用户名: 密码: 验证码:
簇绒地毯织机纱线束—机件系统力学性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会生活水平的提高,消费者对地毯产量和质量提出了更高的要求,即在满足产量的同时,增加地毯花色品种。随着我国簇绒地毯业的发展,企业对高效、高速地毯簇绒机的需求也越来越大。基于此,东华大学机械工程学院与国内多家企业联合研制出绒高达8个以上、提花分辨率达1针的满幅大花型循环数字化地毯簇绒机,成功解决了多类型电子罗拉群控及解耦,纱线束路径规划、分配,在线复合提花等关键技术。
     提花簇绒地毯织造过程复杂,纱线束经过穿纱管、分纱架、电子罗拉、导纱罗拉和多层导纱器后喂入簇绒针,由簇绒针往复运动将纱线束植入底基布。单根纱线束喂入量和张力大小综合决定了实际绒圈的高度及毯面效果。
     本文针对满幅大花型循环高端簇绒地毯织造过程中,高旦纱线束粘弹性力学特性、动态振动特性、纱线束与机件系统相互作用特性、簇绒针与基布相互作用等内容进行研究。
     由于纱线束粘弹性对于振动特性分析,单根纱线束喂入量、张力的连续控制以及消除地毯停机痕有着非常重要的理论和现实意义。首先,基于理论建模与实验结合的方法,应用非线性LMF拟合纱线束力学性能实验结果,并与之比较,得到表达纱线束力学性能的粘弹性模型,用于簇绒地毯织造中纱线束振动特性研究时材料物性的表征。同时,从理论上研究消除地毯停机痕现象的方法。为此,提出应用四个粘弹性模型分别表征纱线束受动态加载后的蠕变特性。结合实验条件,推导出粘弹性模型的蠕变本构关系式,在INSTRON上编程模拟纱线束受动态反复力作用后的蠕变特性,应用非线性Marquart回归法拟合蠕变实验结果。通过比较不同模型的拟合曲线和实验曲线,基于四参数模型拟合曲线与实验曲线几乎一致,且具有较高的相关系数和较低的残差平方和,可用于计算地毯纱线束的蠕变伸长。将理论模型应用到实际生产中,重启簇绒机时相应调整喂入纱线束长度,可有效避免地毯表面停机痕的产生,提高产品质量。
     其次,在提花地毯织造中,纱线束受各种机件的控制而运动,纱线束与控制部件组成一个复杂的耦合系统。由于罗拉轴偏心、簇绒针往复带动、电子罗拉速度瞬变的影响,纱线束发生振动,进而引起张力的变化,影响既定绒圈高度。本文应用第二章验证后的本构关系表征纱线束粘弹性,同时考虑轴向几何非线性变形和材料非线性因素,建立纱线束横向振动方程,经无量纲化和一阶Galerkin截断,应用四阶Runge-Kutta法对常微分方程求解。分析纱线束喂入速度、张力波动幅度、阻尼系数以及波动频率对振动特性的影响。由此可得,在纱线束材料确定下,降低纱线束振动振幅从而减少张力波动的方法主要是增加阻尼系数,如增加电子罗拉表面摩擦系数。
     同时,由于电子罗拉速度瞬变,导致电子罗拉与牵引罗拉间纱线束动态张力波动,影响提花精度。假设纱线束截面为圆形,对电子罗拉与纱线束应用动量矩定理,基于运动纱线束质量守恒定律,建立由电子罗拉控制的运动纱线束动态振动模型。假设输入为阶跃信号,应用拉普拉斯变换,求出纱线束张力随时间波动的幅度、频率及阻尼比等参数,并对张力波动进行数值仿真。结果显示,阻力矩对纱线束张力波动有很重要的影响。另外,分析了纱线束长度对张力振动固有频率和阻尼系数的影响。通过理论建模,研究纱线束张力动态响应,为稳定纱线束张力,提高织造精度奠定理论基础。
     簇绒过程中,纱线束张力波动会影响到毯面绒圈的整齐度及花纹效果,而其张力很难检测,因此建立纱线束动态张力模型对于设计张力控制机构、稳定纱线束张力、提高簇绒地毯质量至关重要。传统的接触式张力测试及计算均基于经典欧拉公式或Capstan公式,忽略了弯曲刚度及非线性摩擦的影响。本文第四章基于经典Capstan公式,综合纱线束与机件之间的非线性摩擦、纱线束弯曲刚度对张力比的影响,改进经典张力比公式。同时,模拟纱线束实际运动工况,应用动态张力仪测试罗拉两端纱线束张力,计算张力比,并与经典张力公式计算结果及改进张力公式模拟结果相比较。结果表明,应用改进公式计算的张力比变化曲线与实验测试曲线更相符。因此,在设计提花罗拉、牵引罗拉结构实现地毯纱线束张力精确控制时,需要考虑纱线束特有的弯曲刚度及幂律摩擦因素对张力比的影响。改进后的纱线束张力比计算模型,可以准确表征纱线束张力的变化,应用于提花罗拉、牵引罗拉以及簇绒针的结构设计中。为精确控制地毯纱张力、地毯绒圈高及实现单针分辨率地毯织造提供理论支持。
     成圈运动是簇绒机工作的基本运动,实质是簇绒针上下往复运动和成圈钩前后摆动配合成圈。簇绒过程中,主要的工作阻力是针梁受到的阻力,即针梁上所有簇绒针在穿过底基布时受到的基布阻力和惯性力总和。簇绒针受力影响其运动状态、传动机构的设计以及主轴转速的提高等。由于不能精确计算簇绒针穿刺基布受到的阻力,机构设计时为保证构件强度,安全系数取的过大,这样既浪费材料,又导致结构过于笨重。另外,簇绒针受力不稳定会导致绒圈高低不一致、毯面不平,等现象。本文最后,基于簇绒针的结构特点和非织造基布的材料性能,在ABAQUS/CAE中建立簇绒针穿刺基布的有限元模型。假设簇绒过程中地毯基布变形为弹性变形,根据非织造布材料本构方程在FORTRAN环境下编写用户材料子程序VUMAT表征基布力学特性和损伤,将VUMAT子程序连接有限元分析软件ABAQUS/Explicit模拟簇绒针刺入基布的动态过程,计算簇绒针穿刺力并模拟簇绒针刺入过程中基布的接触损伤。比较簇绒针受力的有限元模拟结果与传感器检测结果,可知有限元数值模拟穿刺力与实验测试结果近似一致,最大误差为11%。由此,有限元模型可以代替传感器检测方法计算簇绒针的受力以及地毯基布的变形。有限元模型及子程序可以应用到更高主轴转速下簇绒针的受力分析中,其结果对于精确计算簇绒针受力、优化传动机构设计、提高主轴转速及优选驱动电机类型、动平衡分析等至关重要。
     本文针对数字化地毯簇绒工艺,以精确控制纱线束喂入量、张力,提高毯面质量为目标。通过研究纱线束粘弹性、动态振动特性、纱线束-机件系统力学特性、簇绒针-基布相互作用等,建立纱线束运动张力控制数学模型。研究簇绒过程中纱线束-机件运动规律及相互作用特性,有助于揭示纱线束张力控制机理,解决不同绒高地毯织造中的纱线束张力控制问题。建立了簇绒针穿刺基布的有限元模型,数值模拟了簇绒针穿刺力。为织制单针分辨率、满幅大花型循环簇绒地毯奠定理论基础。另外,对提高簇绒地毯生产效率具有重要的理论价值和实际生产指导意义。
With the improvement of living standards of modern society, higher demands for carpet yield and quality were put forward by consumers, main focus on yield and color patterns of carpet. With the development of tufting industry, the enterprises have raised the demands for high efficiency, high speed tufting machine. Thus, digital tufting carpet loom which can achieve more8pile heights and jacquard resolution of1st needle and big pattern cycling of full scale, has been researched and developed by the college of mechanical engineering of Donghua University and others enterprises. It had successfully solved some crucial technologies, for example, group control and decoupling of multi-electronic rollers, path planning and allocation of yarn strand and jacquard methods of online compounding, etc.
     The process of Jacquard tufting carpet is very complex. The yarn strand after passing the yarn tube, electronic roller, guide yarn roller and multi-layer yarn guides, was threaded with needle which penetrating through backing fabric. The feeding length and tension of single yarn strand have an important influence on the pile height of loop.
     Aimed at the process of big pattern cycle of full scale tufting carpet, the viscoelasticity and nonlinear transversal vibration of high diner yarn strand, the mechanical properties between yarn and machine part, the interaction between needle and nonwoven etc., were researched in this dissertation.
     Since the viscoelasticity of yarn strand has very important effect on vibration analysis, feeding length, tension control and eliminating start-up marks. Firstly, according to experimental conditions, the optimal viscoelastic model and its parameters were determined by applying nonlinear LMF into experimental results of yarn strand based on the combination of theoretical modeling and experimental analysis. The results showed that the linear viscoelastic model fits well the mechanical experimental curves, and could be employed to analyze the vibration characteristics of yarn during the tufting. At the same time, the methods for eliminating start-up marks on carpet surface were researched in theoretical. So, four mechanical models were proposed to characterize the creep behavior of carpet yarns after dynamic loading. The constitutive equations for characterizing creep properties after dynamic loading were derived by applying Laplace's transformation. The parameters of the model were obtained by fitting the mechanical model with the experimental results using the Marquardt algorithm for nonlinear regression. A control program was written for the INSTRON tensile tester to carry out dynamic loading of the yarn between two force levels. When comparing the experimental creep curve with the fitted curve from the mechanical model, it is clear that the four-parameter model is a suitable model to describe the creep behavior during tufting machine stoppage since it has the highest coefficient and the lowest residual sum of square. The elongation of carpet yarns during carpet machine stoppage under constant stress can be calculated by applying the theoretical model. Thus, the start-up marks when the carpet machine restarts can be eliminated by adjusting the feeding length according to the calculated elongation.
     Secondly, the yarn strand was controlled by all kinds of parts, for example jacquard roller, tension roller and other parts with different speeds during jacquard tufting system. A complex coupling system was composed between yarn strand and controlling parts. Since the influence of shaft eccentric of roller, reciprocating motion of needle and transient velocity of electronic roller, the yarn strand will vibrate and the tension will be varied, which has an influence on pile height. The constitutive relation which has been verified in chapter2nd was used for charactering the viscoelasticity of yarn strand, a partial differential equation governing the transverse vibration was derived from the Newton's second law, in which geometric nonlinearity and material nonlinearity were all taken into account. The first-order Galerkin method was used for separating time variable from space variable, and the fourth order Runge-Kutta method was used to solve the governing non-linear differential equation and analyze the dynamic behavior of the system. Furthermore, the effect of transport speed, amplitude of the tension perturbation, the damping coefficient and frequency of the periodic perturbation on the dynamic vibration behavior were analyzed. Based on above analysis, we can conclude that the main method for decreasing amplitude of vibration and vibration of tension is increasing damping coefficient, for example, increasing friction coefficient of jacquard roller.
     Meanwhile, the dynamic tension of yarn strand between two rollers has effect on accuracy of pile height due to transient velocity of the electronic roller. For simplification, assuming that the yarn strand is linear elasticity with a circular cross section. The dynamic tension fluctuations of yarn strand during transmitted between the electronic roller and drag roller were theoretical analyzed. A mathematical model describing tension fluctuation of yarn strand was derived by applying theorem of moment of momentum and material balance to electronic roller and yarn strand. The dynamic tension is obtained by applying Laplace's transformation and providing that the input braking moment is a step response. The amplitude, frequency and damping coefficient of yarn tension fluctuation are obtained. The result shows that the braking moment has an important influence on the yarn strand tension fluctuations. At the same time, the effect of the length of yarn strand between electronic rollers to drag rollers on natural frequency and damping coefficient of fluctuation of yarn strand tension are analyzed. The dynamic response of yarn strand was researched by theoretical analysis, which has established theoretical foundations for stabilizing tension of yarn and improving the accuracy of pile height.
     Thirdly, the tension of yarn strand in tufting zone has an influence on the pile uniformity and pattern effect of carpet, which is difficult to predict and detect during tufting process. Thus, it is a vital important to design tension controlling part, stabilize tension, improve carpet quality of developing model for calculating tension. Traditional detecting and computing of tension were based on classical Euler's or Capstan formula, which omitting the influence of bending rigidity and power-law friction. In chapter4th, a more effective modified capstan formula was developed by taking both the bending rigidity of the yarn strand and a power-law friction (in place of the Amonton's law) into consideration. During the analyses, the power-law exponent was used as the indicator for the nonlinear friction behavior, whereas the capstan radius ratio was used as the parameters reflecting the bending rigidity. At same time, both ends tension of yarn wrapped around roller was tested by dynamic tension-meter in actual conditions and the tension ratio could be obtained. The experimental results of tension ratio were compared with classical capstan ones and modified ones. It is show that the modified curve has a good agreement with the experimental one. So, it is essential to consider the bending rigidity and power-law friction of yarn strand when designing the structure of electronic roller and dragging roller. Also, the modified model for tension calculation will provide theoretical support for more precise control of yarn strand tension, pile height and improving resolution of single needle.
     Fourth, the essence of tufting process is the cooperation between reciprocating movement of needle and front and back movement of looper, which is the basic motion of tufting. During tufting process, main resistance is the force acting on needle bar, which equal to the sum of backing resistance and inertia force when the needle penetrate the backing. The needle force will affect its state of motion, optimal designning of transmission mechanism and improvement of spindle speed, etc. Due to cann't calculate the resistance acted on needle, safety coefficient was selected too much for ensuring the strength of the component during practices. Thus, it will not only waste material but also result of structure bulkiness. In addition, the unstable force acting on needle will result in inconsistent with high and low of pile. In the final section, a FE model of needle penetrating nonwoven has been developed in ABAQUS(?) software, based on the geometrical characteristic of needle and materials properties of nonwoven fabric. For simplication, assuming the deformation of nonwoven is linear elasticity when the needle penetrates the nonwoven, a user-defined subroutine VUMAT for characterizing the constitutive relation of the nonwoven fabric and the damage evolution was compiled and connected with a commercial software package ABAQUS/Explicit to calculate the penetration force and simulate the contact damage process of nonwoven fabric. Results of the theoretical analysis were compared with the needle penetration force which was tested by sensor mounted in needle bars of tufting machine. It was found that there is an approximate agreement of the penetration force during tufting between FEA calculations and experimental result, the maximum error is11%. Thus, the nonwoven model and the VUMAT combined with the ABAQUS/Explicit can precisely calculate the impact force acting on needle. The verified FE model could be put into analysis of needle penetration force at high RPM (Revolutions per Minute). Meanwhile, it is vital importance to calculate the needle force, optimal designing of transmission mechanism and improve revolution of the spindle.
     This thesis was aim at process of digitial tufting carpet machine, the accurately controll of feeding length and tension of yarn strand were taken as goal. The viscoelasticity of yarn strand, nonlinear transversal vibration, the mechanical properties between yarn and machine part, the interaction between needle and nonwoven etc., were researched and the model for controlling the tension of yarn strand was developed. The movement properties and the interaction characteristics were revealed by studying tufting process. Thus, the mechanism for controlling yarn strand tension could be revealed. Problems of controlling yarn tension during tufting process of different pile height were resolved. A FE model of needle penetrating nonwoven has been developed in ABAQUS(?) software, calculating the penetration force acting on needle. All these have provided theoretical foundation for producing carpet of high resolution and big pattern cycle of full scale. In addition, it has a great theoretical value and the actual production significance for improving efficiency.
引文
[1]薛世鑫.机制地毯[M].北京:化学工业出版社,2004.320-352.
    [2]张维彪.三层圈绒簇绒织机电脑控制系统的研究[D].吉林大学,2007.
    [3]郭合信.关于纺粘热轧地毯基布问题的讨论[J].非织造布.2009,17(5):3-6.
    [4]李轶鹤.非线性粘弹性本构理论及其求解方法的研究[D].湘潭大学,2003.
    [5]于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002:79-95.
    [6]Ferry J.D. Viscoelastic Properties of Polymers [M].3rd ed. New York:John Wiley & Sons, Inc.,1980:2-33.
    [7]Manich A.M, Marino P.N, De Castellar M.D, et al. Viscoelastic modeling of natural and synthetic textile yarns[J]. J APPL POLYM SCI.2000,76(14): 2062-2067.
    [8]Vangheluwe L. Relaxation and inverse relaxation of yarns after dynamic loading [J]. TEXT RES J.1993,63(9):552-556.
    [9]Manich A.M, Ussman M.H, Barella A. Viscoelastic behavior of polypropylene fibers [J]. TEXT RES J.1999,69(5):325-330.
    [10]Shim V.P.W, Lim C.T, Foo K.J. Dynamic mechanical properties of fabric armour [J]. INT J IMPACT ENG.2001,25(1):1-15.
    [11]Vangheluwe L. Influence of strain rate and yarn number on tensile test results [J]. TEXT RES J.1992,62(10):586-589.
    [12]Liu H, Tao X.M, Choi K.F, et al. Analysis of the relaxation modulus of spun yarns[J]. TEXT RES J.2010,80(5):403-410.
    [13]Schaff A.J, Ogale A.A. Tensile viscoelastic properties of spunbonded nonwoven polypropylene backing [J]. TEXT RES J.1991,61(7):386-392.
    [14]Nachane R.P, Sundaram V. Analysis of relaxation phenomena in textile fibres Part Ⅰ:stress relaxation [J]. J TEXT I.1995,86(1):10-19.
    [15]Vangheluwe L, Kiekens P. Modeling mechanical behavior of fabric and warp yarn during loom stops [J]. TEXT RES J.1996,66(11):722-726.
    [16]Asayesh A, Jeddi A.A.A, Ghadimi P. Modeling the fatigue behavior of plain woven fabrics constructed from textured polyester yarn [J]. TEXT RES J.2009, 79(13):1213-1222.
    [17]Asayesh A, Jeddi A.A.A. Modeling the creep behavior of plain woven fabrics constructed from textured polyester yarn [J]. TEXT RES J.2010,80(7):642-650.
    [18]Islam A, Bandara M. Cloth fell control to prevent start-up marks in weaving [J]. J TEXT I.1999,90(3):336-345.
    [19]Chen G, Lin S, Chen M. An analysis and prevention of stop marks in weaving[J]. Journal of Dong Hua University (Eng. Ed.).2002,19(1):103-106.
    [20]Chen G, Wang Y. A low-tension method for start-up mark prevention in weaving [J]. J TEXT I.2006,98(1):81-85.
    [21]Virginijus U, Antanas P, Arvydas V. Creep and creep recovery behaviour of textile fabrics and their fused systems[J]. MATER SCI+.2005,11(2):162-168.
    [22]Gupta V.B, Kumar S. A model for nonlinear creep of textile fibers [J]. TEXT RES J.1977,47(10):647-649.
    [23]Sebastian M.S, Unnikrishnan K.C, Narayanan S. Viscoelastic properties of Kevlar-29 fabric tape strength member [J]. MECH MATER.2008,40(11): 949-960.
    [24]李作攀,储才元.非织造布力学性能的模拟用其应用探讨[J].中国纺织大学学报.1998,24(2):1-4.
    [25]Chailleux E, Davies P. A non-linear viscoelastic viscoplastic model for the behaviour of polyester fibres [J]. MECH TIME-DEPEND MAT.2005,9(2-3): 147-160.
    [26]Schapery R.A. Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics [J]. MECH TIME-DEPEND MAT.1997,1(2): 1385-2000.
    [27]Yang X.D, Chen L.Q. Non-linear forced vibration of axially moving viscoelastic beams [J]. ACTA MECH SOLIDA SIN.2006,19(4):365-373.
    [28]Chen L.Q, Yang X.D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports [J]. EUR J MECH A-SOLID.2005,25(6):996-1008.
    [29]Ghayesh M.H, Balar S. Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams [J]. APPL MATH MODEL.2010,34(10):2850-2859.
    [30]Ghayesh M.H. Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation [J]. INT J NONLIN MECH.2010, 45(4):382-394.
    [31]Oz H.R, Pakdemirli M, Boyacl H. Non-linear vibrations and stability of an axially moving beam with time-dependent velocity [J]. INT J NONLIN MECH. 2001,36(1):107-115.
    [32]Oz H.R, Pakdemirli M. Vibrations of axially moving beam with time-dependent velocity [J]. J SOUND VIB.1999,227(2):239-257.
    [33]Chen L.Q, Yang X.D, Cheng C.J. Dynamic stability of an axially accelerating viscoelastic beam [J]. EUR J MECH A-SOLID.2004,23(4):659-666.
    [34]Chen L.Q, Yang X.D. Stability in parametric resonance of axially moving viscoelastic beams with time-dependent speed [J]. J SOUND VIB.2005, 284(3-5):879-891.
    [35]Ding H. Chen L.Q. Nonlinear dynamics of axially accelerating viscoelastic beams based on differential quadrature [J]. ACTA MECH SOLIDA SIN.2009, 22(3):267-275.
    [36]Chen L.Q, Wang B. Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation [J]. EUR J MECH A-SOLID.2009,28(4):786-791.
    [37]Lee U, Oh H. Dynamics of an axially moving viscoelastic beam subject to axial tension [J]. INT J SOLIDS STRUCT.2005,42(8):2381-2398.
    [38]Ghayesh M.H, Balar S. Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams [J]. INT J SOLIDS STRUCT.2008, 45(25-26):6451-6467.
    [39]Chen L.Q, Yang X.D. Nonlinear free transverse vibration of an axially moving beam:Comparison of two models [J]. J SOUND VIB.2007,299(1-2):348-354.
    [40]Ding H, Chen L.Q. Galerkin methods for natural frequencies of high-speed axially moving beams [J]. J SOUND VIB.2010,329(17):3484-3494.
    [41]Ghayesh M.H. Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide [J]. J SOUND VIB. 2008,314(3-5):757-774.
    [42]Andrianov I.V, Awrejcewicz J. Dynamics of a string moving with time-varying speed [J]. J SOUND VIB.2006,292(3-5):935-940.
    [43]Zhang N.H, Chen L.Q. Nonlinear dynamical analysis of axially moving viscoelastic strings [J]. CHAOS SOLITON FRACT.2005,24(4):1065-1074.
    [44]Chen L.Q, Chen H, Lim C.W. Asymptotic analysis of axially accelerating viscoelastic strings [J]. INT J ENG SCI.2008,46(10):976-985.
    [45]Suweken G, Van Horssen W.T. On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part Ⅰ:The string-like case [J]. J SOUND VIB.2003,264(1):117-133.
    [46]Marynowski K. Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension [J]. CHAOS SOLITON FRACT.2004,21(2):481-490.
    [47]Suweken G, Van Horssen W.T. On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity [J]. NONLINEAR DYNAM.2003,31(2):197-223.
    [48]Koivurova H. The numerical study of the nonlinear dynamics of a light, axially moving string [J]. J SOUND VIB.2009,320(1-2):373-385.
    [49]Chen L.Q, Zhao W.J. A numerical method for simulating transverse vibrations of an axially moving string [J]. APPL MATH COMPUT.2005,160(2):411-422.
    [50]Adanur S, Qi J. Property analysis of denim fabrics made on air-jet weaving machine-Part Ⅰ:Experimental system and tension measurements[J]. TEXT RES J.2008,78(1):3-9.
    [51]Stuart I.M. Capstan equation for strings with rigidity[J]. British J APPL PHYS. 1961,12(10):559-562.
    [52]Hung D.V, Degrieck J, Langenhove L.V, et al. Neumerical simulation of the yarn-object interaction [J]. TEXT RES J.2002,72(8):657-662.
    [53]邹慧君,张龙.缝纫机面线张力计算和过线线道设计[J].机械设计与研究, 2007,专刊:125-127.
    [54]Ghosh A, Patanaik A, Anandjiwala R.D, et al. A study on dynamic friction of different spun yarns[J]. J APPL POLYM SCI.2008,108(5):3233-3238.
    [55]Ajayi J.O, Elder H.M. Effects of finishing treatments on fabric friction[J]. J TEST EVAL.1995,23(1):55-58.
    [56]Ajayi J.O, Elder H.M. Comparative studies of yarn and fabric friction[J]. J TEST EVAL.1994,22(5):463-467.
    [57]Ajayi J.O, Elder H.M. Effects of surface geometry on fabric friction[J]. J TEST EVAL.1997,25(2):182-188.
    [58]Lang J, Zhu S.K, Pan N. Frictional behavior of synthetic yarns during processing[J]. TEXT RES J.2003,73(12):1071-1078.
    [59]Howell H.G. The general case of friction of a string round a cylinder[J]. J TEXT I.1953,44(8):359-362.
    [60]Gupta B.S, El Mogahzy Y.E. Friction in fibrous materials. Part Ⅰ. Structural model[J]. TEXT RES J.1991,61(9):547-555.
    [61]Vikers A.D, Beale D.G, Wang Y.T,et al. Analysing yarn-to-surface friction with data acquisition and digital imaging techniques[J]. TEXT RES J.2000,70(36): 36-43.
    [62]Ramkumar S.S. Rajanala R, Parameswaran S, et al. Experimental verification of failure of Amontons'law in polymeric textiles[J]. J APPL POLYM SCI.2004, 91(6):3879-3885.
    [63]Jung J.H, Kang T.J, Youn J.R. Effect of bending rigidity on the capstan equation[J]. TEXT RES J.2004,74(12):1085-1096.
    [64]Jung J.H, Pan N, Kang T.J. Capstan equation including bending rigidity and non-linear frictional behavior[J]. MECH MACH THEORY.2008,43(6): 661-675.
    [65]Jung J.H. Pan N, Kang T.J. Tension transmission via an elastic rod gripped by two circular-edged plates[J]. INT J MECH SCI.2007,49(10):1095-1103.
    [66]梅顺齐,颜莉,金祥瑞,等.纱线高速运动时张力的精确计算[J].工业工程.1996,14(3):33-36.
    [67]王府梅,燕飞.机织物及其纱线弯曲性能的实验研究[J].东华大学学报(自然科学版).2002,28(1):91-96.
    [68]杨萍,于伟东.纱线和织物的弯曲刚度[J].毛纺科技.2002,30(1):8-12.
    [69](?)OXUH C.C,朱苏康.测定纱线弯曲刚度的实验方法[J].中国纺织大学学报.1992,18(3):106-108.
    [70]Park J.W, Oh A.G. Bending rigidity of yarns[J]. TEXT RES J.2006,76(6): 478-485.
    [71]Stylios G, Xu Y.M. An investigation of the penetration force profile of the sewing machine needle point [J]. J TEXT I.1995,86(1):148-163.
    [72]Lomov S.V. A predictive model for the penetration force of a woven fabric by a needle[J]. INT J CLOTH SCI TECH.1998,10(2):91-109.
    [73]Karl G. Sewing needle penetration force study[J]. INT J CLOTH SCI TECH. 1997,9(3):241-248.
    [74]丁彩红,张少平,孙以泽.地毯簇绒机簇绒针传动机构运动分析[J].纺织学报.2006,27(5):37-40.
    [75]丁彩红,张少平.地毯簇绒过程针梁受力测试与工艺分析[J].纺织学报.2008,29(12):108-111.
    [76]Matthews B.A, Little T J. Sewing Dynamics Part I:Measuring sewing machine forces at high speeds[J]. TEXT RES J.1988,58(7):383-391.
    [77]Khan R.A, Hersh S.P, Grady P.L. Simulation of needle-fabric interactions in sewing operations[J]. TEXT RES J.1970,40(6):489-498.
    [78]Hearle J.W, Sultan M. The measurement of punching force during needling[J]. J TEXT I.1967,58(3):237-242.
    [79]Carvalho H, Rocha A.M, Monteiro J.L. Measurement and analysis of needle penetration forces in industrial high-speed sewing machine[J]. J TEXT I.2009, 100(4):319-329.
    [80]Carvalho H, Ferreira P, Rocha A, et al. Signal feature extraction for sewing analysis using non-linear techniques[C]. Rio de Janeiro, Brazil:2003 IEEE International Symposium on Industrial Electronics,2003.
    [81]Mallet E, Du R.X. Finite element analysis of sewing process[J]. INT J CLOTH SCI TECH.1999,11(1):19-36.
    [82]Simmons S. An analysis of forces in a fabric-needle sewing system[J]. CLOTH RESJ.1979,7(1):51-59.
    [83]刘展,祖景平,钱英莉,等ABAQUS6.6基础教程与实例详解[M].北京:中国水利水电出版社,2008:1-20.
    [84]Ji C.G, Sun B.Z, Qiu Y.P, et al. Impact damage of 3D orthogonal woven composite circular plates[J]. APPL COMPOS MATER.2007,14(5-6):343-362.
    [85]Sun B.Z, Hu D.M, Gu B.H. Transverse impact damage and energy absorption of 3-D multi-structured knitted composite[J]. COMPOS PART B-ENG.2009,40(6): 572-583.
    [86]Grujicic M, Bell W.C, He T, et al. Development and verification of a meso-scale based dynamic material model for plain-woven single-ply ballistic fabric[J]. J MATER SCI.2008,43(18):6301-6323.
    [87]Li Z.J, Sun B.Z, Gu B.H. FEM simulation of 3D angle-interlock woven composite under ballistic impact from unit cell approach [J]. COMP MATER SCI. 2010,49(1):171-183.
    [88]Hou Y.Q, Sun B.Z, Gu B.H. An analytical model for the ballistic impact of three dimensional angle-interlock woven fabric penetrated by a rigid cylindro-spherical projectile[J]. TEXT RES J.2011,81(12):1287-1303.
    [89]Sun B.Z, Liu Y.K, Gu B.H. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite[J]. COMPOS PART B-ENG.2009,40(6):552-560.
    [90]Hou X.N, Acar M, Silberschmidt V.V.2D finite element analysis of thermally bonded nonwoven materials:Continuous and discontinuous models[J]. COMP MATER SCI.2009,46(3):700-707.
    [91]Hou X.N, Acar M, Silberschmidt V.V. Finite element simulation of low-density thermally bonded nonwoven materials:Effects of orientation distribution function and arrangement of bond points[J]. COMP MATER SCI.2011,50(4): 1292-1298.
    [92]Demirci E, Acar M, Pourdeyhimi B, et al. Finite element modelling of thermally bonded bicomponent fibre nonwovens:Tensile behaviour[J]. COMP MATER SCI.2011,50(4):1286-1291.
    [93]Demirci E, Acar M, Pourdeyhimi B, et al. Computation of mechanical anisotropy in thermally bonded bicomponent fibre nonwovens[J]. COMP MATER SCI. 2012,52(1):157-163.
    [94]Mueller D.H, Kochmann M. Neumerical modeling of thermobonded nonwovens[J]. INT NONW J.2004,13(1):56-62.
    [95]Limem S, Warner S.B. Adhesive point-bonded spunbond fabrics[J]. TEXT RES J. 2005,75(1):63-72.
    [96]Backer S, Petterson D.R. Some Principles of Nonwoven Fabrics[J]. TEXT RES J. 1960,30(9):704-711.
    [97]Valizadeh M, Lomov S, Ravandi S.A.H, et al. Finite element simulation of a yarn pullout test for plain woven fabrics[J]. TEXT RES J.2010,80(10):892-903.
    [98]Kim H.S. Orthotropic theory for the prediction of mechanical performance in thermally point-bonded nonwovens[J]. FIBER POLYM.2004,5(2):139-144.
    [99]商欣萍.土工织物拉伸力学性能的应用研究[D].上海:东华大学,2003.
    [100]Hou X.N, Acar M, Silberschmidt V.V. Tensile behavior of low density thermally bonded nonwoven material [J]. J ENG FIBER FABR.2009,4(1): 26-33.
    [101]Lim C.T, Shim V.P.W. Finite-element modeling of the ballistic impact of fabric armor[J]. INT J IMPACT ENG.2003,28(1):13-31.
    [102]Ivanov I, Tabiei A. Loosely woven fabric model with viscoelastic crimped fibres for ballistic impact simulations[J]. INT J IMPACT ENG.2004,61(10): 1565-1583.
    [103]Kim H.S, Pourdeyhimi B, Desai P, et al. Anisotropy in the mechanical properties of thermally spot-bonded nonwovens:Experimental observations[J]. TEXT RES J.2001,71(11):965-976.
    [104]Hou X.N, Acar M, Silberschmidt V.V. Non-uniformity of deformation in low-density thermally point bonded non-woven material:effect of microstructure[J]. J MATER SCI.2011,46(2):307-315.
    [105]Rawal A, Lomov S, Ngo T, et al. Mechanical behavior of Thru-air bonded nonwoven structures[J]. TEXT RES J.2007,77(6):417-431.
    [106]Adanur S, Liao T.Y. Fiber arrangement characteristics and their effects on nonwoven tensile behavior[J]. TEXT RES J.1999,69(11):816-824.
    [107]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社1996:4-23.
    [108]John E. A new look at linear visco-elasticity[J]. MATER LETT.1997,31(3-6): 351-357.
    [109]Vangheluwe L, Kiekens P. Modelling relaxation behaviour of yarns Part I Extended, nonlinear Maxwell model[J]. J TEXT I.1996,87(2):296-304.
    [110]Gao X.P, Sun Y.Z, Meng Z, et al. Analytical approach of mechanical behavior of carpet yarn by mechanical models[J]. MATER LETT.2011,65(14): 2228-2230.
    [111]Morton W.E, Hearle J.W.S. Physical properties of textile fibres [M].4th ed. Cambridge:Woodhead Publishing,2008:330-341.
    [112]Northolt M.G, Baltussen J.J.M, Schaffers K.B. Yielding and hysteresis of polymer fibres[J]. POLYMER.1995,36(18):3485-3492.
    [113]Samah M, Neji L, Faouzi S. Viscoelastic behavior of starch sized warps[J]. J APPL SCI.2007,16(7):2376-2379.
    [114]Gao X.P, Sun Y.Z, Meng Z, et al. Analytical approach of creep behavior of carpet yarn[J]. J APPL POLYM SCI.2012,124(2):1160-1167.
    [115]褚亦清,李慧英.非线性振动分析[M].北京:北京理工大学出版社,1996:260-270.
    [116]沈丹峰,叶国铭.织造过程中经纱振动特性的分析[J].纺织学报.2007,28(5):41-46.
    [117]Clark J.D, Fraser W.B, Stump D.M. Modeling of tension in yarn package unwinding[J]. J ENG MATH.2001,40(1):59-75.
    [118]Kurilenko Z.N, Matyushev I.I, Goncharenko A.F, et al. Yarn tension during unwinding from a package[J]. FIBRE CHEM+.1980,12(3):189-191.
    [119]Vangheluwe L, Sleeckx B, Kiekens P. Numerical simulation model for optimization of weft insertion on projectile and rapier looms[J]. MECHATRONICS.1995,5(2-3):183-195.
    [120]Murakami F, Watanabe T, Tazaki H, et al. Dynamic tension on yarns being unwound from a beam.[J]. Journal of the Textile Machinery Society of Japan. 1979,25(4):93-99.
    [121]Koo Y. Yarn tension variation on the needle during the knitting process[J]. TEXT RES J.2004,74(4):314-317.
    [122]张伟,胡海岩.非线性动力学理论与应用的新进展[M].北京:科学出版社,2009:491-525.
    [123]Chen G.F, Yang Y.Z, Zou K, et al. Electromagnetic clutch based High-Low carpet jacquard control system[C]. Shanghai, China:Inst. of Elec. and Elec. Eng. Computer Society,2008.
    [124]赵越,戴惠良Advanced tufted carpet patterning technology[J].浙江大学学报A(应用物理及工程版)(英文版).2006,7(3):374-377.
    [125]陈广锋,吴春晖,孙以泽,等.三圈高地毯簇绒机提花控制系统[J].纺织学报.2008,29(3):113-117.
    [126]高晓平,孙以泽,孟婥,等.簇绒提花地毯纱线束动态张力分析[J].纺织学报.2012,33(2):43-48.
    [127]Bowden F.P, Young J.E. Friction of Diamond, Graphite, and Carbon and the Influence of Surface Films[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1951,208(9):444-455.
    [128]Jung J.H, Pan N, Kang T.J. Generalized capstan problem:Bending rigidity, nonlinear friction, and extensibility effect[J]. TRIBOL INT.2008,41(6): 524-534.
    [129]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006:9-41.
    [130]Rawal A, Priyadarshi A, Kumar N, et al. Tensile behaviour of nonwoven structures:comparison with experimental results[J]. J MATER SCI.2010,45(24): 6643-6652.
    [131]Hou X.N, Acar M, Silberschmidt V.V. Finite element simulation of low-density thermally bonded nonwoven materials:Effects of orientation distribution function and arrangement of bond points[J]. COMP MATER SCI.2011,50(4): 1292-1298.
    [132]张少实,庄茁,杜善义.复合材料与粘弹性力学[M].北京:机械工业出版社,2005:11-23.
    [133]Kim H.S. Relationship between fiber orientation distribution function and mechanical anisotropy of thermally point-bonded nonwovens[J]. FIBER POLYM.2004,5(3):177-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700