用户名: 密码: 验证码:
簕竹属竹叶活性组分筛选、检测及挥发性成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国竹资源丰富,竹叶被《中华本草》等药典收载,具有一定的药用价值。竹叶提取物有显著的抗氧化、抑菌等生物活性,成为开发植物源抗氧化剂、植物药和天然香料的重要来源。本研究以簕竹属(Bambusa)的小琴丝竹(B. multiplex cv. Alphonse-Karr)、青皮竹(B. textilis McClure)、银丝竹(B. multiplex cv. Silverstripe)、小佛肚竹(B. ventricosa McClure)、孝顺竹(B. multiplex var. multiplex)、凤尾竹(B. multiplex cv.Fernleaf)、观音竹(B. multiplex var. riviereorum R.Maire)等7种竹叶为研究对象,以清除DPPH自由基的方法筛选出高抗氧化活性的竹种、以家兔体内模型筛选出竹叶中的药效成分,利用高压制备液相色谱对所筛选出的抗氧化成分和药效成分进行分离制备,并应用液相色谱-飞行时间质谱(LC/Q-TOF-MS)、核磁共振等对活性组分开展了结构鉴定,分别建立了高效薄层色谱(HPTLC)和高效液相色谱(HPLC)测定竹叶提取物中4种黄酮碳苷的检测方法,并开展了顶空-固相微萃取方法(HS-SPME)和水蒸气蒸馏法(HD)两种前处理方法分析竹叶挥发性成分的比较。旨在为簕竹属竹叶资源应用于天然食品抗氧化剂、天然药物等提供理论基础,促进竹叶资源的高附加值利用。主要研究结果如下:
     1.建立了HPTLC同时测定市售竹叶黄酮中4种黄酮碳苷(异荭草苷、荭草苷、牡荆苷、异牡荆苷)的方法。市售竹叶黄酮样品用甲醇提取后,点样于高效硅胶板上,以四氢呋喃-甲苯-甲酸-水(16:8:2:1, v/v/v/v)为展开剂,经全自动展开仪(ADC2)展开,350nm下紫外扫描检测。结果表明,4种黄酮碳苷在薄层板上分离良好,在竹叶黄酮样品中的添加回收率94-100%,在30ng-1200ng/斑点的范围内(其中,异荭草苷200-1200ng/斑点,异牡荆苷100-600ng/斑点,荭草苷160-960ng/斑点,牡荆苷-360ng/斑点)相关系数r0.9995,该方法简便可靠,适合于市售竹叶黄酮中4种黄酮碳苷的同时测定,为竹叶黄酮产品的质量控制提供技术支撑。
     2.建立了HPLC同时测定不同竹种竹叶中4种黄酮碳苷(异荭草苷、荭草苷、牡荆苷、异牡荆苷)的方法。竹叶样品用60%甲醇提取,采用反相C_(18)色谱柱(250×4.6mmI.D.,5μm),以乙腈-水(含有0.5%乙酸)(15:85, v/v)为流动相,流速为1.0mL/min,柱温为30℃,检测波长为345nm。结果表明,4种黄酮碳苷在30min内达到基线分离,在0.2-100μg/mL的范围内线性关系良好,在竹叶提取物中的添加回收率88-106%,该方法简便、灵敏、准确,成功用于9种不同竹叶提取物中黄酮碳苷的测定。
     3.利用DPPH分光光度法测定了簕竹属7种竹叶提取物的抗氧化活性,不同竹种DPPH自由基清除率从大到小依次为:青皮竹(84.67%)>银丝竹(69.06%)>小佛肚竹(51.48%)>孝顺竹(43.88%)>凤尾竹(37.83%)>小琴丝竹(35.86%)>观音竹(30.52%)。利用优化后的薄层色谱生物自显影法(DPPH-TLC)对7种竹叶样品的抗氧化活性进行筛选,结果显示,不同竹叶的抗氧化活性的大小与DPPH分光光度法的测定结果一致。其中,青皮竹叶的抗氧化能力较强,其抗氧化活性IC50值为25.26mg/L。对青皮竹叶提取物进行抗肿瘤活性筛选,发现青皮竹叶提取物对白血病细胞(K562)、胃癌细胞(BGC823)、肺癌细胞(A549)等3种肿瘤细胞均无细胞毒性。
     4.青皮竹叶提取物具有较高的抗氧化活性,为明确青皮竹叶中抗氧化成分,取青皮竹叶,以60%甲醇超声波提取30min后,再振荡提取12h,重复提取2次,合并提取液浓缩、冻干,通过化学显色反应,发现青皮竹叶中抗氧化成分主要为黄酮类和酚酸类化合物,以DPPH-TLC活性追踪的方法,利用高压制备液相色谱从青皮竹叶中分离制备出3种主要抗氧化成分,通过紫外、质谱、核磁共振等数据综合分析,鉴定了3种抗氧化成分,分别为(1)木犀草素-6-C-葡萄糖木糖苷;(2)木犀草素-6-C-葡萄糖鼠李糖苷;(3)木犀草素-6-C-葡萄糖苷。其中,木犀草素-6-C-葡萄糖木糖苷和木犀草素-6-C-葡萄糖鼠李糖苷是首次从簕竹属竹种中发现。
     5.利用LC-Q-TOF-MS技术对青皮竹叶水煎液中的主要化学成分进行结构鉴定,共检出20种化合物,包括黄酮类、酚酸类、香豆素类。结合紫外光谱和核磁共振技术,鉴定了其中10种化合物,分别为(1)木犀草素-6-C-葡萄糖木糖苷、(2)木犀草素-6-C-葡萄糖鼠李糖苷、(3)异荭草苷、(4)荭草苷、(5)反式对香豆酸、(6)顺式对香豆酸、(7)香豆素、(8)牡荆苷、(9)芹菜素-8-C-葡萄糖鼠李糖苷、(10)异牡荆苷。
     6.以青皮竹叶水煎液对家兔灌胃后,采集不同时相血浆,利用液相色谱的指纹图谱比较,发现青皮竹叶水煎液中的3种化合物能够进入血液,分别用高分辨质谱、紫外光谱和核磁共振对3种化合物进行鉴定,分别为反式对香豆酸、顺式对香豆酸、芹菜素-8-C-葡萄糖鼠李糖苷,本研究首次阐明了青皮竹叶的药效物质基础。
     7.分别采用顶空-固相微萃取(HS-SPME)和水蒸气蒸馏法(HD)对簕竹属7种竹叶中挥发性成分进行富集,以气相色谱-质谱联用仪(GC-MS)进行定性检测,用面积归一化法确定各组分的相对含量。结果表明,两种方法共鉴定竹叶发性成分79种,包括酸类、酚类、酮类、酯类、醛类等化合物,其中HD-GC/MS鉴定出76种,HS-SPME-GC/MS鉴定出18种。HD-GC/MS测定竹叶挥发性成分的数量和相对含量上均高于HS-SPME-GC/MS方法,HS-SPME-GC/MS适合于快速测定竹叶挥发性成分,具有简单、快速等特点。两种方法在7种竹叶中均检出的化合物有8种,包括:α-紫罗兰酮,香叶基丙酮,β-紫罗兰酮,4-[2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基]-3-丁烯-2-酮,抗氧剂264,二氢猕猴桃内酯,植酮,邻苯二甲酸二异丁酯,这些共同检出的化合物在食品香精、日用化工、食品防腐剂和医药中间体等领域广泛应用,为簕竹属竹叶挥发性成分的开发利用提供研究基础。
     综上所述,本研究建立了HPLC和HPTLC两种测定竹叶黄酮碳苷的方法,筛选出青皮竹叶提取物具有较高的抗氧化活性,并鉴定出3种抗氧化成分,从青皮竹叶水煎液中鉴定了10种化合物,包括3种药效成分,簕竹属竹叶的挥发性成分含有香精香料等组分,为竹叶资源应用于天然抗氧化剂、天然药物等提供研究基础。
China is rich in bamboo resource. Bamboo leaves have been used in traditional Chinesemedicine and collected by Chinese Materia Medica. It was found that extract of bamboo leaveshas multiple biological activities, such as antioxidation, antifungi, and can be used as apharmaceutical intermediate and food additive. To develop new plant drug, dietary supplementand value-added products from bamboo resources. The leaves of B. multiplex cv. Alphonse-Karr, B. textilis McClure, B. multiplex cv. Silverstripe, B. ventricosa McClure, B. multiplex var.multiplex, B. multiplex cv. Fernleaf and B. multiplex var. riviereorum R.Maire were collectedfrom Nanjing forestry university and Jiangxi academy of forestry in China. In this study, high-performance thin-layer chromatography (HPTLC) and high-performance liquidchromatography (HPLC) methods were optimized and validated for the simultaneousdetermination of flavone C-glycosides. DPPH-TLC and DPPH spectrometry were used toscreen the compounds with antioxidant activity from bamboo leaves. Compounds showedbiological active were isolated by preparative chromatography and identified by liquidchromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) and nuclearmagnetic resonance (NMR). Volatile compounds were enriched through head space solid phasemicroextractions (HS-SPME) and hydrodistillation (HD) technologies, and analyzedqualitatively with gas chromatography-mass spectrometry (GC-MS).
     (1) A simple HPTLC method was developed for the simultaneous determination ofisoorientin, isovitexin, orientin and vitexin in the commercial samples of bamboo-leaf-flavonoids. The flavone C-glycosides were extracted from bamboo-leaf-flavonoids withmethanol and chromatographed on silica gel60plates in automatic developing chamber(ADC2) with tetrahydrofuran-toluene-formic acid–water (16+8+2+1,v/v/v/v) as mobile phase.Quantitation was obtained with UV detection at350nm. Polynomial calibration plots wereconstructed in the concentration range200-1200ng/zone for isoorientin and100-600ng/zonefor isovitexin and160-960ng/zone for orientin and30-360ng/zone for vitexin with good correlation coefficients (r≥0.9995). The average recovery was found to be93.95%forisoorientin,95.35%for isovitexin,99.79%for orientin and100.46%for vitexin. The proposedHPTLC method was found to be simple, precise, specific and accurate and can be used formanufacturing quality control of bamboo-leaf-flavonoids.
     (2) An HPLC method was optimized and validated for the simultaneous determination offlavone C-glycosides, including isoorientin, isovitexin, orientin and vitexin in the leaves ofdifferent species of bamboo. Extraction was carried out with60%methanol. The separationwas performed using a C_(18) column (4.6×250mm,5μm) at30℃. The solvent system consistedof a mixture of water with0.5%(v/v) glacial acetic acid and acetonitrile (85/15, v/v) at a flowrate of1.0mL/min. The detection wavelength was set at345nm. Satisfactory separation ofthese marker compounds was obtained in less than30min. The optimized HPLC methodproved to be linear in the concentration range tested (0.2-100μg/mL, r2≥0.9997), accurate(88-106%). The proposed method was validated to be simple and reliable and can be a tool forquality control of bamboo leaf extract.
     (3) The DPPH radical scavenging activity of the leaf extract from seven different speciesof bamboo were investigated by UV-Vis spectrometry. The radical scavenging rates of sevensamples ranged from30.52%to51.48%. The same results achieved by DPPH-TLC methodrevealed that the extract of B. textilis McClure showed high antioxidant activity with an IC50of25.26mg/L. A MTT method has been used for screening the anti-tumor activity of the extractof B. textilis McClure. The results showed no cytotoxic activity against the tumor cells testedK562, BGC823andA549).
     (4) A qualitative survey using a simple derivatization steps with the DPPH and NP reagentwas carried out. The flavone C-glycosides and phenolic acids found in bamboo leavesexamined could be the main antioxidant compounds. To characterize the main antioxidantcompounds, the leaf of B. textilis McClure was extracted with60%methanol by ultrasonicwave technology. The leaf extract of B. textilis McClure was further fractionated usingpreparative chromatography. Three antioxidant fractions were isolated by DPPH-TLCbioactive-guided fractionation. According to the data of UV, MS, and NMR spectra, three main antioxidant compounds were identified as5,7,3’,4’-tetrahydroxy-6-C-β-D-glu-xylflavonoside(1),5,7,4’-trihydroxy-6-C-β-D-glu-rha flavonoside (2) and isoorientin(3).Compound (1) and (2) were first isolated from bambusa.
     (5) LC-Q-TOF-MS method for analyzing the constituents in the water extract of theleaves of B. textilis McClure has been established. Of the20detected compounds includingflavonoids, phenolic acids, coumarins,10were identified from their MS, UV, NMR spectra, orby comparing the retention time and mass spectrometry data with that of reference compoundsand reference literatures. The identified compounds were as follows:5,7,3’,4’-tetrahydroxy-6-C-β-D-glu-xyl flavonoside(1),5,7,4’-trihydroxy-6-C-β-D-glu-rha flavonoside(2), isoorientin(3),orientin(4), trans-p-coumaric acid(5), cis-p-coumaric acid(6), coumarin(7), vitexin(8),5,7,4’-trihydroxy-8-C-β-D-glucose-α-L-rhamnosyl flavonoside(9), isovitexin(10).
     (6) A valid chromatographic fingerprint method using LC-Q-TOF-MS is proposed forstudying the constituents in rabbit plasma after oral administration of the water extract of theleaves of B. textilis McClure. Three compounds, including cis-p-coumaric acid, trans-p-coumaric acid and5,7,4’-trihydroxy-8-C-β-D-glucose-α-L-rhamnosyl flavonoside, weredetected in both the water extract of the leaves of B. textilis McClure and rabbit plasma.The results prove that three compounds could be the bioactive compounds of bambooleaves.
     (7) To conduct comparative study on the volatile compounds from bamboo leaves.Volatile compounds were enriched through head space solid phase microextractions (HS-SPME) method, and analyzed qualitatively with gas chromatography-mass spectrometry (GC-MS), which were comparative by analyzed with the method of direct injection GC-MS basedon hydrodistillation extraction (HD). Area normalization method was employed for thesubsequent quantification. The results showed that a total of79volatile compounds wereseparated and checked out with the two methods, including acids, phenols, ketones, esters,aldehydes, etc., in which76compounds were checked out with HD-GC/MS, while18compounds with HS-SPME-GC/MS. Comparison analysis showed that there were significantsimilarity in type of volatile compounds from different bamboo leaves between the two methods. The main volatile compounds from seven different bamboo leaves by the twomethods included3-buten-2-one,4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-,(E)-,5,9-undecadien-2-one,6,10-dimethyl-,(E)-,3-buten-2-one,4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-,(E)-,3-buten-2-one,4-(2,2,6-trimethyl-7-oxabicyclo[4.1.0] hept-1-yl)-,264butylated hydroxytoluene,2(4H)-benzofuranone,5,6,7,7a-tetrahydro-4,4,7a-trimethyl-,(R)-,2-pentadecanone,6,10,14-trimethyl-,1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester. These compounds havebeen applied in the field of flavor and fragrance, food preservative, and daily-use chemical.
     In conclusion, validated HPLC and HPTLC methods for determination of flavone C-glycosides in bamboo leaves were developed. The bamboo leaves of B. textilis McClureshowed high antioxidant activity and three antioxidant compounds were identified. Threebioactive compounds from the water extract of the leaves of B. textilis McClure were identified.Flavor components were found in the bamboo leaves of the Genus Bambusa. These resultsshould very useful in promoting the fine production of bamboo leaves as natural antioxidantand natural medicines.
引文
Abad-Garcia B, Garmon-Lobato S, Berrueta L A, et al. New features on the fragmentation anddifferentiation of C-glycosidic flavone isomers by positive electrospray ionization and triple quadrupolemass spectrometry. Rapid Commun Mass Spectrom,2008,22(12):1834~1842
    Ali B, Imran M, Hussain R, et al. Structural determination of abutilins A and B, new flavonoids fromAbutilon pakistanicum, by1D and2D NMR spectroscopy. Magn Reson Chem,2010,48(2):159~163
    Ando H, Ohba H, Sakaki T, et al. Hot-compressed-water decomposed products from bamboo manifest aselective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol in Vitro,2004,18(6):765~771
    Andren ek S, Simonovska B, Vovk I, et al. Antimicrobial and antioxidative enrichment of oak (Quercusrobur) bark by rotation planar extraction using ExtraChrom. International Journal of Food Microbiology,2004,92(2):181~187
    Barboni T, Pellizzaro G, Arca B, et al. Analysis and origins of volatile organic compounds smoke from ligno-cellulosic fuels. Journal of Analytical and Applied Pyrolysis,2010,89(1):60~65
    Brown E G, Davies D. Extraction, pre-high-performance liquid chromatographic purification, and high-performance liquid chromatographic analysis of plant nucleotides. Analytical Biochemistry,1989,183(2):312~319
    Bruce S J, Jonsson P, Antti H, et al. Evaluation of a protocol for metabolic profiling studies on human bloodplasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction todata analysis. Analytical Biochemistry,2008,372(2):237~249
    Chang Q, Wong Y S. Identification of flavonoids in Hakmeitau beans (Vigna sinensis) by high-performanceliquid chromatography-electrospray mass spectrometry (LC-ESI/MS). J Agric Food Chem,2004,52(22):6694~6699
    Chen R, Li Y, Dong H, et al. Optimization of ultrasonic extraction process of polysaccharides fromOrnithogalum Caudatum Ait and evaluation of its biological activities. Ultrasonics Sonochemistry,2012,19(6):1160~1168
    Chen S, Xing X, Huang J, et al. Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves:Improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase.Enzyme and Microbial Technology,2011,48(1):100~105
    Choi C W, Kim S C, Hwang S S, et al. Antioxidant activity and free radical scavenging capacity betweenKorean medicinal plants and flavonoids by assay-guided comparison. Plant Science,2002,163(6):1161~1168
    Colombo R, Yariwake J H, Queiroz E F, et al. On-line identification of further flavone C-and O-glycosidesfrom sugarcane (Saccharum officinarum L., Gramineae) by HPLC-UV-MS. Phytochem Anal,2006,17(5):337~343
    Cui J, Yue Y, Tang F, et al. HPTLC analysis of the flavonoids in eight species of Indocalamus leaves.Journal of Planar Chromatography,2011,24(5):394~399
    Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. Journal of MassSpectrometry,2004,39(1):1~15
    Ferreres F, Silva B M, Andrade P B, et al. Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: application to seeds of quince (Cydonia oblonga). Phytochemical Analysis,2003,14(6):352~359
    Fu Y, Liu W, Zu Y, et al. Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan(L.) Millsp.] leaves. Food Chemistry,2008,111(2):508~512
    Gore M A, Karmalkar R N, Kulkarni M G. Enhanced capacities and selectivities for cholesterol in aqueousmedia by molecular imprinting: role of novel cross-linkers. J Chromatogr B Analyt Technol BiomedLife Sci,2004,804(1):211~221
    Goyal A K, Middha S K, Sen A, et al. Evaluation of the DPPH radical scavenging activity, total phenols andantioxidant activities in Indian wild Bambusa vulgaris "Vittata" methanolic leaf extract. Journal ofNatural Pharmaceuticals,2010,1(1):40~45
    Grosso C, Coelho J P, Pessoa F L P, et al. Mathematical modelling of supercritical CO2extraction of volatileoils from aromatic plants. Chemical Engineering Science,2010,65(11):3579~3590
    Gu L, Wu T, Wang Z. TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var.acuta. Food Science and Technology,2009,42(1):131~136
    Guo X F, Yue Y D, Tang F, et al. Flavonoids from the leaves of Pleioblastus argenteastriatus. J Asian NatProd Res,2008,10(9-10):903~907
    Harbaum B, Hubbermann E M, Wolff C, et al. Identification of flavonoids and hydroxycinnamic acids in pakchoi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR andtheir quantification by HPLC-DAD. J Agric Food Chem,2007,55(20):8251~8260
    Hasegawa T, Tanaka A, Hosoda A, et al. Antioxidant C-glycosyl flavones from the leaves of Sasa kurilensisvar. gigantea. Phytochemistry,2008,69(6):1419~1424
    Hattori M, Shu Y Z, El-Sedawy A I, et al. Metabolism of homoorientin by human intestinal bacteria. Journalof Natural Products,1988,51(5):874~878
    Hu C, Zhang Y, Kitts D D. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachysnigra var. Henonis leaf extract in vitro. J Agric Food Chem,2000,48(8):3170~3176
    Huang B, Lei Y, Tang Y, et al. Comparison of HS-SPME with hydrodistillation and SFE for the analysis ofthe volatile compounds of Zisu and Baisu, two varietal species of Perilla frutescens of Chinese origin.Food Chemistry,2011,125(1):268~275
    Hurtado-Fernandez E, Carrasco-Pancorbo A, Fernandez-Gutierrez A. Profiling LC-DAD-ESI-TOF MSmethod for the determination of phenolic metabolites from avocado (Persea americana). J Agric FoodChem,2011,59(6):2255~2267
    ICH. International Conference on Harmonization of Technical Requirements for Registration ofPharmaceuticals for Human Use: Validation of Analytical Procedures: Text and Methodology Q2(R1).http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed December2011).2005
    Jeong Y H, Nam J W, Lee N Y, et al. Isolation and structural identification of minor constituents from Sasaborealis. Natural Product Sciences,2005,11(3):170~173
    Jerkovi I, Masteli J, Marijanovi Z, et al. Comparison of hydrodistillation and ultrasonic solventextraction for the isolation of volatile compounds from two unifloral honeys of Robinia pseudoacacia L.and Castanea sativa L. Ultrasonics Sonochemistry,2007,14(6):750~756
    Ji L L. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med,1999,222(3):283~292
    Jiang Z H. Bamboo and rattan in the world. Beijing: China Forestry Publishing House,2007,2
    Jiao J, Zhang Y, Liu C, et al. Separation and purification of tricin from an antioxidant product derived frombamboo leaves. J Agric Food Chem,2007,55(25):10086~10092
    Jung S H, Lee J M, Lee H J, et al. Aldose reductase and advanced glycation endproducts inhibitory effect ofPhyllostachys nigra. Biol Pharm Bull,2007,30(8):1569~1572
    Kahl R, Kappus H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the naturalantioxidant vitamin E. Z Lebensm Unters Forsch,1993,196(4):329~338
    Kao T H, Huang S C, Inbaraj B S, et al. Determination of flavonoids and saponins in Gynostemmapentaphyllum (Thunb.) Makino by liquid chromatography-mass spectrometry. Anal Chim Acta,2008,626(2):200~211
    Kim J H, Kang I S, Choi H K, et al. A novel prepurification for paclitaxel from plant cell cultures. ProcessBiochemistry,2002,37(7):679~682
    Kim K K, Kawano Y, Yamazaki Y. A novel porphyrin photosensitizer from bamboo leaves that inducesapoptosis in cancer cell lines. Anticancer Res,2003,23(3B):2355~2361
    King J W, Mohamed A, Taylor S L, et al. Supercritical fluid extraction of Vernonia galamensis seeds.Industrial Crops and Products,2001,14(3):241~249
    Kuboyama N, Fujii A, Tamura T. Antitumor activities of bamboo leaf extracts (BLE) and its lignin (BLL).Nihon Yakurigaku Zasshi,1981,77(6):579~596
    Kweon M H, Hwang H J, Sung H C. Identification and antioxidant activity of novel chlorogenic acidderivatives from bamboo (Phyllostachys edulis). J Agric Food Chem,2001,49(10):4646~4655
    Lee H J, Kim K, Kang K D, et al. The compound isolated from the leaves of Phyllostachys nigra protectsoxidative stress-induced retinal ganglion cells death. Food and Chemical Toxicology,2010,48(6):1721~1727
    Lee J, Jeong Y H, Jang D S, et al. Three Terpenes and One Phenolic Compound from Sasa borealis. J. Appl.Biol. Chem,2007,50(1):13~16
    Li M, Sun S, Xu F, et al. Ultrasound-enhanced extraction of lignin from bamboo (Neosinocalamus affinis):Characterization of the ethanol-soluble fractions. Ultrasonics Sonochemistry,2012,19(2):243~249
    Li X, Wang W, Luo M, et al. Solvent-free microwave extraction of essential oil from Dryopteris fragrans andevaluation of antioxidant activity. Food Chemistry,2012,133(2):437~444
    Li Z, Wang X, Shi G, et al. Enzyme-assisted extraction of naphthodianthrones from Hypericum perforatum L.by12C6+-ion beam-improved cellulases. Separation and Purification Technology,2012,86(0):234~241
    Liang X, Liao Z, Zhu J, et al. The absorption characterization effects and mechanism of Radix Angelicaedahuricae extracts on baicalin in Radix Scutellariae using in vivo and in vitro absorption models.Journal of Ethnopharmacology,2012,139(1):52~57
    Lin Y, Collier A C, Liu W, et al. The inhibitory effect of bamboo extract on the development of7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer. Phytother Res,2008,22(11):1440~1445
    Lu B, Wu X, Shi J, et al. Toxicology and safety of antioxidant of bamboo leaves. Part2: Developmentaltoxicity test in rats with antioxidant of bamboo leaves. Food and Chemical Toxicology,2006,44(10):1739~1743
    Lu B, Wu X, Tie X, et al. Toxicology and safety of anti-oxidant of bamboo leaves. Part1: Acute andsubchronic toxicity studies on anti-oxidant of bamboo leaves. Food and Chemical Toxicology,2005,43(5):783~792
    Lucchesi M E, Chemat F, Smadja J. Solvent-free microwave extraction of essential oil from aromatic herbs:comparison with conventional hydro-distillation. Journal of Chromatography A,2004,1043(2):323~327
    March R, Brodbelt J. Analysis of flavonoids: tandem mass spectrometry, computational methods, and NMR.J Mass Spectrom,2008,43(12):1581~1617
    Matuschewski H, Schedler U. MSE-modified membranes in organophilic pervaporation foraromatics/aliphatics separation. Desalination,2008,224(1–3):124~131
    Matysik G, Soczewinski E, Wójciak-Kosior M, et al. Optimization of chromatographic systems for the high-performance thin-layer chromatography of flavonoids. Chromatographia,2000,52(5):357~362
    McRae J, Yang Q, Crawford R, et al. Review of the methods used for isolating pharmaceutical leadcompounds from traditional medicinal plants. The Environmentalist,2007,27(1):165~174
    Miliauskas G, Venskutonis P R, van Beek T A. Screening of radical scavenging activity of some medicinaland aromatic plant extracts. Food Chemistry,2004,85(2):231~237
    Mohammed M M, Christensen L P, Ibrahim N A, et al. New acylated flavone and cyanogenic glycosidesfrom Linum grandiflorum. Nat Prod Res,2009,23(5):489~497
    Mu J, Uehara T, Li J, et al. Identification and evaluation of antioxidant activities of bamboo extracts.Forestry Studies in China,2004,6(2):1~5
    Muniappan M, Sundararaj T. Antiinflammatory and antiulcer activities of Bambusa arundinacea. Journal ofEthnopharmacology,2003,88(2–3):161~167
    Nakajima Y, Yun Y S, Kunugi A. Six new flavonolignans from Sasa veitchii (Carr.) Rehder. Tetrahedron,2003,59(40):8011~8015
    Olech M, Komsta, Nowak R, et al. Investigation of antiradical activity of plant material by thin-layerchromatography with image processing. Food Chemistry,2012,132(1):549~553
    Palavra A M F, Coelho J P, Barroso J G, et al. Supercritical carbon dioxide extraction of bioactivecompounds from microalgae and volatile oils from aromatic plants. The Journal of Supercritical Fluids,2011,60(0):21~27
    Pan X, Niu G, Liu H. Microwave-assisted extraction of tanshinones from Salvia miltiorrhiza bunge withanalysis by high-performance liquid chromatography. Journal of Chromatography A,2001,922(1–2):371~375
    Paolini J, Leandri C, Desjobert J, et al. Comparison of liquid–liquid extraction with headspace methods forthe characterization of volatile fractions of commercial hydrolats from typically Mediterranean species.Journal of Chromatography A,2008,1193(1–2):37~49
    Park H S, Lim J H, Kim H J, et al. Antioxidant flavone glycosides from the leaves of Sasa borealis. ArchPharm Res,2007,30(2):161~166
    Peng J, Jiang Y, Fan G, et al. Optimization suitable conditions for preparative isolation and separation ofcurculigoside and curculigoside B from Curculigo orchioides by high-speed counter-currentchromatography. Separation and Purification Technology,2006,52(1):22~28
    Pereira C A M, Yariwake J H, Lan As F M, et al. A HPTLC densitometric determination of flavonoids fromPassi ora alata, P. edulis, P. incarnata and P. caerulea and comparison with HPLC method.Phytochemical Analysis,2004,15(4):241~248
    Pereira C A M, Yariwake J H, McCullagh M. Distinction of the C‐glycosylflavone isomer pairsorientin/isoorientin and vitexin/isovitexin using HPLC‐MS exact mass measurement and in‐sourceCID. Phytochemical Analysis,2005,16(5):295~301
    Pourmortazavi S M, Hajimirsadeghi S S. Supercritical fluid extraction in plant essential and volatile oilanalysis. Journal of Chromatography A,2007,1163(1–2):2~24
    Puri M, Sharma D, Barrow C J. Enzyme-assisted extraction of bioactives from plants. Trends inBiotechnology,2012,30(1):37~44
    Pyo S, Park H, Song B, et al. A large-scale purification of paclitaxel from cell cultures of Taxus chinensis.Process Biochemistry,2004,39(12):1985~1991
    Qi X, Ignatova S, Luo G, et al. Preparative isolation and purification of ginsenosides Rf, Re, Rd and Rb1from the roots of Panax ginseng with a salt/containing solvent system and flow step-gradient by highperformance counter-current chromatography coupled with an evaporative light scattering detector.Journal of Chromatography A,2010,1217(13):1995~2001
    Riu-Aumatell M, Vargas L, Vichi S, et al. Characterisation of volatile composition of white salsify(Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneousdistillation–extraction (SDE) coupled to GC–MS. Food Chemistry,2011,129(2):557~564
    Romanik G, Gilgenast E, Przyjazny A, et al. Techniques of preparing plant material for chromatographicseparation and analysis. Journal of Biochemical and Biophysical Methods,2007,70(2):253~261
    Sakai S, Saito G, Sugayama J, et al. On the anticancer action of bamboo extract. J Antibiot B,1963,16:387~391
    Sakai S, Saito G, Sugayama J, et al. Anticancer effect of polysaccharide fraction prepared from bamboograss. Gann,1964,55:197~203
    Sanchez-Moreno C, Larrauri J A, Saura-Calixto F. A procedure to measure the antiradical efficiency ofpolyphenols. Journal of the Science of Food and Agriculture,1998,76(2):270~276
    Seki T, Kida K, Maeda H. Immunostimulation-mediated anti-tumor activity of bamboo (Sasa senanensis)leaf extracts obtained under ‘vigorous’ condition. Evid Based Complement Alternat Med,2008,7(4):447~457
    Seki T, Maeda H. Cancer preventive effect of Kumaizasa bamboo leaf extracts administered prior tocarcinogenesis or cancer inoculation. Anticancer Res,2010,30(1):111~118
    Sievers U. Energy optimization of supercritical fluid extraction processes with separation at supercriticalpressure. Chemical Engineering and Processing: Process Intensification,1998,37(5):451~460
    Sodeifian G, Ansari K. Optimization of Ferulago Angulata oil extraction with supercritical carbon dioxide.The Journal of Supercritical Fluids,2011,57(1):38~43
    Sugayama J, Kamasuka T, Takada S, et al. On the anticancer active polysaccharide prepared from bamboograss. J Antibiot (Tokyo),1966,19(3):132~136
    Sultana N, Lee N H. New phenylpropanoids from Sasa quelpaertensis Nakai with tyrosinase inhibitionactivities. Bull. Korean Chem. Soc,2009,30(8):1729~1732
    Sultana N, Lee N H. A new alkene glycoside from the leaves of Sasa quelpaertensis Nakai. Bull. KoreanChem. Soc.,2010,31(4):1088~1089
    Sun J, Yue Y D, Tang F, et al. Flavonoids from the leaves of Bambusa pervariabilis McClure. Journal of theChilean Chemical Society,2010,55(3):363~365
    Sun J, Yue Y D, Tang F, et al. Coumarins from the leaves of Bambusa pervariabilis McClure. J Asian NatProd Res,2010,12(3):248~251
    Sun J, Yue Y, Tang F, et al. Simultaneous HPTLC analysis of flavonoids in the leaves of three differentspecies of bamboo. Journal of Planar Chromatography,2010,23(1):40~45
    Svenson J, Karlsson J G, Nicholls I A.1H nuclear magnetic resonance study of the molecular imprinting of (-)-nicotine: template self-association, a molecular basis for cooperative ligand binding. J Chromatogr a,2004,1024(1-2):39~44
    Talmadge K W, Albersheim P. Plant cell wall polysaccharide-degrading enzymes of Melanoplus bivittatus.Journal of Insect Physiology,1969,15(12):2273~2283
    Theodoridis G, Lasakova M, Skerikova V, et al. Molecular imprinting of natural flavonoid antioxidants:application in solid-phase extraction for the sample pretreatment of natural products prior to HPLCanalysis. J Sep Sci,2006,29(15):2310~2321
    Van Hoyweghen L, Karalic I, Van Calenbergh S, et al. Antioxidant flavone glycosides from the leaves ofFargesia robusta. J Nat Prod,2010,73(9):1573~1577
    Vanneste J, Sotto A, Courtin C M, et al. Application of tailor-made membranes in a multi-stage process forthe purification of sweeteners from Stevia rebaudiana. Journal of Food Engineering,2011,103(3):285~293
    Wang J, Tang F, Yue Y, et al. Development and Validation of an HPTLC Method for SimultaneousQuantitation of Isoorientin, Isovitexin, Orientin, and Vitexin in Bamboo-Leaf Flavonoids. Journal ofAOAC International,2010,93(5):1376~1383
    Wang Y L, Liang Y Z, Chen B M, et al. LC-DAD-APCI-MS-based screening and analysis of the absorptionand metabolite components in plasma from a rabbit administered an oral solution of danggui. Analyticaland Bioanalytical Chemistry,2005,383(2):247~254
    Weiss R, Molinelli A, Jakusch M, et al. Molecular imprinting and solid phase extraction of flavonoidcompounds. Bioseparation,2001,10(6):379~387
    Wijesinghe W A J P, Jeon Y. Enzyme-assistant extraction (EAE) of bioactive components: A useful approachfor recovery of industrially important metabolites from seaweeds: A review. Fitoterapia,2012,83(1):6~12
    Yakubu M T, Bukoye B B. Abortifacient potentials of the aqueous extract of Bambusa vulgaris leaves inpregnant Dutch rabbits. Contraception,2009,80(3):308~313
    Yanishlieva N V, Marinova E, Pokorny J. Natural antioxidants from herbs and spices. European Journal ofLipid Science and Technology,2006,108(9):776~793
    Yin Y, Gong F, Wu X, et al. Anti-inflammatory and immunosuppressive effect of flavones isolated fromArtemisia vestita. Journal of Ethnopharmacology,2008,120(1):1~6
    Zhang Y, Bao B, Lu B, et al. Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB)fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode arraydetection. Journal of Chromatography A,2005,1065(2):177~185
    Zhang Y, Tie X, Bao B, et al. Metabolism of flavone C-glucosides and p-coumaric acid from antioxidant ofbamboo leaves (AOB) in rats. British Journal of Nutrition,2007,97(3):484~494
    Zhou Y, Meng Z, Dong M. Application of molecular imprinting technology in the separation and purificationof active ingredients from natural products. Se Pu,2009,27(3):359~363
    Zizovic I, Stameni M, Orlovi A, et al. Supercritical carbon dioxide extraction of essential oils from plantswith secretory ducts: Mathematical modelling on the micro-scale. The Journal of Supercritical Fluids,2007,39(3):338~346
    Zu Y, Wang Y, Fu Y, et al. Enzyme-assisted extraction of paclitaxel and related taxanes from needles ofTaxus chinensis. Separation and Purification Technology,2009,68(2):238~243
    爱军,嘎鲁.超临界萃取对中草药有效成分分离的最新进展.内蒙古石油化工,2006,32(12):34~35
    常徽,糜漫天.植物黄酮抗肿瘤研究进展.国外医学(卫生学分册),2006,33(5):296~300
    常勇慧,张斌.3,5,7,3′,4′,5′-六羟基黄酮分子印迹聚合物制备及性能表征.广东化工,2011,38(4):61~62
    陈瑛,王文渊.微波辅助提取竹叶黄酮的研究.应用化工,2011,40(4):661~663
    陈鸳谊,李行诺,张翠萍,等.高效制备液相色谱在天然产物分离中的应用.药学进展,2010,34(8):337~343
    程绍玲,杨迎花.利用分子印迹技术分离葛根异黄酮.中成药,2006,28(10):1484~1488
    崔丁维,胡学超,包姗姗,等.酶法破碎微生物细胞的研究进展.微生物学通报,2010,37(11):1672~1678
    崔健.箬竹属植物黄酮类物质与挥发性成分的研究[博士论文].中国林业科学研究院,2011
    崔燎.药理学实验教程.北京:科学出版社,2011,26
    邓翀,吴怡,孟宪丽,等.大黄抗内毒素有效组分血清药物化学研究.中药药理与临床,2008,24(2):31~33
    董婉茹,丁雅光,荆雷,等.病理及生理状态下的栀子血清药物化学对比研究.中草药,2011,42(11):2270~2274
    窦营,余学军,岩松文代.中国竹子资源的开发利用现状与发展对策.中国农业资源与区划,2011,32(5):65~70
    房方,李祥,陈建伟.中药血清药物化学的研究进展.亚太传统医药,2009,5(1):143~145
    付晓春,王敏伟,李少鹏,等.竹叶提取物对大鼠血液流变学的影响.中药材,2005,28(2):130~132
    龚燕飞,陈建华,吴耀辉.佛肚竹黄酮类物质提取工艺的研究.中南林业科技大学学报,2010,30(6):119~122
    郭雪峰.毛竹(Phyllostachys pubescens)与铺地竹(Pleioblastus argenteastriatus)叶黄酮类化学成分及其生物活性的研究[博士论文].中国林业科学研究院生态学,2007
    郭雪峰,岳永德,汤锋,等.用清除有机自由基DPPH法评价竹叶提取物抗氧化能力.光谱学与光谱分析,2008,28(7):1578~1582
    何跃君.竹叶挥发油化学成分及其生物活性研究[博士论文].中国林业科学研究院,2009
    何跃君,岳永德.竹叶提取物的有效成分及其应用研究进展.生物质化学工程,2008,42(3):31~38
    何跃君,岳永德,汤锋,等.竹叶挥发油化学成分及其抗氧化特性(英文).林业科学,2010(7):120~128
    贾景明.中药生物技术.化学工业出版社,2008,221
    焦晶晶.竹叶特征性黄酮类化合物研究——单体制备、抗氧活性及其血管保护作用研究[博士论文].浙江大学生物系统工程与食品科学学院浙江大学食品科学,2008
    金旭东,陈庆宏.竹叶挥发油的提取及成分分析.天然产物研究与开发,1999,11(004):71~74
    黎溪.广宁县青皮竹的开发利用与发展.竹子研究汇刊,2000,19(3):76
    李大岩,卢刚,王丹丹,等.仙草降脂茶对实验家兔血清胆固醇和三酰甘油的影响.中国全科医学,2010,13(z1):9~10
    李红,张元湖.应用DPPH·法测定苹果提取物的抗氧化能力.山东农业大学学报(自然科学版),2005,36(1):35~38
    李洪玉,孙静芸,戴诗文.竹叶化学成分研究.中药材,2003,26(8):562~563
    李慧力,陶文亮,吴钰娟,等.酶法提取竹叶中总黄酮的工艺研究.贵州农业科学,2010,38(10):185~187
    李水芳,文瑞芝,曾栋,等.气相色谱-质谱法分析湖南产阔叶箬竹叶挥发油的化学成分.质谱学报,2007,28(2):117~121
    李水芳,文瑞芝,曾栋,等.阔叶箬竹叶和箬竹叶中挥发油的提取及成分分析.色谱,2007,25(1):53~57
    李莹,周剑忠,王功,等.超声波和微波联合提取银杏叶黄酮的研究.食品科技,2008,33(6):153~155
    李作美,王永斌,高世霞.超临界CO2萃取竹叶中总黄酮的研究.中国酿造,2009(6):102~104
    林凯.淡竹竹叶挥发油成分分析.江西农业学报,2009,21(2):92~93,97
    林喆,罗艳,原忠.分子印迹技术在中药活性成分分离纯化中的应用.中草药,2007,38(3):457~460
    刘春秀.植物活性成分的提取技术研究进展.安徽农业科学,2011,39(3):1273~1274,1277
    刘明,吴启南,邵莹.大孔吸附树脂精制纯化淡竹叶总黄酮的研究.中国民族民间医药,2010,19(4):19~21
    楼鼎鼎,戚炯炯,张英,等.竹叶抗氧化物在双汇西式肉制品中的应用研究.中国食品学报,2006,6(3):111~114
    吕兆林,李月琪,秦娇,等.毛竹叶挥发油的提取方法.北京林业大学学报,2008,30(4):135~140
    罗成,周达,鲁晓翔.天然产物抗氧化机理的研究进展.食品工业科技,2009,30(4):335~339
    马世玉,李莉,罗德生,等.竹叶水溶性提取液抗氧化作用的实验研究.时珍国医国药,2005,16(6):472~473
    马世玉,李莉,吴基良,等.竹叶提取液对小鼠的抗氧化作用.中国临床药理学与治疗学,2004,9(5):585~587
    毛燕,刘志坤.毛竹叶挥发性成分的提取与GC-MS分析.福建林学院学报,2001,21(3):265~267
    苗晓燕,陈萍,崔珏,等.微波酶解协同提取猴头菌丝体多糖工艺.食品科学,2012,33(2):94~97
    倪克平,李光照,赵铭钦,等.淡竹叶挥发油的香味成分分析及在卷烟加香中的应用研究.郑州轻工业学院学报(自然科学版),2008,23(1):15~17,23
    潘喜华,杨隽,郑勇英,等.茶多酚调节免疫,抑制肿瘤及抗衰老作用的研究.上海预防医学,2000,12(2):58~60
    邱峰,姚新生.中药体内直接物质基础研究的新思路.中药药理与临床,1999,15(3):1
    宋国新,余应新,王林祥,等.香气分析技术与实例.北京:化学工业出版社,2008,4
    宋晓凯.植物化学研究方法选论.化学工业出版社,2008
    宋元宗,庄海旗. Genistein抑制鸟嘌呤氧化损伤的CGC/MS研究.肿瘤防治研究,1997,24(003):142~145
    孙嘏.撑篙竹(Bambusa pervariabilis McClure)竹叶化学成分及其生物活性的研究[博士论文].中国林业科学研究院,2010,28~176
    孙健,孙明杰,范斌,等.基于质谱分析的苦参血清药物化学研究.世界科学技术-中医药现代化,2010,12(4):647~651
    孙武兴,李铣,李宁,等.毛金竹叶提取物化学成分的分离与鉴定.沈阳药科大学学报,2008,25(1):39~43
    田娜,刘仲华,黄建安,等.高效制备液相色谱法从荷叶中分离制备黄酮类化合物.色谱,2007,25(1):88~92
    田媛媛.新型光敏剂MPPa介导的光动力治疗前列腺癌的机理研究[博士论文].山东大学,2009
    童晓滨,谢妤,宋卫军.福建雷竹竹叶总黄酮的提取和测定的研究.南平师专学报,2007,26(4):19~23
    王静,刘昭明,肖凯军,等.天然食用色素的结构与生理活性分析.食品工业科技,2007(12):208~212
    王学利,吕健全,章一德.苦竹叶挥发油成分的分析.浙江林学院学报,2002,19(4):387~390
    王学利,毛燕.箬竹叶挥发性成分的GC-MS分析.竹子研究汇刊,2001,20(2):36~38
    王志斌,杨宗伟,邢晓林,等.膜分离技术应用的研究进展.过滤与分离,2008,18(2):19~23,36
    吴芳芳,王喜军,韩莹,等.基于UPLC-HDMS技术的生脉散血清药物化学初步研究.世界科学技术-中医药现代化,2010,12(4):657~665
    吴良如,高贵宾,潘雁红,等.广宁县竹子资源培育利用展望.竹子研究汇刊,2009,28(4):54~57
    吴薛明,许婷婷,储建林,等.黄酮类化合物酶法糖基化修饰的研究进展.中国天然药物,2010,8(5):389~400
    吴燕红,张锐,王少军,等.竹根化学成分的研究(Ⅰ).时珍国医国药,2009,20(10):2403~2404
    奚奇辉.竹叶的化学成分研究[硕士论文].浙江大学物理化学,2004
    夏玉红,董晋文,钟耕.竹叶提取物的研究开发现状.中国食品添加剂,2009(2):77~81
    肖锋,谭兰兰,张晓凤,等.慈竹叶挥发油成分分析.重庆工学院学报(自然科学版),2009,23(7):40~44
    肖秋元,马超英.血清药物化学在中药物质基础方面的研究进展.时珍国医国药,2009,20(5):1061~1062
    谢田,王萍,傅雪艳,等.中药提取分离方法的新进展.中医药信息,2004,21(6):21~23
    徐俊.银丝竹等四种城市观赏竹抗寒性生理研究[硕士论文].四川农业大学园林植物与观赏园艺,2010
    杨嘉,刘建华,高玉琼,等.慈竹叶精油化学成分研究.天然产物研究与开发,2002,14(6):31~32,41
    杨兰,吴肖,甘羿.响应面法优化竹叶精油的微波辅助提取工艺.食品工业科技,2010,31(8):280~282
    杨淑敏,江泽慧,任海青.青皮竹研究进展及展望.竹子研究汇刊,2007,26(1):15~19,26
    姚曦,岳永德,汤锋,等.竹叶多糖的研究进展.林产化学与工业,2009(6):93~97
    姚曦,岳永德,汤锋.竹叶中多种无机元素的ICP-MS测定.林业科学,2009(11):26~31
    叶茂颖,刘江.中压制备系统分离制备大豆异黄酮糖苷.粮食科技与经济,2009,34(4):43~45
    游辉,孙爱东,唐玲,等.竹叶黄酮纯化中吸附剂的优选及解析特性研究.食品科学,2010,31(08):24~27
    袁珂,薛月芹,楼炉焕.竹叶总黄酮不同提取方法的比较研究.林产化学与工业,2007,27(6):109~112
    岳永德,操海群,汤锋.竹提取物的化学成分及其利用研究进展.安徽农业大学学报,2007,34(3):328~333
    张斌,许莉勇.超声萃取技术研究与应用进展.浙江工业大学学报,2008,36(5):558~561
    张翠萍,李行诺,陈鸳谊,等.反相高效制备液相色谱法制备洋川芎内酯H和Ⅰ.浙江工业大学学报,2011,39(4):386~389
    张静泽,颜艳.吸附树脂分离技术在中药研究中的应用.中国中药杂志,2004,29(7):628~630
    张培成.黄酮化学.化学工业出版社,2009,243~255
    张锐,徐彭,吴燕红.竹根化学成分的研究(Ⅱ).中草药,2009,40(12):1856~1858
    张珊珊,朱文娴,赵晓红,等.超临界CO2萃取北方地区早园竹叶中总黄酮的工艺优化.食品科学,2011,32(6):143~147
    张英.天然功能性竹叶提取物--竹叶黄酮.中国食品添加剂,2002(3):54~58,66
    张英,龚金炎,李栋,等.竹叶黄酮最新研究进展之二——竹叶酚性化学素抑制食品中丙烯酰胺形成及化解人体丙毒危害的作用和机制研究.中国食品添加剂,2009(5):56~62,145
    张英,吴晓琴,俞卓裕.竹叶和银杏叶总黄酮含量及其抗自由基活性的比较研究.中国中药杂志,2002,27(4):254~257,320
    张兆旺,孙秀梅.中药方剂药效物质提取新技术--对"半仿生提取模式"的探讨.世界科学技术-中医药现代化,2000,2(4):53~56
    张兆旺,孙秀梅.建立中药复方用半仿生提取研究的技术平台.世界科学技术-中医药现代化,2005,7(1):56~59,66
    赵二劳,郭青枝,赵德千.微波辅助提取葛根素的研究.时珍国医国药,2009,20(2):321~322
    郑琼兰,曾辉,辉朝茂.竹子药用价值概述.安徽农学通报,2009,15(8):224~226
    中国科学院中国植物志编辑委员会.中国植物志.北京:科学出版社,1996,48
    周惠燕,李士敏.竹叶化学成分研究.中国药学杂志,2006,41(9):662~663
    周清,朱明芳,唐睿,等.印迹5,7-二羟基黄酮聚合物的合成及其性能研究.化学分析计量,2008,17(5):30~32
    周熠,谭兴和,李清明.超临界CO2萃取箬竹叶挥发油的气相色谱-质谱分析.农产品加工·学刊,2009(4):79~82
    周兆祥.竹叶的化学成分研究.天然产物研究与开发,1992(1):44~51
    诸姮,胡宏友,卢昌义,等.植物体内的黄酮类化合物代谢及其调控研究进展.厦门大学学报(自然科学版),2007,46(z1):136~143
    祝娉婷,卜平,孙云,等.冠心病患者血清磷脂转运蛋白及胆固醇脂转运蛋白水平与中医证型相关性研究.中国中西医结合杂志,2011,31(6):749~752

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700