用户名: 密码: 验证码:
基于LTCC技术的微波毫米波收发组件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于毫米波的波长短、频带宽和它自身特殊的大气传播特性,使得Ka频段在雷达系统中得到了广泛的应用,从而推动了Ka频段收发组件的快速发展。针对二次雷达系统中的收发组件,功能较多、体积和重量要求小。因此,收发组件的小型化、集成化、高可靠性和低成本引起了人们极大的兴趣。低温共烧陶瓷(LTCC)技术是满足这一发展趋势的最佳选择之一。在毫米波二次雷达Ka频段收发组件中,低温共烧陶瓷多芯片混合集成方案将高性能无源功能器件与微波单片电路(MMIC)进行有效可靠的互连,以提供更小的体积和更多的设计灵活性。
     虽然LTCC技术在L波段得到了广泛的应用,但由于毫米波波长短、频率高,传统LTCC技术在该频段应用存在加工精度难以控制和传输损耗过大等缺点。因此,LTCC技术在毫米波收发组件中的应用较少。本论文针对LTCC技术在毫米波组件中应用的这些困难,基于传输线理论,利用容差分析和模式优化方法提出了适用于毫米波频段的LTCC电路设计方法。该方法解决了LTCC技术在毫米波频段的应用难题,减小了毫米波收发组件的体积和重量,降低了批量生产成本。本论文围绕基于LTCC技术的微波毫米波收发组件研究这一课题,主要完成了以下工作:
     1、半集总参数LTCC双工器:本文利用低温共烧陶瓷技术,提出了一种小型化半集总参数双工器结构,利用该结构实现的LTCC双工器结构简单,具有较小的尺寸和良好的电性能,并被应用在了LTCC毫米波收发组件中,实现了输入中频频率和输入本振频率双工的功能。
     2、基片集成波导滤波器:本文基于低温共烧陶瓷的三维技术,提出了一种基于基片集成波导(SIW)实现的三阶交叉耦合毫米波滤波器结构。利用这种结构实现的毫米波带通滤波器体积小,并具有一个高端极点,提高了滤波器高端抑制度。本文还提出了介质集成折叠波导(SIFW)这种新的传输、谐振耦合结构,与SIW相比,利用SIFW结构实现的X波段带通滤波器体积更小。
     3、宽阻带三模谐振器滤波器:本文提出了一种具有宽阻带特性的三模谐振结构,利用这种结构实现的带通滤波器在通带两边分别有两个衰减极点。本文实现的宽阻带三模谐振器滤波器除了拥有宽的阻带外,矩形系数高,工作带宽较宽,可以达到28%。
     4、 LTCC微波毫米波收发组件:LTCC具有高密度、小尺寸的特点,并且在三维设计方面具有较好的灵活性。本文结合工程应用,设计了L波段和X波段的小型化收发组件。本文还利用容差分析法完成了一种用于毫米波雷达系统的LTCC毫米波收发组件的设计,在满足指标要求的情况下,重量和体积减小为传统毫米波收发组件的2/3。
The Ka band Transmit/Receive (T/R) module has been widely applied in battlefieldidentification radar systems,with the short wavelength, wide bandwidth of millimeterwave and its intrinsic atmospheric propagation characteristics. The T/R modulegenerally consists of up-conversion, down-conversion, power amplifier, low noiseamplifier and pulse modulation. Therefore, the miniaturization, high integration, highreliability and low cost of T/R module are more important.Low Temperature Co-fired Ceramic (LTCC) technology and three dimensionalintegration technologies are excellent methods to meet these requirements. LTCCtechnology can improve the integration of high-performance passivemodule with the RF chip for microwave multichip modules (MMCM). For Ka-band T/Rmodule applied in the millimeter wave battlefield identification radar systems, TheLTCC multi-chip hybrid integration that effectively and reliably integrating highperformance passive functional devices with the RF chip monolithic integrated circuit(MMIC) offer smaller volume and more flexibility.
     This paper proposes appropriate method for the design of LTCC millimeter wavecircuits by the tolerance analysis and mode optimization based on the theory oftransmission line. The method can solve the difficulties of application in millimeterband and reduce the volume and weight of millimeter-wave T/R. Such contentsinvolved in this dissertation are as following:
     1. LTCC diplexer: The miniaturized semi-lumped diplexer based on LTCCtechnology is proposed. It is composed of L-band low-pass filter based on lumpedelements and X-band SIR band-pass filter. The measurement results as follows:the cutoff frequency is1.46GHz and insertion loss less than1dB in the L-band; thecenter frequency is8.3GHz with the bandwidth of0.6GHz, and the insertion loss is lessthan3.5dB. The diplexer has the advantages of simple structure, small size andgood electrical properties, and has been applied in Ka-bands T/R module to diplextransmission the IF frequency and the LO frequency.
     2. Substrate integrated waveguide (SIW) filter: The third order cross-coupled millimeter-wave filter based on SIW by three-dimensional LTCCtechnology are introduced, and a novel transmission, resonant coupling structure areproposed. A substrate integrated folded waveguide (SIFW) H-plane band-pass filterbased on LTCC is designed and fabricated. The measured results prove the feasibility ofthis kind of filter structure.
     3. Wideband Bandpass Filter With Enhanced Wideband Rejection UsingTriple-Mode Ring Resonator: his paper presents a novel triple-mode ring resonatorwideband bandpass filter with enhanced wideband rejection characteristics. Theproposed ring resonator is made up of step impendence resonator and triple-mode ringresonator. The resonator has three resonance frequencies in the passband and exhibitsattenuation poles close to the edges of the passband which offer sharp rejection in thisbandpass filter.
     4. LTCC microwave and millimeter-wave T/R: Low temperature co-firingceramics have the characteristics of high density, small size and low cost, and they havebetter flexibility in terms of three-dimensional design, so LTCC technology has a goodprospect of application in the L-band. L-band and X-band T/R module using LTCCtechnology is designed and fabricated in this paper. High-density reliable and effectiveintegration based on the investigation of the millimeter-wave transmissionstructure on LTCC, LTCC filter, LTCC diplexer and other passive functional modulesare proposed. A T/R module based on LTCC technology for millimeterwave battlefield identification radar system is presentation. We gain a finer measuredresult by layout analysis and processing tests.
引文
[1]毕克允.微电子技术-信息装备的精灵.北京:国防工业出版社,2008
    [2] R.H.Katz. Adaptation and Mobility in Wireless Information Systems. IEEE Personal Comm,1994,1stQuarter,6-17
    [3] K.Oida. Action for Development of Frequency Resources. The Journal of the institute ofElectroncs, Information, and Communication Engineers,1988,71(5):457-463
    [4] Restructuring System on a chip Strategy with Package Technology as the New Innovation.NIKKEI MICRODEVICES,2001,189:113-132
    [5] Activity Around Technology to Embed Devices Internally in PCB’s Suddenly Increases. NIKKEIELECTRONICS,2003,842:57-64
    [6] H.Stetson. Myltilayer Ceramic Technology. Ceramics and Civilization,1987,3:307-322
    [7] W.J.Gyuvk. Methods of Manufacturing Multilayered Monolithic Ceramic Bodies. U.S.Patent,1965,3:192
    [8] H.Stetson. Methods of Making Multilayer Circuits. U.S.Patent,1965,3:189
    [9] B.Schwartz. Microelectronics Packaging: Ⅱ. Am.Ceram.Soc.Bull,1984,63(4):577-581
    [10] A.J.Blodgett and D.R.Barbour. Thermal Conduction Module: A High Performance MultilayerCeramic Package. IBM J. Res. Develop.1982,26(3):30
    [11] C.W.Ho, D.A.Chance and C.H.Bajorek. The Thin-Film Module and High PerformanceSemiconductor Package. IBM J. Res. Develop,1982,26(3):286-296
    [12] Low-Temperature Fireable Multi-layer Ceramic Circuit Board. NIKKEI NEW MATERIALS,1987,3:93-103
    [13] High Performance and Low Cost Copper Paste. NIKKEI ELECTRONICS,1983,1:97-114
    [14] R.R.Tummala. Ceramics and Glass-Ceramic Packaging in the1990s. J.Am.Ceram.Soc,1991,74(5):895-908
    [15] K.Niwa, E.Horikoshi and Y.Imanaka. Recent Progress in Multilayer Ceramic Substrates.Ceramic Transactions,1999,97:171-192
    [16] Advanced LTCC Technology2001. Navian: Nagoya,2001
    [17] Meurer G, Canntrell B, Stapleton R. Digital array technology for radar applications. WashiontonD.C.USA:IEEE Radar conference2000
    [18] Szu H, Stapleton R, Willwerth F. Digital radar commercial applications. WashiontonD.C.USA:IEEE Radar Conference2000
    [19]胡明春,周志鹏,严伟.相控阵雷达收发组件技术.北京:国防工业出版社,2010
    [20]邱成悌.电子组装技术[M].南京:东南大学出版社,1998
    [21]金承立,陆萍.微波集成电路盒的秘方方法[J].北京:电子机械工程,1995(6)
    [22]张光义,王炳如.对有源相控阵雷达的一些新要求与宽禁带半导体器件的应用[J].现代雷达,2005.2/2005.3,27,(2)/(3)
    [23] Van Vliet F E, De Boer A. Fully-integrated core chip for X-band phased array T/R modules[C].Microwave Symposium Digest,2004IEEE MTT-S International,2004,3:1753-1756
    [24]刘恩科,朱秉升,罗晋生,等.半导体物理学.北京:电子工业出版社,2003
    [25]李效白.砷化镓微波功率场效应晶体管及其集成电路.北京:科学出版社,1998
    [26] Edward C Niehenke, Robert A Pucel, Inder J Bahl. Microwave and Millimeter-Wave IntegratedCircuits[J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2002,50(3)
    [27]张兴,黄如,刘晓彦.微电子学概论[M].北京:北京大学出版社,2003
    [28] Michael Keating, Pierre Bricaud.片上系统—可重用设计方法学[M].北京:电子工业出版社,2004
    [29] Yan Wei, Fang Xunlei, Yu shenglin. High Density Packaging Technologies for3D LTCC-basedIntegrated Phase-array Microwave Modules[C]. France2004International Radar Conference,2004,10:187
    [30] Ki-Il Kim1, Jung-Mu Kim, Jong-Man. Packaging for RF MEMS devices using LTCC substrateand BCB adhesive layer. Journal of Micromechanics and Microengineering,2006,16:150-156
    [31] Kai Zhang, Lei Xia and Ruimin Xu. A NovelBroadband LTCC Waveguide to MicrostripTransition for Millimeter-Wave Applications. Chiina-Japan JointMicrowave Conference,2006,8(2):261-263
    [32] Tao Yang, Masaya Tamura and Tatsuo Itoh. Super Compact Low-Temperature Co-FiredCeramic Band pass Filters Using the Hybrid Resonator. IEEE TRANSACTIONS ONMICROWAVE THEORY AND TECHNIQUES,2010,58(11):2896-2907
    [33] Ingo Wolff, Life Fellow. Design and Technology of Microwave and Millimeterwave LTCCCircuits and Systems. IEEE IMST GmbH,2007:505-511
    [34] Lei Xia, Ruimin Xu and Bo Yan. LTCC-Based Highly Integrated Millimeter-Wave ReceiverFront-End Module. Int Infrared Milli Waves,2006,27:975-983
    [35] P.Garrou, I.Turlik. Multichip Module Technology Handbook. McGraw-Hill,1998
    [36]严伟,洪伟,薛羽.低温共烧陶瓷微波多芯片组件[J].电子学报,2002,30(5):711-714
    [37]杨邦朝.多芯片组件(MCM)技术及其应用.成都:电子科技大学出版,2001
    [38] P.Pruna, PennYan. Microwave Characterization of Low Temperature Cofired Ceramic.Proceedings of the International Symposium and Exhibition on Advanced Packaging MaterialsProcesses,1998:134-137
    [39] I.Wolff, R.Kulke and P.Uhlig. LTCC for micro-and millimeter-wave applicatons. InternationalMicrowave Symposium,2007:3-8
    [40]董兆文. LTCC基板制造工艺研究.电子元件与材料,1998,17(5):24-28
    [41] Yan Wei, Jiang Weizhuo and Wang Tingyue. Advanced Interconnecting Techniques ofIntegrated T/R Modules.2001CIE International Conference on Radar,2001:893-897
    [42]甘体国.毫米波工程.成都:电子科技大学出版社,2006
    [43]姬五胜.微波多芯片组件中互连的仿真研究.上海:上海大学博士论文,2004
    [44] H. Y Lee. Wideband characterization of atypical bonding wire for microwave and millimeterwave integrated circuits. IEEE Trans. Microwave Theory and Tech.,1995,43(1):63-68
    [45] A.K.Verma and Raj Kumav. A New Dispersion Model for Microstrip Line. IEEETrans.Microwave Theory Tech,1998,46:1183-1187
    [46] Ponchak,GE,Donghoon Chun, Jong Gwan Yook,et a1.The use of metal filled via holes forimproving isolation in LTCC RF and wireless multichip packages.IEEE Transactions011Advanced Packaging,2000,23(1):88-99
    [47] Cassivi Y L, Perregrini L, Arcioni P, et al. Dispersion characteristics of substrate integratedrectangular waveguide. IEEE Microw. Wireless Compon. Lett.,2002,12(9):333-335
    [48] Zhang Y L, Hong W, Xu F, et al. Analysis of guided-wave problems in substrate integratedwaveguides-numerical simulations and experimental results. IEEE MTT-S InternationalMicrowave Symposium Digest,2003,3:2049-2052
    [49] Yan L, Hong W. Investigations on the propagation characteristics of the Substrate IntegratedWaveguide based on the Method of Lines. IEEE Proceedings-H: Microwaves, Antennas andpropagation,2005,152(1):35-42
    [50] Xu F, Wu K. Guided-Wave and Leakage Characteristics of Substrate Integrated waveguide.IEEE Trans. Microwave Theory and Tech.,2005,53(1):66-73
    [51]张玉林.基片集成波导滤波器的研究.南京:东南大学博士论文,2005
    [52] Chen X P, Hong W. Planar Asymmetric Dual-Mode Filters Based on Substrate Integratedwaveguide(SIW). IEEE MTT-S International Microwave Symposium Digest,2005:12-17
    [53] Li H, Hong W, Cui T J, et al. Propagation characteristics of substrate integrated waveguide.IEEE MTT-S International Microwave Symposium Digest,2003,3:2045-2048
    [54]颜力.基片集成波导传输特性与阵列天线的理论与实验研究.南京:东南大学博士论文,2005
    [55] Shichun Sun, Zhigang Wang and Ruimin Xu. Waveguide to Microstrip Transitions in W-Bandwith LTCC Technology. Chiina-Japan Joint Microwave Conference,2009:2515-2517
    [56] K.Rambabu, J.Bornemann. Design and application of grounded pin-pad resonators in LTCCcomponents. Microwave and optical technology letters,2005,47(4):321-323
    [57] Inder Bahl, Prakash Bhartia. Microwave Solid State Circuit Design. A Wiley-IntersciencePublication,1988
    [58]李成国.基于LTCC的多层毫米波集成电路理论分析与仿真设计技术研究,南京:南京理工大学博士论文.2008
    [59] D.R.Decker, H.M.Olson, R.Tatikola, et al. Multichip MMIC Package for X and Ka bands. IEEETrans.Components, Packaging and Manufacturing Technology,1997,20(1):27-33
    [60]林为干.微波网络.北京:国防工业出版社,1978
    [61] T.Krems, W.Haydl, H.Massler, et al. Millimeter wave performance of chip interconnectionsusing wire bonding and flip chip. Proc. IEEE MTT-s. Dig.,1996:247-250
    [62] D K Shaeffer, A R Shanani, S S Mohan, et al.115-mW,0.5um CMOS GPS receiver with widedynamic-range active filters. IEEE Journal of Solid State Circuits,1998,33(12):76-78
    [63] K C Tsai, P Gray.1.9GHz1-W CMOS class-E power amplifier for wireless communications.IEEE Joural of Solide State Circuits,1999,34(7):962-967
    [64] P Tseng, G Yang, M F Chang.3-V monolithic SiGe HBT power amplifier for dual-modecellular handset applications. IEEE Joural of Solide State Circuits,2000,35(9):1338-1344
    [65] C P Yue, S S Wong. On-chip spiral inductors with patterned ground shields for Si-based RF IC’s.IEEE Joural of Solide State Circuits,1998,33(5):743-752
    [66] I J Bahl. Improved quality factor spiral inductors on GaAs substrate. IEEE Microwave andGuide Wave Letters,1999,9(10):398-400
    [67] J N Burghartz, D C Edelstein and K A Jenkins. Spiral inductors and transmission lines in silicontechnology using copper damascene interconnects and low-loss substrates. IEEE Trans.Microwave Theory and Techniques,1997,45(10):1961-1968
    [68] J B Yoon, B K Kim, C H Han, et al. Surface micromachined solenoid on-Si and on-glassinductors for RF applications. IEEE Electron Device Letters,1999,20(9):487-489
    [69] J R Rieh, L H Lu, L P B Katehi, et al. X-and Ku-band amplifiers based on Si/SiGe HBT’s andmicromachined lumped components. IEEE Trans. Microwave Theory and Techniques,2000,46(5):685-694
    [70] J Muller. High quality RF inductors in LTCC. International of Microcircuits and ElectronicsPackaging,1997,20(2):109-115
    [71] A Sutono, A Pham, J Laskar, et al. Development of three dimensional ceramic-based MCMinductors for hybrid RF/microwave applications. IEEE RFIC Symposium Digest,1999:175-178
    [72] A Sutono, A Pham, J Laskar, et al. Ivestigation of multi-layer ceramic-based MCM technology.IEEE EPEP Digest,1998:83-86
    [73] S Chaki, A.Aono and N Andoh. Experimental study on spiral inductors. IEEE NTT-S Digest,1995,2:753-756
    [74]谢兴军,单红,苏伟.扭转臂杠杆式MEMS膜开关的分析[J].传感器技术,2004,23(7):71-73.
    [75] J P Mondal. Experimental verification of A simple distributed model of MIM capacitors forMMIC applications. IEEE Trans. Microwave Theory and Techniques,1987,35(4):403-408
    [76] J L Hobdell. Optimization of interdigital capacitors. IEEE Trans. Microwave Theory andTechniques,1979,27(9):788-791
    [77]黄齐波,陈建荣,马美霞.基于LTCC技术的C频段星载接收机混频器.微波学报,2010,26(1):50-53
    [78] Ge Zhiqiang. A downsized and integrated C-band transceiver for VSAT. IEEE Microwave andOptoelectronics conference,1995:33-36
    [79]Yu Rong, Kawthar A. Zaki. LTCC Wide-Band Ridge-Waveguide Bandpass Filters. IEEE Trans.Microw.Theory Tech,1999,47(9):1836–1999
    [80] K.Chang. Microwave Ring Circuits and Antennas. New York:Wiley,1996
    [81] Sheng Sun and Lei Zhu. Wideband Microstrip Ring Resonator Band pass Filters Under MultipleResonances. IEEE Trans. Microw. Theory Tech,2007,55(7):2176–2182
    [82] J. S. Hong and M.J.Lancaster. Microstrip band pass filter using degenerate modes of a novelmeander loop resonator. IEEE Microwave Guided Wave Lett,1995,5:371–372
    [83] Adnan Gorus, Ceyhun Karpuz and Mustafa Akpinar. A Reduced-Size Dual-Mode Band passFilter With Capacitively Loaded Open-Loop Arms. IEEE Microw. Wireless Compon.Lett,2003,13(9):385-387
    [84] Y.X.Wang, B.Z.Wang and J.Wang. A COMPACT SQUARE LOOP DUAL-MODE BANDPASSFILTER WITH WIDE STOP-BAND. Progress In Electromagnetics Research,2007,77:67-73
    [85] Y.C.Chiou and P.S.Yang. TRANSMISSION ZERO DESIGN GRAPH FOR DUAL-MODEDUAL-BAND FILTER WITH PERIODIC STEPPED-IMPEDANCE RING RESONATOR.Progress In Electromagnetics Research,2010,108:23-36
    [86] Heba B. El-Shaarawy, Fabio Coccetti, Robert Plana, et al. Compact Bandpass Ring ResonatorFilter With Enhanced Wide-Band Rejection Characteristics Using Defected Ground Structures.IEEE Microw. Wireless Compon. Lett,2008,18(8):500–502
    [87] S.Sun and L.Zhu. Wideband microstrip ring resonator bandpass filter with asymmetrically-loadsstubs. in Proc. Asia-Pacific Microw.Conf,2008:.1-4
    [88] Kunnthphong Srisathit,Apisak Worapishet and Wanlop Surakampontorn. Design of Triple-ModeRing Resonator for Wideband Microstrip Bandpass Filters. IEEE Trans. Microw. Theory Tech,2010,58(11):2867–2877
    [89] M.Matsuo, H.Yabuki and M.Makimoto. Dual-Mode stepped-impedance ring resonators forbandpass filter application. IEEE Trans. Microw. Theory Tech,2001,49(7):1235–1240
    [90] Hong, J.S., and Lancaster, M.J. Microstrip filters for RF/microwave applications. Wiley, NewYork, USA,2001
    [91] Amari S. Synthesis of cross-coupled resonator filters using an analytical gradient-basedoptimization technique. IEEE Trans. Microw. Theory Tech,2000,48(9):1559–1564
    [92] W.D’Orazio and K.Wu. Substrate-integrated-waveguide circulators suitable for millimeter-waveintegration. IEEE Trans. Microw. Theory Tech,2006,54(10):3675–3680
    [93] H. J. Tang, W. Hong, J. X. Chen, et al. Development of millimeter-wave planar diplexers basedon complementary characters of dual-mode substrate integrated waveguide filters with circularand elliptic cavities. IEEE Trans. Microw. Theory Tech,2007,55(4):776–782
    [94] J. H. Lee, S. Pinel, J. Papapolymerou, et al. Low-loss LTCC cavity filters usingsystem-on-package technology at60GHz. IEEE Trans. Microw. Theory Tech,2005,53(12):3817–3823
    [95] Chih-Jung Chen and Tah-Hsiung Chu. Design of a60-GHz Substrate Integrated WaveguideButler Matrix—A Systematic Approach. IEEE Trans. Microw. Theory Tech,2010,58(7):1724-1733
    [96] Shen, T.M., Chen, C.F., Huang, et al. Design of vertically stacked waveguide filters in LTCC.IEEE Trans. Microw. Theory Tech,2007,55(8):1771–1779
    [97] Potelon B, Favennec J.F and Wuendo C. Design of a substrate integrated waveguide (SIW)filter using a novel topology of coupling. IEEE Microw. Wirel. Compon. Lett,2008,18(9):596–598
    [98] Tang H.J, Hong W, Hao Z C, et al. Optimal design of compact millimeter-wave SIW circularcavity filters. Electron. Lett,2005,41(19):1068–1069
    [99] Albert E. Williams. A Four-Cavity Elliptic Waveguide Filter. IEEE Trans. Microw. Theory Tech,1970,18(12):168-176
    [100] Q F Wei, Z F Li, L S Wu, W Y Yin, et al. Compact cross-coupled circular cavity filters usingmultilayer substrate integrated waveguide. Electron Letter,2009,45:6
    [101] Xiao-Ping Chen and Ke Wu. Substrate Integrated Waveguide Cross-Coupled Filter WithNegative Coupling Structure. IEEE Trans. Microw. Theory Tech,2008,56(1):142–149
    [102] Amari S. Synthesis of cross-coupled resonator filters using an analytical gradient-basedoptimization technique. IEEE Trans. Microw. Theory Tech,2000,48(9):1559–1564
    [103] Hong J S and Lancaster M J. Microstrip filters for RF/microwave applications. Wiley, NewYork, USA,2001
    [104] Shih Y C and T Itoh. E-plane filters with finite-thickness septa. IEEE Trans. Microw. TheoryTech,1983,31(12):1009-1013
    [105] Vahldieck R, J Bornemannn and D Grauerholz. Optimized waveguide E-plane metal insertfilters for millimeter wave appplicatons. IEEE Trans. Microw. Theory Tech,1983,31(1):65-69
    [106] Cid J M and J Zapata. CAD of rectangular waveguide H-plane circuits by segmentation, finiteelements and artificial neural networks. Electron. Lett,2001,37(2):98-99
    [107] Kim D W and J H Lee. A partial H-plane waveguide as a new type of compact waveguide.Microw. Opt. Technol. Lett,2004,43(5):426-428
    [108] Kim D W, D J Kim and J H Lee. Compact Partial H-plane filters. IEEE Trans. Microw. TheoryTech,2006,54(11):2923-2930
    [109] Kim D J and J H Lee. Partial H-plane Filters With Multiple Transmission Zeros. IEEE Trans.Microw. Theory Tech,2008,56(7):1693-1698
    [110] Deslandes D and K Wu. Integrated microstrip and rectangular waveguide in planar form. IEEEMicrow. Wireless Compon. Lett,2001,11(2):68-70
    [111] Uchimura H, T Takenoshita and M Fujii. Development of “a laminated waveguide”. IEEETrans. Microw. Theory Tech,1998,46(12):2437-2443
    [112] Ito M, K Maruhashi, K Ikuina, et al. A60-GHz-band planar dielectric waveguide filter forflip-chip modules. IEEE Trans. Microw. Theory Tech,2006,49(12):2431-2436
    [113] Gu J, Y Fan and Y Zhang. A X-Band3-D SICC Filter With Low-Loss and Narrow Band UsingLTCC Technology. Journal of Electromagnetic Waves and Application,2009,23(8):1093-1100
    [114] Zhang X C, Z Y Yu and J Xu. Novel Band-Pass Substrate Integrated Waveguide (SIW) FilterBased on Complementary Split Ring Resonators (CSRRS). Progress In ElectromagneticsResearch,2007,72:39-46
    [115] Ismail A, M S Razalli, M A Mahdi, et al. X-Band Trisection Substrate-Integrated WaveguideQuasi-Elliptic Filter. Progress In Electromagnetics Research,2008,85:133-145
    [116] Wang R, L S Wu and X L Zhou. Compact Folded Substrate Integrated Waveguide Cavities andBandpass Filter. Progress In Electromagnetics Research,2008,84:135-147
    [117] Grigoropoulos N and P R Young. Compact Folded Waveguide.34th Eur. Microw. Conf,2004:973-976
    [118] Grigoropoulos N, B S Izquierdo and P R Young. Substrate Integrated Folded Waveguides(SIFW) and Filters. IEEE Microw. Wireless Compon. Lett,2005,15(12):829-831
    [119] Levy R. Theory of direct-coupled-cavity filters. IEEE Trans. Microw. Theory Tech,1967,15(6):340-348
    [120] S A Maas. Microwave Mixers. Artech House,1993
    [121] K Itoh, A Iida and Y Sasaki. A40GHz Band Monolithic Even Harmonic Mixer With AnAntiparallel Diode Pair. IEEE MTT-S Digest,1991:22-46
    [122] J Matreci and F K David. Unbiased subharmonic mixer for millimeter wave spectrumanalyzers. IEEE MTT-S International Microwave Symposium Digest,1983:130-132
    [123]赵晨曦,谢小强,徐锐敏.毫米波10W空间功率合成放大器研制.红外与毫米波学报,2008,11:22-46
    [124] Isao Ohta,Akihiro Hino,Tadashi Kawai,et al. Broad-band Simple H-plane Directional Couplers.Proceedings of APMC2001,2001:667-673
    [125] Lothar Wandinger, Vahakn Nalbandian. Millimeter-wave ower combiner using quasi-opticaltechniques[J]. IEEE Trans.Microwave Theory Tech,1982,19:793-801
    [126] Hui-Wen Yao, Am Abdelmonem, Ji-Fuh Liang, et al. Analysis and Design ofMicrostrip-Waveguide Transitions. IEEE Transactions On Microwave Theory and Techniques,1994,42(12):2371-2380
    [127]曹卫平,王秉中,李思敏等,新型拓展带宽毫米波开槽波导功率合成器.微波学报,2010,3:25-27
    [128] David B R, Cheng Nai-shuo, Robert A Y, et al. Failures in power combining arrays[J]. IEEETransactions on Microwave Theory and Techniques,1999,47(7):1077-1082
    [129]王正伟.八毫米波宽带三倍频器研制[硕士学位论文].成都:电子科技大学硕士论文,2007
    [130] E Schlecht, G Chattopadhyay.200,400and800GHz Schottky Diode “Substrateless” Multiplier:Design and Results. IEEE Transactions on Microwave Theory and Techniques,2001,19:793-801
    [131] David M, Klymyshyn. Active Frequency Multipier Design Using CAD. IEEE Transactions onMicrowave Theory and Techniques,2003,21:937-942
    [132] Y Huang and K Wu. A broad-band LTCC integrated transition of laminated waveguide toair-filled waveguide for millimeter-wave applications. IEEE Transactions on Microwave Theoryand Techniques,2003,51:1613-1617

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700