用户名: 密码: 验证码:
调节剂对不同密度和氮肥水平下寒地春玉米茎秆质量与产量形成的调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
倒伏是限制玉米产量进一步提高的重要因素,近年来我国发生过多次大面积倒伏现象。本研究在黑龙江省寒地春玉米种植区进行,以玉米杂交种郑单958和先玉335为材料,研究了不同密度与氮肥水平下植物生长调节剂对玉米茎秆质量和产量的调控,建立玉米倒伏预测模型。主要的研究结果如下:
     (1)随着种植密度的增加,植株冠层结构与光合系统下降,节间抗折力降低,田间倒伏率增加;平方米穗数显著增加,穗粒数和千粒重显著降低,产量在75000株hm-2的密度下达到最高,且密度与品种存在显著的互作效应。30%己·乙水剂改善了中高密度下植株冠层结构,提高了第3节间的抗折力,降低倒伏率;合理调控了叶片与茎秆的碳氮运转率,从而更提高了75000株hm-2密度的玉米产量。30%己·乙水剂、密度与品种对玉米产量形成与倒伏的调控有互作效应。
     (2)随氮肥施用量增加,玉米冠层结构下降,基部第3节间碳氮比和抗折力下降。其中,中氮肥量180kghm-2促进了叶片的碳氮运转,增加了穗粒数,从而显著地提高了产量。30%己·乙水剂改善了中氮水平下的冠层结构与光合作用,提高了第3节间的抗折力,同时进一步提高了产量。30%己·乙水剂、氮肥与品种对玉米产量形成无显著的互作效应。
     (3)根据植株形态及节间性状,构建了玉米倒伏的多元线性回归模型y=24.40112+0.31213x1+0.23863x2+0.15592x3-0.37010x4-0.12414x5-0.01177x6。另外,根据植株力学结构,并结合风的作用,初步推导出了玉米生物力学的倒伏指数方程,能够评价不同植株的倒伏风险;同时反映出不同品种、化控处理、栽培措施等因素的倒伏差异,可以为生产上选择合理的品种与栽培方式提供理论依据。
     (4)于玉米拔节初期叶面喷施新磷酸盐化合物(DHEAP)的水溶液能够降低玉米株高和穗位高,显著缩短基部节间长度,增加节间直径;同时该调节剂能够增强玉米基部第2和3节间的抗折力,降低田间倒伏率;600mL hm-2处理使产量增加的幅度达30%~8%。
     综上所述,郑单958和先玉335分别在最适的种植密度60000和75000株hm-2及氮肥水平180kghm2下,应用30%己·乙水剂,能进一步提高产量,同时改善了玉米株型,增加了玉米的抗倒伏能力,是寒地春玉米的最佳种植模式。本研究为寒地春玉米高产栽培的建立及玉米倒伏的预测提供理论依据。
Lodging is one of the most important limiting factors to further increase yield. There were several lodging happened of large areas in China.This study was conducted in Heilongjiang province which belongs to cold spring maize belt, Zhengdan958and Xianyu335were materials, the objectives of the study were:effect of plant growth regulator (PGR) on maize stem quality, lodging and yield under different plant densities and nitrogen fertilizer levels; to establish maize biomechanics lodging model; The main results were as follows:
     (1) With the increase of plant density, the canopy structure and photosynthesis became deteriorated; lodging rate was increased. The number of ears per unit ground area increased linearly with plant density, but number of kernels per ear and kernel weight showed decreased, the yield showed a peak at intermediate plant density of75000plant ha'1. There was a significant interaction between plant density and cultivar. Plant growth regulator30%Hex-ethyl-aqua improved canopy structure and photosynthesis, increased3internode strength of breaking-resistance and decreased lodging rate at higher plant density.30%Hex-ethyl-aqua also regulated carbon translocation rate of leaf and stem. Application of PGR increased the yield of two maize by increasing thousand-kernel weight (TKW) and kernels per ear.
     (2) In the study of nitrogen application, the canopy structure weakened and the length of basal3rd were increased with the increase of nitrogen application. The ratio of carbon and nitrogen in internode and strength of breaking-resistance were decreased with the increase of nitrogen application. Medium application of nitrogen (180kg hm"2) could improve the structure of canopy and increase yield. Under the180kg hm'2nitrogen level,30%Hex-ethyl-aqua improved canopy structure and photosynthesis, increased3rd internode strength of breaking-resistance and yield. There were not significant interactions between30%Hex-ethyl-aqua, plant density and cultivar on yield and components.
     (3) The multiple linear regression model between lodging and plant height, ear height and the strength of breaking-resistance of2nd to5th internode was deduced, y=24.40112+0.31213xi+0.23863x2+0.15592x3-0.37010X4-0.12414x5-0.01177Xe. Analysis of mechanics and plant morphology under the wind force, and to preliminary built biomechanic equation of maize lodging index (MLI). This MLI can evaluate lodging risk of plant and reflect the differences of HK, hybrids and cultivation ways on lodging. And this can provide theoretical basis for selection reasonable cultivars and cultivation ways under field production.
     (4) Application of a novel plant growth regulator DHEAP solution through spraying leaves at early jointing stage (V7). Plant height was decreased, ear height and basal internodes length were significantly shortened, internodes diameter were increased, and there were an obvious dose effect relationships. The strength of breaking-resistant of2nd and3rd internodes was improved so that increasing the ability of resistant lodging and decreased lodging rate. The yield was increased by3%-8%under the treatment of600mL hm-2.
     In a word, our results demonstrate that application of30%Hex-ethyl-aqua under the medium nitrogen (180kg hm-2) and medium plant density condition is the optimum cultivation practice in maize of cold region due to the best yield, plant morphology, population structure and lodging resistance force. Overall, this research provided theoretical basis for the establishment of the high-yield cultivation and the prediction of maize lodging.
引文
1. Amanullah KRA and Khalil SK. Plant density and nitrogen effects on maize phenology and grain yield. Journal of Plant Nutrition,2009,32:246-260
    2. Anderson EL, Kamprath EJ, Moll RH. Prolificacy and N fertilizer effects on yield and N utilization in maize. Crop Science,1985,25:598-605
    3. Appenzeller L, Doblin M, Barreiro R, et al. Cellulose synthesis in maize:isolation and expression analysis of the cellulose synthase (Cesa) gene family. Cellulose,2004,11:287-299
    4. Cardwelt VB.50 years of minnesota corn production-sources of yield increase. Agronomy Journal,1982,74: 984-990.
    5. Carena MJ. Challenges and opportunities for developing maize cultivars in the public sector. Euphytica,2013,191: 165-171
    6. Carena MJ. Germplasm enhancement for adaptation to climate changes. Crop Breeding and Applied Biotechnology, 2011, S1:56-65
    7. Carlone MR, Russell WA. Response to plant densities and nitrogen levels for four maize cultivars from different eras of breeding. Crop Science,1987,27:465-470
    8. Cheeroo-Nayamutha, FC, Robertsonb MJ, Wegenerc MK, et al. Using a simulation model to assess potential and attainable sugar cane yield in Mauritius. Field Crops Research,2000,66:225-243
    9. Chen SS. Reduction of maize lodging by irrigation, tillage and nitrogen application. Journal of Agriculture and forestry,1990,39:167-174
    10. Chen XP, Zhang FS, Cui ZL, Li JL, et al. Critical grain and stover nitrogen concentrations at harvest for summer maize production in China. Agronomy Journal,2010,102:289-295
    11. Chen ZF, Chen XF, Qi X, et al. Effect of chemical regulation on maize in different cultivation densities, agriculture Science & technology,2011,12:691-694,717
    12. Chikowo R, Corbeels M, Tittonell P. Aggregating field-scale knowledge into farm-scale models of African smallholder systems:Summary functions to simulate crop production using APSIM. Agricultural Systems,2008, 97:151-166
    13. Ci X, Li M, Liang X, et al. Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China, Crop Science,2011,51:5-13
    14. Ci X, Li M, Xu J, Lu Z, Bai P, et al. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica,2012,185:395-406
    15. Cicchino MA, Rattalino EJI, Otegui ME. Maize physiological responses to heat stress and hormonal plant growth regulators related to ethylene metabolism. Crop Science,2013,53:2135-2146
    16. Cox WJ, Andrade HF. Growth, yield and yield components of maize as influenced by ethephon. Crop Science, 1988,28:536-542
    17. Curry RB. Dynamic simulation of plant growth, Development of a model. Transaction of the ASAE,1971,14: 946-959
    18. Dahnous K, Vigue GT, Law AG, Konzak CF, et al. Height and yield response of selected wheat, barley, and triticale cultivars to ethephon. Agronomy Journal,1982,74:580-582.
    19. Dakora FD, Nelwamondo A. Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Functional Plant Biology,2003,30:947-953
    20. Ding L, Wang KJ, Jiang GM, Liu MZ, Niu SL, et al. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Research,2005,93:108-115.
    21. Drouet JL, Bonhomme R. Effect of 3D nitrogen, dry mass per area and local irradiance on canopy photosynthesis within leaves of contrasted heterogeneous maize crops. Annals of Botany,2004,93:699-710
    22. Duncan WG. Leaf angles, leaf area, and canopy photosynthesis. Crop Science,1971,11:4
    23. Duvick DN, Cassman KG. Post-green revolution trends in yield potential of temperate maize in the north-central United State. Crop Science,1999,39:1622-1630
    24. Duvick DN, Smith JSC, Cooper M. Long-term selection in a commercial hybrid maize breeding program. Plant Breeding Reviews,2004,24:109-151
    25. Duvick DN. Genetic contributions to advances in yield of U.S. maize. Maydica,1992,37:69-79
    26. Duvick DN. Genetic progress in yield of United States maize (Zea mays L.). Maydica,2005,50:193-202
    27. Early, EB and Slife F W. Effect of ethrel on growth and yield of corn. Agronomy Journal 1969,61; 821-823
    28. El-Hendawy SE, El-Lattief EA, Ahmed MS, et al. Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn. Agricultural Water Management,2008,95:836-844
    29. Esechie HA, Rodriguez V, Al-Asmi HS. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate. European Journal Agronomy,2004,21:21-30
    30. Esechie HA. Effect of planting density on growth and yield of irrigated maize (Zea mays L.) in the batinah coast region of oman. Journal of Agricultural Science,1992,119:165-169
    31. Espana ML, Baret F, Aries F, et al. Modeling maize canopy 3D architecture application to reflectance simulation. Ecological modeling,1999,122:25-43
    32. Fournier C, Andrieua B. A 3D architectural and process-based model of maize development. Annals of Botany, 1998,81:233-250
    33. Gao Q, Feng GZ, Wang ZG. Present situation of fertilizer application on spring maize in Northeast China. Chinese Agricultural Science,2010,26:229-231
    34. Garcia M, Watson CE. Inheritance of root-lodging in sweet corn(Zea mays L.). Revista Cientifica UDO Agricola, 2003,3:24-33
    35. Gaska JM, Oplinger ES. Yield, lodging and growth characteristics in sweet corn as influenced by ethephon timing and rate. Agronomy Journal,1988,80:722-726
    36. Grassini P, Thorburn J, Burr C, Cassman KG. High-yield irrigated maize in the Western U.S. Corn Belt:I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research,2011,120:142-150
    37. Gwathmey CO, Clement JD. Alteration of cotton source-sink relations with plant population density and mepiquat chloride. Field Crops Research,2010,116:101-107
    38. He S, Wu Q, He Z. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere,2013,93:2782-2788
    39. Jiang HY, Zhu YJ, Wei LM, et al. Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize (Zea mays L.). Plant Breeding,2007,126:492-497
    40. Jiang Y, Jiang Y, He S, Zhang H et al. Dissipation of diethyl aminoethyl hexanoate (DA-6) residues in pakchoi, cotton crops and soil. Bulletin Environmental Contamination and Toxicology,2012,88:533-537
    41. Kasele IN, Nyirenda F, Shanahan JF, Nielsen DC, et al. Ethephon alters corn growth, water-use, and grain-yield under drought stress. Agronomy Journal,1994,86:283-288
    42. Kato A. Relationship between root lodging and five nondestructively-determined traits in maize. Maydica,1998, 43:65-74
    43. Khosravi G and Anderson RIC. Growth, yield, and yield components of ethephon-treated corn. Plant Growth Regulation,1991,10:27-36
    44. Liang X, Feng G, et al. Yield performance of maize hybrids and analysis of correlation between yield and agronomic characteristics. Journal of Maize Science,2001,9:16-20
    45. Liu Z, Yang X, Hubbard KG, Lin X. Maize potential yields and yield gaps in the changing climate of northeast China. Global Chang Biology,2012,18:3441-3454
    46. Martin GC, Russell WA. Response of a maize synthetic to recurrent selection for stalk quality. Crop Science,1984, 24:331-337
    47. Martinez-Vazquez P, Sterling M. Predicting wheat lodging at large scales, biosystems engineering,2011,109: 326-337
    48. Mohammadi H, Ahmadi A, Yang JC, et al. Effects of nitrogen and ABA application on basal and distal kernel Weight of wheat. Journal of Agricalture Science and Technology,2013,15:889-900
    49. Montieth JL. The quest for balance in modeling. Agronomy Journal,1996,88:695-697
    50. Morrison TA, Kessler JR, Buxton DR. Maize intemodes elongation patterns. Crop Science,1994,34:1055-1060
    51. Norberg OS, Mason SC, Lowry SR. Ethephon influence on harverstable yield, grain quality, and lodging of corn. Agronomy Journal,1988,80:768-772
    52. Nouriyani H, Majidi E, Seyyednejad SM. Evaluation of nitrogen use efficiency of wheat (Triticum aestivum L.) as affected by nitrogen fertilizer and different levels of paclobutrazol. Research on Crops,2012,13:439-445
    53. Novacek MJ, Mason SC, Galusha TD, et al. Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agronomy Journal,2013,105:268-276
    54. Oaks A, Aslam M, Boesel Z. Ammonium and amino acid as regulators of nitrate reeducate in corn roots. Plant Physiology,1997,59:391-394
    55. Obopile M, Hammond RB, Thomison PR. Interaction among planting dates, transgenic maize, seed treatment, com rootworm damage and grain yield. Journal of Applied Entomology,2013,137:45-55
    56. Pinthus MJ. Spread of the root system as indicator for evaluating lodging resistance of wheat Crop Science,1967, 7:107-110
    57. Rajcan I, Tollenaar M. Source:sink ratio and leaf senescence in maize:Ⅱ. Nitrogen metabolism during grain filling. Field Crops Research,1999,60:255-265
    58. Ramburan S, Greenfield PL. Use of ethephon and chlormequat chloride to manage plant height and lodging of irrigated barley (cv. Puma) when high rates of N-fertiliser are applied. South Africa Journal Plant Soil,2007,24: 181-187
    59. Ren X, Zhang L, Du MW, et al. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Research,2013,149:1-10
    60. Robertson MJ. Relationships between internodes elongation, plant height and leaf appearance. Field Crops Research,1994,38:135-145
    61. Ross J, Nilson T. The spatial orientation of leaves in crop stands and its determination. Israel Program. For Science Trans. Jerusalem,1967,86-99
    62. Rossini MA, Maddonni GA, Otegui ME. Inter-plant variability in maize crops grown under contrasting Nx stand density combinations:Links between development, growth and kernel set. Field Crops Research,2012,133:90-100
    63. Russell WA. Evaluation for plant, ear, and grain traits of maize cultivars representing different eras of breeding. Maydica,1985,30:85-96
    64. Schluttenhofer CM, Massa GD, Mitchell CA. Use of uniconazole to control plant height for an industrial/ pharmaceutical maize platform. Industrial Crops and Products,2011,33:720-726
    65. Shanahan JF, Kitchen NR, Raun WR, et al. Responsive in-season nitrogen management for cereals. Computer Electronic Agriculture,2008,61:51-62
    66. Shekoofa A and Emam Y. Plant growth regulator (ethephon) alters maize (Zea mays L) growth, water use and grain yield under water stress. Journal of Agronomy,2008,7:41-48
    67. Sinoquet H, Moulia B, Bonhomme R. Estimating the three-dimensional geometry of a maize crop as an input of radiation models:comparison between three-dimensional digitizing and plant profiles. Agricultural and Forest Meteorology,1991,55:233-249
    68. Skinner RH, Nelson CJ. Elongation of the grass leaf and its relationship to the phyllochron. Crop Science,1995,35: 4-10
    69. Slafer GA, Satorre EH, Andrade FH. Increases in grain yield in bread wheat from breeding and associated physiological changes. In Slafer GA ed., Genetic Improvement of Field Crops. Marcel Dekker, New York.1994: 1-68
    70. Sposaroa MM, Berryb PM, Sterling M. Modelling root and stem lodging in sunflower. Field Crops Research,2010, 119:125-134
    71. Stamp P. Root morphology of maize and its relationship to root lodging. Journal of Agronomy and Crop Science, 1992b,168:113-118
    72. Stamp P. Seedling traits of maize as indicators of root lodging. Agronomic,1992a,12:157-162.
    73. Sterling M, Baker CJ, Berry PM, et al. An experimental investigation of the lodging of wheat. Agricultural and Forest Meteorology,2003,119:149-165
    74. Stojsin R, Ivanovic M, Kojic L, et al. Inheritance of grain-yield and several stalk characteristics significant in resistance to stalk lodging in maize (Zea mays L.). Maydica,1991,36:75-81
    75. Subedi KD, Ma BL. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Science,2005, 45:740-747
    76. Thornley JHM, Johnson IR. Plant and crop modeling-A mathematical approach to Plant and crop Physiology[M]. Clarendon Press. Oxford,1990
    77. Tokatlidis IS, Has V, Melidis V, Has I, et al. Maize hybrids less dependent on high plant densities improve resource-use efficiency in rainfed and irrigated conditions. Field Crops Research,2011,120:345-351
    78. Tokatlidis IS, Has V, Mylonas I, et al. Density effects on environmental variance and expected response to selection in maize (Zea mays L.). Euphytica,2010,174,283-291
    79. Tokatlidis IS. Adapting maize crop to climate change. Agronomy for Sustainable Development,2013,33:63-79.
    80. Tollenaar M, Lee EA. Yield potential, yield stability and stress tolerance in maize. Field Crops Research,2002,75: 161-169
    81. Toyota M, Shiotsu F, Bian J, et al. Effects of reduction in plant height induced by chlormequat on radiation interception and radiation-use efficiency in wheat in Southwest Japan. Plant Production Science,2010,13:67-73
    82. Tripathi SC, Sayre KD, Kaul JN et al. Lodging behavior and yield potential of spring wheat (Triticum aestivum L): effects of ethephon and genotypes. Field Crops Research,2004,87:207-220
    83. Tripathi SC, Sayre KD, Kaul JN, Narang RS. Growth and morphology of spring wheat (Triticum aestivum L) culms and their association with lodging:effects of genotypes, N levels and ethephon. Field Crops Research,2003, 84:271-290.
    84. Uhart SA, Andrade F H. Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source-sink ratios. Crop Science,1995,35:183-190.
    85. Uhart SA, Andrade FH. Nitrogen deficiency in maize. Effects on crop growth, development, dry matter partitioning, and kernel set. Crop Science,1995,35:1376-1383
    86. Van Delden SH, Ennos J Vos AR, Stomph TJ. Analysing lodging of the panicle bearing cereal teff (Eragrostis tef). New Phytologist,2010,186:696-707
    87. Van Roekel RJ, Coulter JA. Agronomic responses of corn to planting date and plant density. Agronomy Journal, 2011,103:1414-1422
    88. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal Dairy Science,1991,7:583-3597
    89. Warner HL & Leopold AC. Ethylene evolution from 2-Chloroethylphosphonic acid. Plant physiology,1969,44: 156-158
    90. Wei LM, Dai JR, Liu ZX, et al. Genetic effects of grain protein, starch and oil contents in maize. Scientia Agricultura Sinica,2008,41:3845-3850.
    91. Westgate ME, Forcella F, Reicosky DC, et al. Rapid canopy closure for maize production in the northern US corn belt:radiation-use efficiency and grain yield. Filed Crops Research,1997,49:249-258
    92. Xiang DB, Yu XB, WanY. Responses of soybean lodging and lodging-related traits to potassium under shading by maize in relay strip intercropping system. African Journal of Agricultural Research,2013,8:6499-6508
    93. Yun YR, Fang XQ, Wang Y, Tao JD, Qiao DF. Main grain crops structural change and its climate background in Heilongjiang province during the past two decades. Journal of Natural Resources,2005,20:697-705
    94. Zhang MC, Duan LS. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Journal of Plant Physiology,2007,164:709-717
    95. Zuber MS, Colbert TR, and Datmh LL. Effect of recurrent selection for crushing strength on several stalk components in maize. Crop Science,1980,20:711-717
    96.北条良夫,星川清亲,等著.作物的形态与机能[M].郑丕尧,等译.北京:农业出版社,1983:411-436
    97.边大红,张瑞栋,段留生,等.局部化控夏玉米冠层结构_荧光特性及产量研究[J].华北农学报,2011,26:139-145
    98.曹卫星.小麦生长模拟研究进展[J].南京农业大学学报,1995,18:10-14
    99.曹字翼.植物生理学[M].北京:人民教育出版社,1982
    100.陈传永,侯玉虹,孙锐,等.密植对不同玉米品种产量性能的影响及其耐密性分析[J].作物学报,2010,36:1153-1160
    101.陈善坤.作物化控工程的发展及其在我国农业生产中的应用前景[J].江西农业大学学报,1992,14:199-205
    102.陈晓光,石玉华,王成雨,等.氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J].中国农业科学,2011,44:3529-3526.
    103.陈延玲,吴秋平,陈晓超,等.不同耐密性玉米品种的根系生长及其对种植密度的响应[J].植物营养与肥料学报,2012,18:52-59
    104.陈艳军,吴科斌,张俊雄,等.玉米秸秆力学参数与抗倒伏性能关系研究[J].农业机械学报,2011,42:89-92
    105.陈增,柯永培,袁继超,等.玉米健壮素和烯效唑对杂交玉米正红311的株高及产量的影响[J].中国农学通报,2007,23:190-192
    106.崔浩磊.植物茎秆屈曲行为研究.硕士学位论文.上海:上海交通大学,2009,06
    107.崔英.实芯植物秸秆的力学模型及受压缩状态应力分析研究.硕士学位论文.北京:中国农业大学,2005,03
    108.董静,杨艳斌,许甫超,等.植物生长调节剂和密度对小麦主要性状的调控效应[J].湖北农业科学,2008,47:1403-1406
    109.董树亭,高荣岐,胡昌浩,等.玉米花粒期群体光合性能与高产潜力研究[J].作物学报,1997,23:318-325
    110.董学会,段留生,孟繁林,等.30%已·乙水剂对玉米产量和茎秆质量的影响[J].玉米科学,2006,14:138-140,143.
    111.董志强,马兴林,王庆祥.喷施玉黄金对玉米产量的影响[J].玉米科学,2008,16:91-93.
    112.段留生,田晓莉.作物化学控制原理与技术[M].中国农业大学出版社,2004.
    113.段留生,周繁,李召虎,谭伟明,等.一种植物生长调节剂及其制备方法与应用:CN 102524296A[P].2012-07-04.
    114.丰光,黄长岭,邢锦丰.玉米抗倒伏的研究进展[J].作物杂志,2008,4:12-14
    115.丰光,景希强,李妍妍,等.玉米茎秆性状与倒伏性的相关和通径分析[J].华北农学报,2010,25:72-74
    116.丰光,刘志芳,吴宇锦,等.玉米抗倒性与茎秆穿刺力和拉力关系的初步研究[J].玉米科学,2010,18:19-23
    117.冯斗,张涛,榻维言,等.3种生长延缓剂对甜高粱幼苗生长和生理特性的影响[J].热带作物学报,2009,30:1468-1472
    118.冯利平,高亮之.小麦发育期动态模拟模型的研究[J].作物学报,1997,23:418-424
    119.高波,周亚冬,李冬梅,等.乙烯利对春玉米生长发育及产量的影响[J].东北农业大学学报,2009,40:13-17
    120.高亮之.水稻栽培计算机模拟优化决策系统.北京:中国农业科技出版社,1992
    121.勾玲,赵明,黄建军,等.玉米茎秆弯曲性能与抗倒能力的研究[J].作物学报,2008,34:653-661.
    122.郭江,郭新宇,郭程瑾,等.密度对不同株型玉米群体结构的调控效应[J].华北农学报,2008,23:149-153
    123.韩笑.小麦发育后期茎秆抗倒伏性的数学模型分析.硕士学位论文.北京:中国地质大学,2012,05
    124.淮永建,李凡.虚拟花卉植物在可变风场中的运动行为仿真[J].农业工程学报,2012,28:130-136
    125.黄振喜,王永军,王空军,等.产量15000 kg ha-1以上夏玉米灌浆期间的光合特性[J].中国农业科学,2007,40:1898-1906
    126.贾志森,白永新.玉米自交系抗倒伏鉴定研究[J].作物品种资源,1992,3:30-32
    127.李潮海,刘奎,连艳鲜.玉米碳氮代谢研究进展[J].河南农业大学学报,2000,34:318-323
    128.李登海,毛丽华,姜伟娟,柳京国,李春明.紧凑型杂交玉米高产性能的发现与探索[J].莱阳农学院学报,2001,18:259-262
    129.李军.作物生长模拟模型的开发应用进展[J].西北农业大学学报,1997,25:102-107
    130.李庆民.化控对玉米不同密度生育性状及产量的影响[J].黑龙江科技信息,2013,36:269
    131.李庆伟,袁安友,郑海涛,等.农杆菌介导的玉米转基因的研究进展[J].中国农学通报,2008,24:39-42
    132.李少昆.不同密度玉米根系在大田土壤中的分布、重量的调节及与地上部分的关系[J].玉米科学,1993,1:43-19
    133.李占录,翟世宏,李爱军,等.玉米抽雄期叶面喷洒DA-6增产效果的研究[J].玉米科学,2006,14:84-85
    134.刘布春,王石立,马玉平.国外作物模型区域应用研究进展[J].气象科技,2002,30:193-203
    135.刘锋,王利兵,徐振枢,等.基于半参数变系数部分线性模型的小麦抗倒伏性分析[J].重庆理工大学学报,2013,27:121-126
    136.刘镜波,王小林,张岁岐.有机肥与种植密度对旱作玉米根系生长及功能的影响[J].水土保持学报,2011,31:32-36,41
    137.刘开昌,张秀清,王庆成,等.密度对玉米群体冠层内小气候的影响[J].植物生态学报,2000,24:489-493
    138.刘明,齐华,张卫建,等.深松方式与施氮量对玉米茎秆解剖结构及倒伏的影响[J].玉米科学,2013,21:57-63
    139.刘伟,张吉旺,吕鹏,杨今胜,等.种植密度对高产夏玉米登海661产量及干物质积累与分配的影响[J].作物学报,2011,37:1301-1307
    140.路海东,薛吉全,马国胜,等.低氮胁迫对不同基因型夏玉米源库性状和灌浆特性的影响[J].应用生态学报,2010,21:1277-1282
    141.吕丽华,王璞,易镇邪,等.密度对夏玉米品种光合特性和产量性状的影响[J].玉米科学,2007,15:79-81
    142.吕丽华,赵明,赵久然,等.不同施氮量下夏玉米冠层结构及光合特性的变化[J].中国农业科学,2008,41:2624-2632
    143.马国胜,薛吉全,路海东,等.密度与氮肥对关中灌区夏玉米群体光合生理指标的影响[J].生态学报,2008,28(2):661-668
    144.马兴林,关义新,逢焕成,等.种植密度对3个玉米杂交种产量及品质的影响[J].玉米科学,2005,13:84-86
    145.马韫韬,文美平,李保国,等.基于器官尺度虚拟玉米冠层直射光分布的快速计算模型[J].农业工程学报,2007,10:151-155
    146.聂乐兴,姜兴印,吴淑华,等.胺鲜酯对高产夏玉米产量及叶片光合羧化酶和保护酶活性的影响[J].生态应用学报,2010,21:2558-2564
    147.潘学标,韩湘玲,石元春. COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8:180-188
    148.戚昌瀚.水稻生长日历模拟模型研究综合报告[J].江西农业大学学报,1992,14:218-223
    149.钱兵,张海龙,李静波.小麦蜡熟期茎秆抗倒伏数学模型的建立[J].数学的实践与认识,2012,42:20-35
    150.钱春荣,于洋,宫秀杰,等.黑龙江省不同年代玉米杂交种氮肥利用效率对种植密度和施氮水平的响应[J].作物学报,2012,38:2069-2077
    151.宋振伟,齐华,张振平,等.春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异.作物学报,2012,38:2267-2277
    152.孙凤起,赵建平,潘大宇,等.基于ARM嵌入式平台的作物抗倒伏性检测系统[J].电子测量技术,2013,10:66-69
    153.孙世贤,戴俊英,等.氮磷钾肥对玉米倒伏及其产量的影响[J].中国农业科学,1989,22:28-33
    154.孙世贤,戴俊英,顾慰连,等.密度对玉米倒伏及其产量的影响[J].沈阳农业大学学报,1989,20:413-416.
    155.田纪春,陈建省,王延训等.氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响[J].中国农业科学,2001,34:1-4
    156.佟屏亚.从经验到科学—世界百年玉米改良史[J].玉米科学,2003,11:90-93
    157.汪黎明,姚国旗,穆春华,等.玉米抗倒性的遗传研究进展[J].玉米科学,2011,19:1-4
    158.王激清.我国主要粮食作物施肥增产效应和养分利用效率的分析与评价.博士学位论文.北京:中国农业大学,2007.
    159.王空军,董树亭,胡昌浩,等,我国玉米品种更替过程中根系生理特性的演进Ⅰ.根系活性与ATPase活性的变化[J].作物学报,2002,28:185-189
    160.王琳.云杉风倒动力学模型的建立与分析.硕士学位论文.哈尔滨:哈尔滨工业大学,2006,06
    161.王庆成,牛玉贞,徐庆章,等.株型对玉米群体光合速率和产量的影响[J].作物学报,1996,22:223-227
    162.王群瑛,胡昌浩.玉米茎秆抗倒伏特性的解剖[J].作物学报,1991,19:70-74
    163.卫丽,熊友才,BaoluoMa,等.不同群体结构夏玉米灌浆期光合特征和产量变化[J].生态学报,2011,31:2524-2531
    164.卫晓轶,张明才,李召虎,段留生.不同基因型玉米对乙烯利调控反应敏感性的差异[J].作物学报,2011,37:1819-1827
    165.谢云,James RK.国外作物生长模型发展综述[J].作物学报,2002,28:190-195
    166.徐启程,贺小项,孙雅珍,等.小麦抗倒伏的力学分析[J].吉林农业大学学报,2012,34:464-467
    167.徐庆章,王庆成,牛玉贞,等.玉米株型与群体光合作用的关系研究[J].作物学报,1995,21:492-496
    168.薛德海.植物生长调节剂在农业上的应用[J].现代农业科学,2008,15:84-85
    169.薛吉全,马国胜,路海东,等.紧凑大穗型玉米品种陕单902群体源库性状与产量形成的研究[J].西北植物学报,2002,22:1336-1342
    170.闫艳红,李波,杨文钰,等.烯效唑浸种对大豆苗期抗旱性的影响[J].中国油料作物学报,2009,31:480-485
    171.严美春,曹卫星,罗卫红,等.小麦地上部器官建成模拟模型的研究[J].作物学报,2001,27:222-229
    172.杨恩琼,黄建国,何腾兵,等.氮肥用量对普通玉米产量和营养品质的影响[J].植物营养与肥料学报,2009, 15:509-513
    173.杨今胜,王永军,张吉旺,等.三个超高产夏玉米品种的干物质生产及光合特性[J].作物学报,2011,37:355-361
    174.杨金慧,毛建昌,李发民.玉米杂交种农艺性状与籽粒产量的相关和通径分析[J].中国农学通报,2003,19:28-30
    175.杨清,艾沙江·买买提,刘国杰,等.DA-6对草莓叶片叶绿素合成前体物质及关键酶酶活性的影响[J].中国农业大学学报,2012,17:86-90
    176.杨文钰,韩惠芳,任万君,等.烯效唑干拌种对小麦种子萌发后内源激素含量和物质代谢的影响[J].作物学报,2005,31:60-765
    177.杨学荣.植物生理学[M].北京:高等教育出版社,1983
    178.叶三星,徐敏,黄芳芳,等.小麦茎秆抗倒伏的数学模型研究[J].数学的实践与认识,2012,42:76-86
    179.易镇邪.氮肥类型对夏玉米产量与水、氮高效利用及氮素损失的影响.[博士学位论文].北京:中国农业大学,2006
    180.宇振荣.作物生长模拟模型研究和应用[J].生态学杂志,1994,13:69-73
    181.袁志华,李云东,陈合顺.麦类作物的力学模型及振动分析[J].河南科学,2002,20:11-13
    182.袁志华,赵安庆,苏宗伟,等.水稻茎秆抗倒伏的力学分析[J].生物数学学报,2003,18:234-237
    183.袁志华,冯宝萍,赵安庆,等.作物茎秆抗倒伏的力学分析及综合评价探讨[J].农业工程学报,2002,18:30-31
    184.袁志华,李云东,陈合顺,等.玉米茎秆的力学模型及抗倒伏分析[J].玉米科学,2002,10:74-75
    185.张明怡,李玉影,刘颖,等.黑龙江省玉米氮肥适宜用量研究[J].黑龙江农业科学,2010,1:39-40
    186.张旺锋,王振林,余松烈,等.膜下滴灌对新疆高产棉花群体光合作用冠层结构和产量形成的影响[J].中国农业科学,2002,35:632-637
    187.张银锁,宁振荣,Paul MD环境条件和栽培管理对夏玉米干物质积累分配及转移的试验研究[J].作物学报,2002,28:104-109
    188.赵安庆,袁志华.玉米茎秆抗倒伏的力学机制研究[J].生物数学学报,2003,18:311-313
    189.赵京考,卢静,谷思雨,等.降雨量和氮素对黑土区春玉米产量的影响[J].农业工程学报,2011,27:74-78
    190.赵久然,赵明,董树亭,薛吉全.中国玉米栽培发展三十年[M].中国农业科技出版社,北京,2011
    191.赵可夫,许仙太,袁玉信.玉米田的群体桔构与光能分布[J].作物学报,1963,2:321-331
    192.赵敏,周淑新,崔彦宏.我国玉米生产中植物生长调节剂的应用研究[J].玉米科学,2006,14:127-131
    193.中国国家专利局(NBSC).中国统计年鉴[M].北京:中国统计出版社,2012
    194.周旭梅,高旭东,何晶.种植密度对玉米产量及植株性状的影响[J].玉米科学,2012,20:107-110
    195.朱红波,张安录.我国耕地资源生态安全的时空差异分析[J].长江流域资源与环境,2007,16:754-758

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700