguet, Pharm. Res., 1998, 15(9), 1046-1050
    [73]. De Jaeghere, E. Aliemann, J. Feijen, J. Drug Target., 2000, 8(1),143-153
    [74]. Ciftci, R. Levy, Inter. J. Pharm., 2001, 218(1), 81-92
    [75]. M. A. Zanta, P. Belguise-Valladier, J. P. Behr, Proc. Nat. Aso. Sci. USA, 1999, 96(1), 91-96
    [76]. H. Braconnot, Ann. Chim. (Paris), 79(1811) 265.
    [77]. Odier, Mém. Soc. Historire Nat. Paris, 1(1823) 29.
    [78]. Rouget, Compt. Rend.,48 (1859) 792.
    [79]. F. Hopper-Seyler, Ber., 27 (1894) 3329.
    [80]. R.J. Mumper, J. Wang, J.M. Claspell, A.P. Rolland, Novel polymeric condensing carriers for gene delivery, Proc. Intern. Symp. Contol. Rel. Bioact. Mater. 22 (1995) 178.
    [81]. T. Sato, N. Shirakawa, H. Nishi, Y. Okahata, Formation of a DNA/ polygalactosamine complex and its interaction with cells, Chem. Lett. 297 (1996) 725–726.
    [82]. F.C. MacLaughlin, R.J. Mumper, J.Wang, J.M. Tagliaferri, I. Gill, M. Hinchcliffe, A.P. Rolland, Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery, J. Controlled Release 56 (1998) 259–272.
    [83]. M. K?ping-H?gg?rd, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K.M. V?rum, and P. Artursson. Chitosan as a nonviral gene delivery system. Structure- property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo, Gene Ther. 8:1108--1121 (2002).
    [84]. K. Roy, H.Q. Mao, S.K. Huang, K.W. Leong, Oral gene delivery with chitosan-pDNA nanoparticles generates im munologic protection in a murine model of peanut allergy, Nat. Med. 5 (4) (1999) 387–391.
    [85]. Muzzarelli, R.A.A. Management of hypercholesterolemia Chapman, Haris P.I. (Eds.), New Biomedical Materials -Applied and Basics. POI Press, London, 1998.
    [86]. Qaqish, R.B., Amiji,M.M., Carbohyd. Pol. 38, 99-107 (1999) .
    [87]. Wu,A.C.M. et al. J. Chromatog.1976,128,87-92.
    [88]. Gummow,B.D., Roberts,G.A.F., Makromol. Chem. 1985,186, 1239-1244.
    [89]. Mumper,-R-J; Wang,-J; Klakamp,-S-L et al. Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle J-Control-Release. 1998 Mar 2; 52(1-2): 191-203.
    [90]. Broussignac, P. Chem. Ind. Genie Chim., 99, 1241-1247 (1968).
    [91]. Richardson,-S-C; Kolbe,-H-V; Duncan,-R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA.. Int-J-Pharm. 1999 Feb 15; 178(2): 231-43.
    [92]. Hu DN, Yang PY, Ku Mc et al. Isolation and cultivation of human articular chondrocytes[J]. Kaohsiung J Med Sci, 2002; 18(3):113-120.
    [93].《细胞培养》,司徒镇强,吴军正,世界图书出版公司,1999
    [94]. Molecular Cloning A Laboratory Manual, 2nd ed, J.Sambrook, E.F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press, 1989
    [95]. Terry DE, Chopa RK, Ovenden J, et al. Differential use of alcian blue and toluidine blue dyes for quantification and isolation of anionic glycoconjugates from cell culture: application to proteoglycans and a high-molecular-glycoprotein synthesized by articular chondrocytes[J]. Analytical Biochemistry, 2000, 285:211-219.
    [96]. Green WT. Behavior of articular chondrocyte in cell culture[J]. Clin orho, 1971,75(A):248-260.
    [97]. F.D. Ledley, Hum. Gene Ther. 1995 (6) 1129-1144
    [98]. L.X. Zhang, X.L. Li, M.A. Smith, R.M. Post, J.S. Han, Neuroscience 1997 (77) 15-22.
    [99]. T. Byk, H. Haddada, W. Vainchenker, F. Louache, Human Gene Ther. 1998(9) 2493-2502.
    [100]. K. Arai, T. Kinumaki, T. Fujita, Toxicity of chitosan, Bull. Tokai. Feg. Fish Res. Lab. 1968 (56) 89-95.
    [101]. G. Di Colo, Y. Zambito, S. Burgalassi, I. Nardini, M.F. Saettone, Int. J. Pharm. 2004 (273) 37-44.
    [102]. P. Artursson, T. Lindmark, S.S. Davis, L. Illum, Pharm. Res. 1994 (9) 1358-1361.
    [103]. L. Illum, N.F. Farraj, S.S. Davis, Pharm. Res. 1994 (8) 1186-1189.
    [104]. R.J. Mumper, J.J. Wang, J.M. Claspell, A.P. Rolland, Proceedings of the International Symposium on Controlled Release Bioactive Materials, 1995 (22) 178-179.
    [105]. S.C.M. Richardson, H.V.J. Kolbe, R. Duncan, Int. J. Pharm. 1999 (178) 231-243.
    [106]. FC MacLaughlin, RJ Mumper, J Wang, JM Tagliaferri, I Gill, M Hinchcliffe, AP. Rolland,J. Cont. Rel. 1998 (56) 259-272.
    [107]. K. Roy, H.-Q. Mao, K.W. Leong, Proceedings of the International Symposium on Controlled Release Bioactive Materials, 1997 (24) 673.
    [108]. Molecular Cloning A Laboratory Manual, 2nd ed, J.Sambrook, E.F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press, 1989
    [109]. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 2000; 51: 586-95.
    [110]. Hulmes DJ, Marsden ME, Strachan RK, Harvey RE, McInnes N, Gardner DL. Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis & Cartilage. 2004; 12: 232-8.
    [111]. Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005; 26:611-9.
    [112]. Goessler UR, Bugert P, Bieback K, et al. In vitro analysis of the expression of TGFbeta superfamily members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol Biol Lett, 2005, 10(2):345-362.
    [113]. Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20:1659–1688, 1999.
    [114]. Silva MJ, Sandell LJ. What’s new in orthopaedic research. J. Bone Jt. Surg. Am. 84:1490–6, 2002.
    [115]. Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20:1659–1688, 1999.
    [116]. Knocha M, Wedemeyera C, Pingsmanna A, Knochb F, Hilkenc G, Sprecherd C, Henschkee F, Bardena B, L.oera F. The decrease of particle-induced osteolysis after a single dose of bisphosphonate. Biomaterials 26: 1803-1808, 2005.
    [117]. Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest1999; 103(9):1345–1352
    [118]. Sabokbar A, Fujikawa Y, Neale S, et al. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells. Ann Rheum Dis, 1997, 56(7):414-420
    [119]. Sugiyama M. Localization of apoptosis and expression of apoptosis-related proteins in the synovium of patients with rheumatoid arthritis. Ann. Rheum. Dis. 55: 442–449, 1995.
    [120]. Lipsky PE. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med. 343: 1594–1602, 2000.
    [121]. Fraser A, Fearon U, Reece R, Emery P, Veale DJ. Matrix metalloproteinase 9, apoptosis and vascular morphology in early arthritis. Arthritis. Rheum. 44: 2024–2028, 2001.
    [122]. Feldmann M, Maini RN. Anti-TNFαtherapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19: 163–196, 2001.
    [123]. Nakajima T. Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis. Rheum. 38: 485–491, 1995.
    [124]. Harris ED Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N. Engl. J. Med. 322: 1277–1289, 1990
    [125]. Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet 358: 903–911, 2001.
    [126]. Feldmann M. Pathogenesis of arthritis: recent research progress. Nature Immunol. 2: 771–773, 2001.
    [127]. Bathon JM. Comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343: 1586–1593, 2000.
    [128]. Lipsky PE. 102-week clinical and radiological results from the ATTRACT trial: a two-year, randomized, controlled, phase III trial of infliximab (Remicade) in patients with active rheumatoid arthritis despite methotrexate. Arthritis Rheum. 47: S242, 2000
    [129]. Firestein GS. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96: 1631–1638, 1995.
    [130]. Matsumoto S, Muller-Ladner U, Gay RE, Nishioka K, Gay S. Ultrastructural demonstration of apoptosis, Fas and Bcl-2 expression of rheumatoid synovial fibroblasts. J. Rheumatol. 23: 1345–1352, 1996.
    [131]. Thorbecke GJ. Involvement of endogenous tumor-necrosis factor-αand transforming growth factor-βduring induction of collagen type II arthritis in mice. Proc. Natl Acad. Sci. USA 89: 7375–7379, 1992.
    [132]. Thorbecke GJ. Involvement of endogenous tumor-necrosis factor-αand transforming growth factor-βduring induction of collagen type II arthritis in mice. Proc. Natl Acad. Sci. USA 89: 7375–7379, 1992
    [133]. Moskowitz RW. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis & Cartilage. 2006; 14: 1-2.
    [134]. Gobbi A, Nunag P, Malinowski K. Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 2005; 13:213-21.
    [135]. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee: A prospective cohort study. J Bone Joint Surg Am 2005; 87:1911-20.
    [136]. Dorotka R, Bindreiter U, Macfelda K, Windberger U, Nehrer S. Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilagerepair. Osteoarthritis & Cartilage. 2005; 13: 655-64.
    [137]. Naumann A, Dennis J, Staudenmaier R, Rotter N, Aigner J, Ziegelaar B. Mesenchymal stem cells: a new pathway for tissue engineering in reconstructive surgery. Laryngorhinootologie. 2002; 81: 521-7.
    [138]. Shawn W, James S, Fitzsimmons BS, et al. The role of periosteum in cartilage repair. Clin Ortho Res, 2001; 391(suppl): 190-207.
    [139]. Bouwmeester PS, Kuijer R, Homminga GN, Bulstra SK, Geesink RG. A retrospective analysis of two independent prospective cartilage repair studies: autogenous perichondrial grafting versus subchondral drilling 10 years post-surgery. J Orthop Res. 2002; 20: 267-73.
    [140]. Kish G, Hangody L. A prospective, randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2004; 86: 619-20. Buckwalter JA. Articular cartilage injuries. Clin Ortho 2002; 402: 21-37.
    [141]. Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis & Cartilage. 2005; 13: 318-29.
    [142]. Van den Berg WB, van der Kraan PM, Scharstuhl A, van Beuningen HM. Growth factors and cartilage repair. Clin Orthop 2001; 391(suppl): 244-50.
    [143]. Brittberg, M., A. Nilsson, A. Lindahl, C. Ohlsson, L. Peterson . Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop. 1996; 326: 270–83.
    [144]. Goessler UR, Bugert P, Bieback K, Deml M, Sadick H, Hormann K, et al. In vitro analysis of the expression of TGFbeta superfamily members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell Mol Biol Lett 2005; 10:345-62.
    [145]. Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, et al. Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 2004; 25:4163-73.
    [146]. Bakker AC, van de Loo FA, van Beuningen HM, Sime P, van Lent PL, van der Kraan PM, et al. Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis & Cartilage. 2001; 9: 128-36.
    [147]. Bos PK, van Osch GJ, Frenz DA, Verhaar JA, Verwoerd Verhoef HL. Growth factor expression in cartilage wound healing: temporal and spatial immunolocalization in a rabbit auricular cartilage wound model. Osteoarthritis & Cartilage. 2001; 9: 382-9.
    [148]. Van Beuningen HM, Glansbeek HL, Vander Kraan PM, Vanden Berg WB. Osteoarthriti-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis & Cartilage 2000; 8:25–33.
    [149]. Oligino TJ, Yao Q, Ghivizzani SC, Robbins P. Vector systems for gene transfer to joints. Clin Orthop 2000; 379(Suppl): 17-30.
    [150]. Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther 2002; 9: 1647-52.
    [151]. Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability tocomplex and protect DNA. Int J Pharm 1999; 178: 231-43.
    [152]. Huang M, Fong CW, Khor E, Lim LY. Transfection efficiency of chitosan vectors: Effect of polymer molecular weight and degree of deacetylation. J Control Release. 2005; 106:391-406.
    [153]. Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005; 26:611-9.
    [154]. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 2000; 51: 586-95.
    [155]. Hulmes DJ, Marsden ME, Strachan RK, Harvey RE, McInnes N, Gardner DL. Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis & Cartilage. 2004; 12: 232-8.
    [156]. Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005; 26:611-9.
    [157]. Oligino TJ, Yao Q, Ghivizzani SC, Robbins P. Vector systems for gene transfer to joints. Clin Orthop 2000; 379(Suppl): 17-30.
    [158]. Silva MJ, Sandell LJ. What’s new in orthopaedic research. J. Bone Jt. Surg. Am. 2002,84:1490–6
    [159]. Rena WP, Markela DC, Zhang R, et al. Association between UHMWPE particle-induced inflammatory osteoclastogenesis and expression of RANKL, VEGF, and Flt-1 in vivo. Biomaterials 2006.27: 5161–5169.
    [160]. Desai SB, Furst DE. Problems encountered during anti-tumour necrosis factor therapy. Best Pract Res Clen 2006.20: 757-790
    [161]. Rice R, Rice DPC, Olsen BR, et al. Progression of calvarial bone development requires Foxc1 regulation of Msx2 and Alx4. Dev Biol 2003.262: 75-87
    [162]. Boyce BF, Li P, Yao Z, Zhang Q, et al. TNF-αand pathologic bone resorption. Keio J Med 2005.54: 127–131
    [163]. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immuno 2002.2: 364-371
    [164]. Taylor PC. Anti-TNF-αtherapy for rheumatoid arthritis: an update. Intern. Med. , 2003. 42: 15–20
    [165]. Palladino MA, Bahjat FR, Theodorakis EA, et al. Anti-TNF-αtherapies: the next generation. Nat Rev Drug Disc 2003.2: 736-746
    [166]. Schwarz EM, Benz EB, Lu AP, et al. Quantitative small-animal surrogate to evaluate drug efficacy in preventing wear debris-induced osteolysis. J Orthop Res 2000.18: 849-855
    [167]. Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. , 2002, 1: 503– 514
    [168]. Sullenger BA, Gilboa E. Emerging clinical applications of RNA. Nature , 2002. 418: 252– 258
    [169]. Anderson KP, Fox MC, Brown-Driver V, Martin MJ, Azad RF. Inhibition of human cytomegalovirus immediate–early gene expression by an antisense oligonucleotide complementary to immediate–early RNA, Antimicrob. Agents Chemother. 1996. 40: 2004–2011,
    [170]. Qiu S, Adema CM, Lane T. A computational study of offtarget effects of RNAinterference. Nucleic Acids Res. 2005. 33: 1834–1847,
    [171]. Aboul-Fadl T. Antisense oligonucleotides: The state of the art. Curr Med Chem 2005.12: 2193-2214
    [172]. Myers KJ, Murthy S, Flanigan A, et al. Antisense oligonucleotide blockade of tumor necrosis factor-αin two murine models of colitis. J Pharmacol and Exp Ther 2003.304: 411-424
    [173]. Sugiyama M. Localization of apoptosis and expression of apoptosis-related proteins in the synovium of patients with rheumatoid arthritis. Ann. Rheum. Dis. 55: 442–449, 1995.
    [174]. Lipsky PE. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med. 343: 1594–1602, 2000.
    [175]. Fraser A, Fearon U, Reece R, Emery P, Veale DJ. Matrix metalloproteinase 9, apoptosis and vascular morphology in early arthritis. Arthritis. Rheum. 44: 2024–2028, 2001.
    [176]. Feldmann M, Maini RN. Anti-TNFαtherapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19: 163–196, 2001.
    [177]. Nakajima T. Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis. Rheum. 38: 485–491, 1995.
    [178]. Harris ED Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N. Engl. J. Med. 322: 1277–1289, 1990
    [179]. Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet 358: 903–911, 2001.
    [180]. Lipsky PE. 102-week clinical and radiological results from the ATTRACT trial: a two-year, randomized, controlled, phase III trial of infliximab (Remicade) in patients with active rheumatoid arthritis despite methotrexate. Arthritis Rheum. 47: S242, 2000
    [181]. Feldmann M. Pathogenesis of arthritis: recent research progress. Nature Immunol. 2: 771–773, 2001.
    [182]. Bathon JM. Comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343: 1586–1593, 2000.
    [183]. Firestein GS. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96: 1631–1638, 1995.
    [184]. Matsumoto S, Muller-Ladner U, Gay RE, Nishioka K, Gay S. Ultrastructural demonstration of apoptosis, Fas and Bcl-2 expression of rheumatoid synovial fibroblasts. J. Rheumatol. 23: 1345–1352, 1996.
    [185]. Naumann,-A; Dennis,-J; Staudenmaier,-R; Rotter,-N; Aigner,-J; Ziegelaar,-B; Happ,-T; Rasp,-G; Caplan,-A-I. Adulte mesenchymale Stammzellen--neue Moglichkeiten der Gewebezuchtung fur die plastisch-rekonstruktive Chirurgie. [Mesenchymal stem cells--a new pathway for tissue engineering in reconstructive surgery]. [J] Laryngorhinootologie. 2002 Jul; 81(7): 521-7
    [186]. Shawn W,James S,Fitzsimmons BS,et al :The role of periosteum in cartilage repair .Clin Ortho Res,2001;391(suppl):190-207
    [187]. Luis A,Solchaga PD,Victor M et al:Cartilage regeneration using principles of Tissue engineering[J].Clin Orthop Res,2001;391(suppl):161-170
    [188]. Van-Damme,-A; Vanden-Driessche,-T; Collen,-D; Chuah,-M-K Bone marrow stromal cells as targets for gene therapy. [J]Curr-Gene-Ther. 2002 May; 2(2): 195-209
    [189]. Martin,-I; Padera,-R-F; Vunjak-Novakovic,-G; Freed,-L-E. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-liketissues. J-Orthop-Res. 1998 Mar; 16(2): 181-9
    [190]. James R:Tissue Engineering with Chondrocytes[J]. Facial Plastic Surg,2002;18:59-68
    [191]. Vunjak-Novakovic,-G; Searby,-N; De-Luis,-J; Freed,-L-E. Microgravity studies of cells and tissues.[J] Ann-N-Y-Acad-Sci. 2002 Oct; 974: 504-17
    [192]. Wim B,Peter M,Henk M,et al:Growth factors and cartilage repair[J]. Clin Orthop Res,2001;391(suppl):244-250
    [193]. Musgrave,-D,-S, Fu,-F,-H, Huard,-J. Gene therapy and tissue engineering in orthopaedic surgery[J] J Am Acad Orthop Surg, 2002;10(1):6
    [194]. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270:404–10.
    [195]. Friedmann T. Medical ethics. Principles for human gene therapy studies.Science 2000;287:2163–5.
    [196]. Leiden JM. Gene therapy—promise, pitfalls, and prognosis. N EnglJ Med 1995;333:871–3.
    [197]. Ramondetta L, Mills GB, Burke TW, Wolf JK. Adenovirus-mediated expression of p53 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: potential application of gene therapy to endometrial cancer. Clin Cancer Res 2000;6:278–84.
    [198]. Hamada K, Sakaue M, Alemany R, Zhang WW, Horio Y, Roth JA, et al. Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol Oncol 1996;63:219–27.
    [199]. Iannone F, Lapadula G. Aging Clin Exp Res, 2003; 15(5);364~372
    [200]. Iannone F, Lapadula G. Aging Clin Exp Res, 2003; 15(5);364~372
    [201]. Fernandes JC, Martel-Pelletier J, Pelltier JP. Biorheology, 2002;39(1-2):237~246
    [202]. Lotz M, Clin Orthop, 2001; 391(suppl):s108~s115 Fernandes JC, Martel-Pelletier J, Pelltier JP. Biorheology, 2002;39(1-2):237~246
    [203]. HoSH, Hahn W, Lee HJ. Biochem Biophys Res Commun, 2004;321(4):759~766
    [204]. Trono D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther 2000;7:20–3.
    [205]. Ledley FD. Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther 1995;6:1129–44.
    [206]. Luyten,-F-P; Dell'Accio,-F; De-Bari,-C. Skeletal tissue engineering: opportunities and challenges.[J]. Best-Pract-Res-Clin-Rheumatol. 2001 Dec; 15(5): 759-69
    [207].王跃,杨志明,解慧琪,等.人胎关节软骨细胞体外培养的生物学特性[J].中华实验外科杂志,2000,17(4):319-321.
    [208]. Schaefer,-D; Martin,-I; Jundt,-G; Seidel,-J; Heberer,-M; Grodzinsky,-A; Bergin,-I; Vunjak-Novakovic,-G; Freed,-L-E. Tissue-engineered composites for the repair of large osteochondral defects. [J] Arthritis-Rheum. 2002 Sep; 46(9): 2524-34
    [209]. Saadeh,-P-B; Brent,-B; Mehrara,-B-J; Steinbrech,-D-S; Ting,-V; Gittes,-G-K; Longaker,-M-T. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development.[J]. Ann-Plast-Surg. 1999 May; 42(5): 509-13
    [210]. van-Osch,-G-J; van-der-Veen,-S-W; Verwoerd-Verhoef,-H-L. In vitro redifferentiation of culture-expanded rabbit and human auricular chondrocytes for cartilage reconstruction. [J] Plast-Reconstr-Surg. 2001 Feb; 107(2): 433-40
    [211]. Naumann,-A; Dennis,-J; Staudenmaier,-R; Rotter,-N; Aigner,-J; Ziegelaar,-B; Happ,-T; Rasp,-G; Caplan,-A-I. Adulte mesenchymale Stammzellen--neueMoglichkeiten der Gewebezuchtung fur die plastisch-rekonstruktive Chirurgie. [Mesenchymal stem cells--a new pathway for tissue engineering in reconstructive surgery]. [J] Laryngorhinootologie. 2002 Jul; 81(7): 521-7
    [212]. Ringe,-J; Kaps,-C; Schmitt,-B; Buscher,-K; Bartel,-J; Smolian,-H; Schultz,-O; Burmester,-G-R; Haupl,-T; Sittinger,-M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. [J] Cell-Tissue-Res. 2002 Mar; 307(3): 321-7
    [213]. Pittenger,-M-F; Mosca,-J-D; McIntosh,-K-R. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. [J] Curr-Top-Microbiol-Immunol. 2000; 251: 3-11
    [214]. Bianco,-P; Robey,-P-G. Stem cells in tissue engineering.[J]. Nature. 2001 Nov 1; 414(6859): 118-21
    [215]. Bartholomew,-A; Sturgeon,-C; Siatskas,-M; Ferrer,-K; McIntosh,-K; Patil,-S; Hardy,-W; Devine,-S; Ucker,-D; Deans,-R; Moseley,-A; Hoffman,-R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.[J]. Exp-Hematol. 2002 Jan; 30(1): 42-8
    [216]. Van-Damme,-A; Vanden-Driessche,-T; Collen,-D; Chuah,-M-K Bone marrow stromal cells as targets for gene therapy. [J]Curr-Gene-Ther. 2002 May; 2(2): 195-209
    [217]. Martin,-I; Padera,-R-F; Vunjak-Novakovic,-G; Freed,-L-E. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J-Orthop-Res. 1998 Mar; 16(2): 181-9
    [218].呼莹,马丽,马冠杰.成人和胎儿骨髓间充质干细胞的比较研究[J]中华血液学杂志2002.23(12):645-649
    [219]. Nevo,-Z; Robinson,-D; Horowitz,-S; Hasharoni,-A; Yayon,-A. The manipulated mesenchymal stem cells in regenerated skeletal tissues. Cell-Transplant. 1998 Jan-Feb; 7(1): 63-70
    [220]. Conget,-P-A; Minguell,-J-J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.[J]. J-Cell-Physiol. 1999 Oct; 181(1): 67-73
    [221]. Pittenger,-M-F; Mackay,-A-M; Beck,-S-C; Jaiswal,-R-K; Douglas,-R; Mosca,-J-D; Moorman,-M-A; Simonetti,-D-W; Craig,-S; Marshak,-D-R. Multilineage potential of adult human mesenchymal stem cells.[J] Science. 1999 Apr 2; 284(5411): 143-7
    [222]. Thomson,-J-A; Marshall,-V-S. Primate embryonic stem cells.[J] Curr-Top-Dev-Biol. 1998; 38: 133-65
    [223]. Kramer,-J; Hegert,-C; Guan,-K; Wobus,-A-M; Muller,-P-K; Rohwedel,-J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. [J] Mech-Dev. 2000 Apr; 92(2): 193-205
    [224]. Newman,-A-P. Articular cartilage repair.[J] Am-J-Sports-Med. 1998 Mar-Apr; 26(2): 309-24
    [225].王万明,胡蕴玉,卢森桂.体外培养骨髓基质细胞向软骨细胞分化的研究[J].中华外科杂志,2000,38(2):160.
    [226]. Hunziker,-E-B. Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements.[J] Clin-Orthop. 1999 Oct; (367 Suppl): S135-46.
    [227].赵强.王常勇.王永红.郭希民.刘爽.段翠密.方泽强.杜芝燕.范明[J]软骨细胞在微载体中的培养和快速扩增军事医学科学院院刊2001.25(3):219-222
    [228]. Holy,-C-E; Shoichet,-M-S; Davies,-J-E. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period.[J] J-Biomed-Mater-Res. 2000 Sep 5; 51(3): 376-82
    [229]. Ringe,-J; Kaps,-C; Burmester,-G-R; Sittinger,-M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs.[J] Naturwissenschaften. 2002 Aug; 89(8): 338-51
    [230]. Freed,-L-E; Hollander,-A-P; Martin,-I; Barry,-J-R; Langer,-R; Vunjak-Novakovic,-G. Chondrogenesis in a cell-polymer-bioreactor system. [J] Exp-Cell-Res. 1998 Apr 10; 240(1): 58-65
    [231]. Freed,-L-E; Pellis,-N; Searby,-N; de-Luis,-J; Preda,-C; Bordonaro,-J; Vunjak-Novakovic,-G. Microgravity cultivation of cells and tissues.[J] Gravit-Space-Biol-Bull. 1999 May; 12(2): 57-66
    [232]. Vunjak-Novakovic,-G; Searby,-N; De-Luis,-J; Freed,-L-E. Microgravity studies of cells and tissues.[J] Ann-N-Y-Acad-Sci. 2002 Oct; 974: 504-17
    [233]. Grande,-D-A; Breitbart,-A-S; Mason,-J; Paulino,-C; Laser,-J; Schwartz,-R-E. Cartilage tissue engineering: current limitations and solutions.[J] Clin-Orthop. 1999 Oct; (367 Suppl): S176-85
    [234]. Musgrave,-D,-S, Fu,-F,-H, Huard,-J. Gene therapy and tissue engineering in orthopaedic surgery[J] J Am Acad Orthop Surg, 2002;10(1):6
    [235]. Madry,-H. Gentransfer in der Kreuzbandchirurgie. Naturwissenschaftliche Grundlagen und klinische Anwendungsmoglichkeiten.[Gene transfer in cruciate ligament surgery. Natural science-based principles and possible clinical applications]. [J] Orthopade. 2002 Aug; 31(8): 799-809
    [236]. Mason,-J-M; Breitbart,-A-S; Barcia,-M; Porti,-D; Pergolizzi,-R-G; Grande,-D-A. Cartilage and bone regeneration using gene-enhanced tissue engineering. [J] Clin-Orthop. 2000 Oct; (379 Suppl): S171-8
    [237]. Bishop,-G-G; Wiegman,-P; McNamara,-C; Din,-S; Sanders,-J; Hesselbacher,-S; Feldman,-M; McPherson,-J-A; Humphries,-J-E; Hammarskjold,-M-L; Gimple,-L-W; Ragosta,-M; Powers,-E-R; Dickek,-D; Owens,-G-K; Sarembock,-I-J. Local adenovirus-mediated delivery of hirudin in a rabbit arterial injury model. [J] J-Vasc-Res. 1999 Sep-Oct; 36(5): 343-52; discussion 430-3
    [238]. Grande,-D-A; Breitbart,-A-S; Mason,-J; Paulino,-C; Laser,-J; Schwartz,-R-E. Cartilage tissue engineering: current limitations and solutions.[J]. Clin-Orthop. 1999 Oct; (367 Suppl): S176-85.
    [239]. Gautier,-E; Kolker,-D; Jakob,-R-P. Treatment of cartilage defects of the talus by autologous osteochondral grafts.[J]. J-Bone-Joint-Surg-Br. 2002 Mar; 84(2): 237-44
    [240]. Aubin,-P-P; Cheah,-H-K; Davis,-A-M; Gross,-A-E. Long-term followup of fresh femoral osteochondral allografts for posttraumatic knee defects.[J]. Clin-Orthop. 2001 Oct; (391 Suppl): S318-27
    [241]. Bouwmeester,-P-S; Kuijer,-R; Homminga,-G-N; Bulstra,-S-K; Geesink,-R-G. A retrospective analysis of two independent prospective cartilage repair studies: autogenous perichondrial grafting versus subchondral drilling 10 years post-surgery.[J]. J-Orthop-Res. 2002 Mar; 20(2): 267-73
    [242]. O'Driscoll,-S-W. Articular cartilage regeneration using periosteum.[J]. Clin-Orthop. 1999 Oct; (367 Suppl): S186-203
    [243]. Peterson,-L; Brittberg,-M; Kiviranta,-I; Akerlund,-E-L; Lindahl,-A. Autologous chondrocyte transplantation.[J]. Biomechanics and long-term durability. Am-J-Sports-Med. 2002 Jan-Feb; 30(1): 2-12.
    [244].刘尚礼,李卫平,宋卫东.软骨细胞移植治疗关节软骨缺损[J].广州医药,2000,31(2):1- 4.
    [245]. Mikos AG, Sarakinos G, Lyman MD, et al. Sagittal ramus osteotomis fixed with biodegradable screws: a preliminary report[J] J Oral Maxillofac Surp, 1994,52:715-722
    [246]. Wambach,-B-A; Cheung,-H; Josephson,-G-D Cartilage tissue engineering using thyroid chondrocytes on a type I collagen matrix. [J] Laryngoscope. 2000 Dec; 110(12): 2008-11
    [247].宋红星,刘淼,李佛保松质骨骨基质明胶负载软骨细胞体外培养的实验研究[J]骨与关节损伤杂志2002(17)1:37-39
    [248].傅捷,祝云利,吴海山,等.兔关节软骨细胞在纤维蛋白胶中体外培养[J].第二军医大学学报,2000,21(7):670-672.
    [249].夏万尧,曹谊林,商庆新壳聚糖作为组织工程软骨支架的实验研究[J]中华显微外科杂志2002.25(1):34-37
    [250].郭希民,王常勇,薄斌骨髓间质干细胞复合生物陶瓷构建组织工程化人工软骨中国修复重建外科杂志2003.17(2期):147-152
    [251]. [1] Liu,-Y; Chen,-F; Liu,-W; Cui,-L; Shang,-Q; Xia,-W; Wang,-J; Cui,-Y; Yang,-G; Liu,-D; Wu,-J; Xu,-R; Buonocore,-S-D; Cao,-Y. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage.[J] Tissue-Eng. 2002 Aug; 8(4): 709-21
    [252]. Lohmann,-C-H; Schwartz,-Z; Niederauer,-G-G; Carnes,-D-L Jr; Dean,-D-D; Boyan,-B-D. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo.[J] Biomaterials. 2000 Jan; 21(1): 49-61
    [253].夏万尧;刘伟;崔磊;商庆新;刘彦春;钟伟;曹谊林壳聚糖-明胶多孔复合支架构建自体组织工程化软骨组织的实验研究[J]中华医学杂志2003.83(7):577-579
    [254]. Agrawal,-C,-M, Athanasiou,-K,-A.Technique to control pH in vicinity of biodegrading PLA-PGA implants[J]. J Biomed Mater Res, 1997,38(2):105-14
    [255]. Breitbart,-A-S; Grande,-D-A; Kessler,-R; Ryaby,-J-T; Fitzsimmons,-R-J; Grant,-R-T. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. [J] Plast-Reconstr-Surg. 1998 Mar; 101(3): 567-74; discussion 575-6
    [256].刘彦春,王炜,曹谊林包埋后的几丁质与软骨细胞体外培养的实验研究[J]中华外科杂志1998. 36(8):495-496
    [257].池光范;侯宜;侯立中;颜炜群;杨同书体外重建组织工程关节软骨的实验研究[J]中国地方病学杂志2002.21(3):171-173
    [258]. Flemming,-R,-G, Murphy,-C,-J, Nealey,-P,-F, et al. Effect of synthetic micro-and nano-stuctured surfaces on cell behavior. Biomaterials,1999,20:573-88.
    [259].成国祥,蔡志江.纳米结构组织工程支架材料[J].中国医学科学院学报,2002,24(2):207~210
    [260]. Nakata,-K; Shino,-K; Hamada,-M; Mae,-T; Miyama,-T; Shinjo,-H; Horibe,-S; Tada,-K; Ochi,-T; Yoshikawa,-H. Human meniscus cell: characterization of theprimary culture and use for tissue engineering. [J] Clin-Orthop. 2001 Oct; (391 Suppl): S208-18
    [261]. Park,-S-S; Chi,-D-H; Lee,-A-S; Taylor,-S-R; Iezzoni,-J-C. Biomechanical properties of tissue-engineered cartilage from human and rabbit chondrocytes.[J] Otolaryngol-Head-Neck-Surg. 2002 Jan; 126(1): 52-7
    [262]. Brittberg,-M; Tallheden,-T; Sjogren-Jansson,-B; Lindahl,-A; Peterson,-L. Autologous chondrocytes used for articular cartilage repair: an update.[J] Clin-Orthop. 2001 Oct; (391 Suppl): S337-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700