用户名: 密码: 验证码:
缩醛缩酮类香料的催化合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缩醛(酮)类香料是一种新型高档香料,随着人们生活水平日益提高,对香料种类和需求量有了更高要求,因此,研究和开发缩醛缩酮类香料化合物有着重要的意义。
     传统的合成方法,缩醛(酮)类化合物的合成多用硫酸、磷酸、盐酸(或无水氯化氢)等强腐蚀性的液体酸作为催化剂,使醛、酮的羰基与醇发生缩合反应,工艺复杂、易腐蚀设备、易污染环境、产率不高。本论文以研发环境友好高效合成香料的催化剂为目标,进行了功能化离子液体和固体酸为催化剂的香料合成研究,并重点讨论了这两类催化剂在合成缩醛(酮)类化合物中的应用。
     本论文的具体内容如下:
     1、采用两步合成法制备了六次甲基四胺四磺酸基功能化的离子液体,将该离子液体用于催化缩醛缩酮反应。结果表明,该离子液体具有很高的酸强度,在室温不使用任何溶剂条件下,都能使醛(酮)有较高的转化率,而且产物选择性专一。不同醛(酮)缩合反应的活性与空间结构有关,对羰基空间位阻越小,反应活性越高;反应活性还与羰基碳所连的电子基团有关,连有吸电子基的比连有给电子基的反应活性要高;相同的醛(酮)与不同醇反应其活性差别与巯基基团的数目有关,巯基数目越多,反应活性越高。
     2、制备了廉价易得的固体酸催化剂,并考察了其在缩醛(酮)反应中的应用。采用浸渍法制备了固载化液体酸HClO4/SiO2,考察了邻苯二酚与多种醛(酮)的反应。实验结果表明,催化剂用量很少,反应时间很短就能得到较高的催化收率,但是该负载型催化剂酸中心易脱落不能重复使用。因此,我们又采用强酸性苯乙烯系阳离子交换树脂(D072)作为固体酸催化剂催化醛(酮)与邻苯二酚的反应,该催化剂具有反应时间短重复使用性好的优点,但是催化剂用量大、价格较高。最后,我们采用来源广泛、无毒无害、廉价的葡萄糖作为碳源制备了磷钨酸负载有机碳催化剂。该催化剂只需要很少用量就能催化合成五元环的缩醛(酮)香料化合物而且还合成了其他催化剂难以催化得到的七元环的缩醛(酮)香料化合物,这进一步扩展了多种香型香料的合成方法。此外,该催化剂重复使用性很好,这充分表明了该固体酸催化剂在合成香料的方面有着良好的工业应用前景。
Acetals and ketals flavor as a new type of perfume receive more and more attention. The traditional synthetic methods usually use liquid acids such as sulfuric acid, p-toluenesulfonic acid and hydrochloric acid as catalyst, which have many disadvantages, including complicated technology, lower yield, badly corruption of equipments, and environment pollution. In order to solve the problems above, we synthesizes two new type of catalysts:the solid acids and ionic liquids.
     The main contents are as follows:
     1. The novel multi-SO3H functionalized strong Brφnsted acidic ionic liquid has been prepared by two typical procedures and its catalytic activities were investigated through the acetalization. Under mild and simple reaction conditions (at room temperature in air), using a small amount of the catalyst, aromatic aldehydes, aliphatic aldehydes, alkenyl aldehyde, and cyclic ketones all underwent successful transformation to the corresponding acetals in higher earning rate. The results clearly demonstrate that the novel catalyst is efficient, with almost quantitative conversion and exclusive selectivity for most reactions between carbonyl compounds and glycol. Different aldehydes(ketones) have a little difference in the reactivity because of the variance spatial structure. Benzaldehyde or aromatic aldehydes containing electron withdrawing substituent attached to the aromatic ring react very fast to furnish acetals due to the better electrophilicity at the carbonyl center compared to the aromatic aldehydes with electron donating substituent present in the aromatic nucleus, which may reduce the electophilicity at the carbonyl center by virtue of the conjugation. Also it can be deduced that the reactivity of glycol, mercaptoethanol and dithioethylene was different and the reactivity became higher with-SH increasing.
     2. Different solid acids have been prepared and their catalytic activities were investigated through the acetalization. HClO4/SiO2 as liquid acids on solid supports was prepared by impregnation method and its activities was investigated through the acetalization. The result indicates that using a small amount of the catalyst and reaction time 50 minutes, aldehydes and ketons have a high reactive activity. But this catalyst could not be recycled. So catalytic activity of resin (D072) as a second solid acid catalyst was investigated through the acetalization. Results showed that vavious aldehydes and ketons were converted to the corresponding acetals in higher earning rate. The experimental results also revealed that the catalyst could be recycled with high activity (with the yield over 97%). However, the amount of catalyst is too much. Finally, as a third solid acid catalyst, the catalytic activity of supported heteropolyacid on organic carbon catalyst was investigated through the acetalization. The catalyst is characterized by starting material cheap and easy to get and short procedure. Through the various carbonyl compounds used as substrates to react with glycol, 1,4-butanediol and 1,2-propylene glycol, their catalytic activities were investigated. The notable advantages of solid acids catalyst were (1) high recovery, (2)good selectivity, (3)less amounts of catalysts, (4)the catalyst can be used for more than eight times.
引文
1.何坚,季儒英:《香料概论》,北京,中国石化出版社,1993年03月.
    2.孙宝国,何坚:《香料化学与工艺》,北京,化学工业出版社,2004年8月.
    3.俞根发,吴关良:《日用香精调配技术》,北京,中国轻工业出版社,2007年8月.
    4.黄致喜,王慧辰:《萜类香料化学》,北京,中国轻工业出版社,1999年4月.
    5.王宏舍,杨建奎,覃海错.广西化工.2000,29(4):27-30.
    6. Voitkevich S. A., et al., USSR.,541836, CA,1977,86,140058a.
    7. Tavares R. F., et al., US,3822290, US,3936398, CA,1974,81,120719k, CA, 1976,84,135736Z.
    8.[苏]N.H勃拉图斯:《香料化学》,刘树文译,北京,轻工业出版社,1984年12月.
    9. Loader C. E., Anderson Hugh J.. Pyrrole chemistry part XX:synthesis of pyrrole aeetals[J], Synthesis,1978,3,295-297.
    10.袁先友,张敏,王小勇.化学试剂.2006,28,541-543.
    11.高珊,梁学正,杨建国等.精细化工.2006,23,469—47.
    12.王存德,鲁萍,沈新良等.稀土.1992,12,49-52.
    13.谢祥林,刘美艳.广州化学.2006,31,6-9.
    14.杨水金.甘肃化工.2003,3,19-21.
    15.杨水金,童文龙,自爱民.石油化工.2005,34,1073-1077.
    16.金烈.茂名学院报.2003,13,28-30.
    17.贾祥琪.化学世界.1998,39,239-240.
    18.许文苑,邹丽霞,熊国宣等.化学反应工程与工艺.2003,19,160-163.
    19.龚菁,王云翔,朱雪华.精细化工.2004,21,55-57.
    20.刘鹰,《离子液体在催化过程中的应用》,北京,化学工业出版社,2008年3月.
    21. Fuller J., Carlin R.T., Haworth H. C. J.. Chem. Soc. Chem.Commun.1994,2, 299-300.
    22. Namboodiri V.V.,Varma R. S..Chem. Commum.2002,21,342-343.
    23. Namboodiri V.V.,Varma R. S.. Tetrahedron Lett.2002,43,5381-5383.
    24. Noda A.,Hayamizu K.,Watanabe M.J.. Phys.Chem.B.2001,105,4603-4610.
    25. Wasserscheid P,Welton T.. Wiley-VCH Verlag, GmbH & Co.KGaA,2003.
    26. Cote J. C., Iensen J. L., Ntait J., et al. J Org Chem Soc.2002,124,5962-5963.
    27. Li D., Shi F., Deng Y. Q., et al. J Org Chem.2004,69,3582-3585.
    28. Mu z., Lin W., Zhaog S., Zhou F. Chem Lett.2004,33,524-525.
    29. Li D. M., Shi F., Guo S., and Deng Y.Q.. Tetrahedron Lett.2004,45,265-268.
    30.吴廷华,朱明乔,管雁等.浙江师范大学学报(自然科学版),2002,25,380-384.
    31.闵恩泽,傅军.化工进展,1999,18,5-6.
    32. Shedriek W. S., Wachhold M.. Angewandte Chemie, International Edition in English.1997,36,206-224.
    33.王恩波,段颖波,张云峰,周延修.催化学报,1993,14,147-149.
    34.杜少斌,徐元植.石油化工,1993,22,694-696.
    35. Wang E. B., Lu X. H., Zhao S. L.. Sciences in China,1990,33,1032-1039.
    36.吴茂祥,罗军华,李定等.精细化工,1999,16,32-34.
    37.朱洪法,《石油化工催化剂知识》,北京,中国石化出版社,1995年9月.
    38.许招会,熊斌,廖维林,等.日用化学工业,2006,36,202-204.
    39.周崇文,化学工程与装备,2008,12,124-126.
    40. Suffis R., Morton L.B., Ishida K., Sawano K., Van Loveren A.G, Tetsuo N., Green C.B., Reitz G. A., Kang R. K.L., Sato T...US 5626852,1997. Chem. Abstr.
    41. Fang D., Gong K., Shi Q. R., et al. Catal Commun,2007,8,1463-1466.
    42. Geng H. Z., Luo J., Ma W., et al. Chem J Chin Univ (in Chinese).2008,29, 2007-2010.
    43. Qiao Y., Deng Y. Q.. J Chin Chem Soc,2002,60,528-531.
    44. Long J. X., Zhao Y. W., Liu J. H., et al. J Mol Catal,2008,22,199-204.
    45. Jiang Y Y, Wang G. N., Zhou Z., et al. Chem Commun.2008,28,505-507.
    46. Kuang D., Uchida S., Humphry-Baker R., et al. Angew Chem Int Ed.2008,47, 1923-1927.
    47. Singh T., Kumar A.. J Phys Chem B,2008,112,4079-4086.
    48. Gupta N., Sonu, Kad G L., et al. Catal Commun,2007,8,1323-1328.
    49. Sugimura R., Qiao K., Tomida D., etal. Catal Commun.2007,8,770-772.
    50. Da Silveira Neto B. A., Ebeling G, Goncalves R. S., et al. Syn,2004,8, 1155-1158.
    51. Wu H. H., Yang F., Cui P., et al. Tetrahedron Lett,2004,45,4963-4965.
    52. Kamal A., Chouhan G. Adv Syn Catal,2004,346,579-582.
    53. Yadav J. S., Reddy B. V. S., Kondaji G. Chem Lett,2003,32,672-673.
    54. Kamal A., Chouhan G. Tetrahedron Lett.2003,44,3337-3340.
    55.魏复盛,《水和废水监测分析方法》,北京,中国环境科学出版社,1997年
    56.水质监别实验室质量控制指标.中国环境监测总站.
    57. Agazzi E. J., Burtner D. C., Crittenden D. J., Patterson D. R. Anal, chem,1963, 35,332-335.
    58.李述文,范如霖,《实用有机化学手册》,上海,上海科技出版社,1981年12月.
    59. Liu X. M., Liu, Guo X., Zhou J.. Catalysis Communications.2008,9,1-7.
    60. Firouzabadi H, Iranpoor N, Jafari A A, et al. J Mol Catal A:Chemical,2006,247, 14-18.
    61. Khan A. T., Parvin T., Choudhury L H. Syn,2006,15,2497-2502.
    62. Chandrasekhar S., Jaya Prakash S., Shyamsunder T., et al. Synth Commun,2005, 35,3127-3131.
    63. Kumar A., Jain N., Rana S., et al. Synlett,2004,15,2785-2787.
    64. Aoyama T., Takido T., Kodomari M.. Synlett,2004,13,2307-2310.
    65. Khan A. T., Sahu P. R., Majee A. J Mol Catal A:Chemical,2005,226,207-212.
    66. Gogoi S., Borah J. C., Barua N. C.. Synlett,2004,9,1592-1594.
    67. Rana K. K., Guin C., Jana S., et al. Tetrahedron Lett,2003,44,8597-8599.
    68. Kamal A., Chouhan G., Ahmed K.. Tetrahedron Lett,2002,43,6947-6951.
    69.孟利娜.贵州化工,2006,31,26-28.
    70.隆金桥.百色学院学报,2008,21,81-83.
    71.刘庆辉,詹宏昌,汤敏擘.广州化工,2008,36,14-17.
    72. Sun X.m. and Li Y.d..Angew. Chem.2004,116,607-611.
    73. Bardin B.B., Bordawekar S.V., Neurock M. and Davis R.J., J.Phys.Chem.B 1998, 102,10817.
    74. Jozefowicz L.C., Karge H.G., E.Vasilyeva and J.B.Moffat, Microporous Materials, 1993,1,313.
    75. Suzuki M., Ohguro Y., Kobayashi K., Nishida Y.. Heterocycles,2005,65,2395
    76. Ullrich T., Baumann K., Wlelzenbach K., Schmutz S., Camenisch G, Meingassner J.G,Weitz-Schmidt G, Bioorg. Med. Chem. Lett.2004,14,2483.
    77. Amorim M. B., Silva A. J. M., Costa P R. R. Braz. Chem. Soc,2001,12,346.
    78. Leite A. C. L., Silva K. P., Brondani D. Heterocycl. Commun.2001,7,555.
    79. Joshi R., Kumar M. S., Satyamoorthy K., Unnikrisnan M. K., Mukheoee T J. Agric. Food Chem.2005,53.
    80. Jae H. S., Winn M., Geldern W., Sorensen B. K., Chiou W. J., Nguyen B., Marsh K. C., Opgenorth T. J. Med. Chem,2001,44,3978.
    81. Leite A. C. L., Silva K. P., Souza I. A., Doboszewski B., Brondani D. R. Med. Chem.2004,39,1059.
    82. Majetich G., Liu S. Synth. Commun.1993,23,2331.
    83.汪家铭.四川化工与腐蚀控制,1999,4,35.
    84. Michael B. Smith Organic Synthesis(Second Edition)[M]. McGraw-HiU,2002, 554.
    85.黄乃聚,徐良衡,叶明新.有机化学,1991,11,174-178.
    86. Li D., Shi F., Peng J., et al. J Org Chem,2004,69,3582-3585.
    87. Satoshi S., Keisuke S., Hironmi F. J Mol Catal A-Chem,1996,114,209-216.
    88.杨水金,万纾.化工中间体,2007,8,1-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700