用户名: 密码: 验证码:
导管架调平夹持器齿形爪优化及同步控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来的全球大型油气田勘探实践表明,陆上油气资源已进入“平台期”,其产量增长几乎接近峰值,因而各国开始走向海中取油之路,因此海洋油气资源是未来世界油气资源开发的重要领域。海洋油气资源开发离不开海洋平台,钢质桩基导管架平台凭借自身的诸多优点而被广泛应用于海洋油气开发中。导管架安装过程中的调平作业是影响导管架平台海上安装质量的关键环节之一,深水导管架调平需要一些特殊的机具,其中调平机具系统是调平作业所必需的专用液压机具,由于其能同时完成夹持和调平两项操作,对提高安装效率、降低海上安装成本具有重要作用。我国在该领域的研究还处于起步阶段,因此对其关键技术进一步研究以加快该装备的国产化进程具有现实意义。
     本课题来源于中国海洋石油工程股份有限公司综合科研项目“深水导管架安装液压装具研发”。本文综述了海洋油气平台导管架调平作业系统的国内外应用现状,评述了该技术的发展和需要进一步研究的问题,针对调平机具系统的夹持和调平作业这两项关键工序,深入分析了其关键部件—夹持器的齿形夹爪参数、管桩承载能力及调平力的关系,给出了齿形爪参数确定方法,建立了表征齿形爪参数与调平力和管桩承载力关系的数学模型,构建了齿形爪优化的可视化仿真平台,进一步研究了便于工程应用的长管路调平提升系统数学模型简化方法及其同步控制技术。
     本文根据夹持器齿形爪的受力状态,应用弹性理论推导了齿形爪截面内任意点的应力分量表达式,确定了较为合理的齿形爪结构。在此基础上,分析了齿形爪结构参数对调平力的影响,从齿形爪和管桩材料满足最大应力条件出发,提出了齿形爪结构参数的确定方法,为齿形爪系列化设计打下了基础。
     针对齿形爪结构优化问题,采用一种数值模拟正交试验、支持向量机回归和改进遗传算法的综合优化方法。首先确定了数值模拟正交试验因素及各因素水平;其次根据不规则实体的多楔接触问题解法,利用ANSYS软件建立了齿形爪与导管桩夹持接触的有限元模型,以齿形爪与管桩间夹持力及其应力作为试验指标,将得到的不同因素水平组合的有限元分析结果作为训练样本,建立了夹持接触力、齿形爪应力和管桩应力的支持向量机回归模型,采用另外的预测样本对回归模型的预测效果进行了验证,结果证明了所建模型的合理性;最后以夹持接触力的回归模型为目标函数,以齿形爪和管桩应力的回归模型为约束函数,采用改进的遗传算法对齿形爪结构进行了优化,将优化结果与ANSYS分析结果进行了对比,结果表明两者误差小于1%。构建了齿形爪结构优化可视仿真平台,为实际工程应用提供了一种便捷设计方法。
     在分析调平机具系统作业特点的基础上确定了系统管路布置形式,基于管路传输动力学理论,修正了长软管的线性摩擦模型,建立了考虑管路效应的长管路电液提升系统数学模型,分析了管路效应对系统动态特性的影响。为解决系统模型参数复杂与求解困难等问题,本着构建工程适用模型的思想,本文利用管路的质量-弹簧-阻尼动力学模型,提出了一种基于模型降阶法的快速建立长管路简化模型的方法,给出了简化模型公式,与原模型对比分析的结果表明所提出的简化模型与原模型有很高的近似度。
     对并联长管路电液提升系统各通道间运动耦合问题,借鉴最少相关耦合轴数控制的基本思想建立了并联长管路环交叉耦合同步控制模型。提出了一种改进的Smith滑模预估控制方法,设计了跟踪误差控制器,并与一种改进的PID Smith预估控制器进行了比较,仿真结果表明所提出控制方法的有效性。采用滑模变结构控制方法设计了相邻两通道的同步误差控制器。将环交叉耦合控制与等同式同步控制进行了比较,结果表明了环交叉耦合控制方式应用于并联长管路电液提升系统同步控制的可行性和有效性。
Over the past decade, the practices of global large oil and gas field exploration show thatthe onshore oil and gas resources have reached a plateau, and its output growth has been closeto the peak, so that activities are turning to the sea and it will be a significant area of theworld’s oil and gas resource exploitation in the future. The offshore platforms are theessential equipment, among them the pile-supported steel jacket-type platform is widely used.Leveling jacket is a key step of platform installation. Leveling operation for deepwater jacketneeds some special tools, and leveling tool system is a specific hydraulic tool. Due to thegripping and leveling operations can be doing simultaneously, the tool is very important toimprove the installation efficiency and reduce cost. The studies are still in beginning stage inour country, so further research of the technique is necessary to speed up its nationalization.
     The project roots in the comprehensive project of Offshore Oil Engineering Co. Ltd“hydraulic equipment development for deepwater jacket installation”. In this paper, theleveling operating system both at home and abroad are summarized, the research progress ofthat technique is reviewed, and the problems which need further studied are described.Aiming at two key technologies of leveling tools system, gripping and leveling, the internalrelations between the structural parameters of the gripper’s toothed gripping jaw and levelingforce and bearing capacity of steel pile are studied further in this paper, the method todetermine these parameters is obtained, the mathematical model describing those innerrelations is built, the optimization simulation platform for toothed gripping jaw is constructed,the simplified mathematical model of the electro-hydraulic executive system with longpipeline is researched, which is convenient to apply to engineering, and the synchronizationcontrol strategy of the parallel long pipeline leveling system is presented.
     By analyzing force condition of the toothed gripping jaw, the stress componentsexpressions at any point in the tooth’s normal section are derived adopting elastic theory, anda reasonable structure is deduced from analysis results. On that basis, the effect of structureparameters on the leveling force is also discussed. And based on the thought of the toothedgripping jaw and pile materials meeting the greatest stress conditions, the methods that maybe used to determine the key parameters are given, which will make a foundation for theserial design of gripping jaw.
     For structural optimization of the gripping jaw, a comprehensive optimization approachis presented, which incorporates the numerical simulation orthogonal experiment optimization method, the support vector machine regression and the improved geneticalgorithm. Firstly, the orthogonal experiment factors and their levels of numerical simulationare confirmed. Then according to the solution method for multiple wedges contact problem ofthe irregular entities, the finite element model of clamping contact between gripping jaw andpile is established by using ANSYS software, and the finite analysis results for different levelcombination of those factors are obtained on condition that contact pressure between grippingjaw and pile and their stresses are taken as the orthogonal experiment indexes. On that basis,the support vector machine regression models of contact pressure, gripping jaw stress andpile stress are set up, and the forecasting accuracy of regression model are verified by anotherprediction sample set, which shows that these models are validity. Using the regression modelof contact pressure as a target function and that of gripping jaw and pile as constraintfunctions, an optimal tooth structure of gripping jaw is obtained by adopting a kind ofimproved genetic algorithm, and the comparative result between optimal values andcalculated ones of ANSYS indicates that the error is less than1%. In addition, a visiblesimulation platform of structure optimization is designed for the toothed gripping jaw so as tooffer a convenient method for the engineering practice.
     By analyzing leveling operation features, the pipeline arrangement form is determinedand a linear friction model of long hose is revised based on transmission pipeline dynamics.The leveling system mathematic model considering pipeline effect is derived and the effectson system dynamic characteristics are analyzed. To handle the problem that the model hasvery complex parameters and is difficult to solve, in line with the thought of constructing asuitable engineering model, this paper presents a fast modeling method of long pipeline byusing a spring-damper-mass model based on model reduction and the simplified formula isgiven. Compared with the original model, the simplified one has better approximation.
     For the movement coupling between different channels of the leveling system with longpipelines in parallel, a circular cross-coupling synchronous control model is set up based onthe idea of the minimum number of correlative axis control. An improved Smith sliding modeprediction control method is proposed to design a tracking error controller and comparisonwith an improved PID Smith predictor indicates that the approach is effective. Thesynchronization error controller of two adjacent channels is designed by employing slidingmode variable structure control method. The results of comparison with an equalsynchronization control show that the synchronous control strategy used in the parallelleveling system with long pipelines is feasible and effective.
引文
[1]潘继平,张大伟,岳来群.全球海洋油气勘探开发状况与发展趋势.中国矿业.2006,15(11):1-4页
    [2] http://www.cgs.gov.cn/JRgengxin/9_11961.htm.
    [3]国土资源部,发改委,财政部.新一轮全国油气资源评价综合报告.2008
    [4]姜萌.近海工程结构物:导管架平台.大连:大连理工大学出版社,2009:22-26页
    [5]朱绍华.锦州20-2MUQ导管架安装工程中的调平作业.中国海上油气(工程).1996,8(5):10-11页
    [6]李军,李燕.滩海钢制固定平台安装质量要点控制.中国海洋平台.2006,21(4):50-52页
    [7]刘全刚,刘进华,岳学,刘琳,石继程.浅谈海洋固定式平台海上安装方法.2010年度海洋工程学术会议论文集.2010:423-429页
    [8]徐爱民,纪延涛,陈志堂,李军.浅谈钢质桩基式导管架海上安装及注意事项.中国海洋平台.2006,21(6):40-45页
    [9]侯金林.导管架调平与灌浆系统.中国海上油气(工程).2000,12(4):20-22页
    [10]朱绍华.文昌油田深水导管架安装技术.中国海上油气(工程).2003,15(1):12-14页
    [11] http://www.irmome.com/product/offshoreproduct/pile-grippers.aspx
    [12] http://www.cruxproducts.co.uk/pile_grippers.htm
    [13] http://www.oilstates.com/fw/main/Skirt-Pile-Grippers-387.html
    [14] http://www.ihchs.nl/levelling_system.html
    [15]梁富浩,闫祥安,郑炜.导管架夹桩器受力分析及液压缸数选择.海洋工程.2007,25(1):82-87页
    [16]姜宜辰,田育丰,杨树耕.导管架平台抱桩器设计.中国海洋平台.2008,23(5):19-22页
    [17]孙志娟.基于接触的水下夹桩器压块齿非线性有限元分析.石油化工高等学校学报.2006,19(3):72-75页
    [18]李佼.导管架调平器实验样机研究.哈尔滨工程大学硕士学位论文.2008:58-60页
    [19] Haixia Gong, Lin Peng, Peiran Jiang, Liquan Wang. Mechanics Analysis onLeveling Tool of Offshore Jacket Platform. Applied Mechanics and Materials.2011,44-47:1223-1228P
    [20] Dianxin Li, Honglin Zhao, Shimin Zhang, Dai Geng, Xianlong Liu, ShanjunZheng.Structure Optimization of Slip by the Combination of Artificial Neural Networkand Genetic Algorithm. Advanced Materials Research.2011,199(2):1223-1229P
    [21]陈芳祖,李光耀,钟志华.几种典型塑性成形问题的精确上限解.机械工程学报.2003:39(6)4-8页
    [22]周恩涛,周士昌,廖生行.管道效应对电液比例位置控制系统稳定性的影响.东北大学学报(自然科学版).2003,24(5):460-463页
    [23] Zhao Yanan, Du Hongwang, Li Yumei, Luo Xiang and Liu Gang. Impact of LongHydraulic Pipeline upon Performance of Hydraulic Control System. AdvancedMaterials Research.2011,(328-330):2148-2151P
    [24] Limin Yang, Torgeir Moan. Dynamic analysis of wave energy converter byincorporating the effect of hydraulic transmission lines. Ocean Engineering.2011,38(16):1849-1860P
    [25] Beshahwired Ayalew, and Bohdan T. Kulakowski. Modeling supply and returnline dynamics for an electrohydraulic actuation system. ISA Transactions.2005,4(3):329-343P
    [26]孔晓武.考虑管路效应的负载敏感泵动态特性分析.工程设计学报.2005,12(4):119-122页
    [27] Kong Xiaowu, Wei Jianhua, Qiu Minxiu and Wu Genmao. Improvement of fluidpipe lumped parameter model.Chinese Journal of Mechanical Engineering.2004,17(1):114-116P
    [28] Krus P, Weddfel K, and Palmberg J. Fast pipeline models for simulation ofhydraulic systems. Journal of Dynamic Systems, Measurement, and Control of theASME.1994,116(3):132-136P
    [29] Adam Adamkowski. Analysis of Transient Flow in Pipes With Expanding orContracting Sections. Journal of Fluids Engineering.2003,125(4):716-722P
    [30] R. E. Goodson, R.G. Leonard. A survey of modelling techniques for fluid linetransients. Journal of Basic Engineering.1972,94(2):474-485P
    [31] J. S. Stecki, D. C. Davis. Fluid transmission lines-distributed parameter modelspart2: comparison of models. Proceedings of the Institution of Mechanical Engineers,Part A: Power and Process Engineering.1986,200(4):229-236P
    [32] Angus Ross Simpson, John Vitkovsky. Developments in unsteady pipe flowfriction modelling. Journal of Hydraulic Research.2001,39(3):248-257P
    [33] D. C. Davis, J. S. Stecki. Frequency response of long fluid transmission linescontaining discrete capacitance elements. Transactions of the Institution of Engineers.1989,14(3):121-133P
    [34] S E M Taylor, D N Johnston, D K Longmore. Modelling of transient flow inhydraulic pipelines. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering.1997,211(6):447-455P
    [35]孔晓武.带长管道的负载敏感系统研究.浙江大学博士学位论文.2003:13-15页
    [36] Michail I. Soumelidis, D. Nigel Johnston, Kevin A. Edge, Derek G. Tilley. AComparative Study of Modelling Techniques for Laminar Flow Transients in HydraulicPipelines. Proceedings of the6th JFPS International Symposium on Fluid Power.2005,11:100-105P
    [37]蔡亦钢.流体传输管道动力学[M].杭州:浙江大学出版社,1986:125-127页
    [38] Beshahwired Ayalew, Bohdan T. Kulakowski. Modal approximation of distributeddynamics for a hydraulic transmission line with pressure input-flow rate outputcausality. Journal of Dynamic Systems, Measurement, and Control.2005,127(3):503-507P
    [39] Pierre Saramito, Nicolas Roquet. An adaptive finite element method forviscoplastic fluid flows in pipes. Computer Methods in Applied Mechanics andEngineering.2001,190(40):5391-5412P
    [40]阮晓芳,孔晓武.电液系统仿真中管道模型的选取.液压气动与密封.2006,(4):59-61
    [41]赵彤,彭光正,许耀铭.管内流动分布参数模型的实用精确近似方法.液压与气动.1990,(1):30-40页
    [42]刘昆,张育林.分布参数液体管道的分段近似状态空间模型.推进技术.1998,(5):75-79页
    [43]杨务滋,王长春,王贺剑.管路效应对液压冲击器性能影响的研究.机床与液压.2008,36(5):73-76页
    [44] William E. Hurst. Piezohydraulic actuator design and modeling using alumped-parameter approach. Virginia Polytechnic Institute and State University.2002:39-44P
    [45]葛振亮,侯友山,姜勇.工程车辆全液压转向系统管路特性分析.振动与冲击.2011,30(3):60-63页
    [46] Novak N. Nedi, Vojislav. Filipovi, Ljubi a M. Dubonji. Design ofControllers With Fixed Order for Hydraulic Control System With a Long TransmissionLine. FME Transactions.2010,38(2):79-86P
    [47] Kang Lin, Keith E. Holbert. Applying the equivalent pi circuit to the modeling ofhydraulic pressurized lines. Mathematics and Computers in Simulation.2009,79(11):2064-2075P
    [48] Martin Sj lund, Robert Braun, Peter Fritzson, Petter Krus. Towards EfficientDistributed Simulation in Modelica using Transmission Line Modeling. The3rdInternational Workshop on Equation-Based Object-Oriented Languages and Tools.2010,10:71-80P
    [49] Stéphane Velut, Hubertus Tummescheit. Implementation of a transmission linemodel for fast simulation of fluid flow dynamics. Proceedings of the8th InternationalModelica Conference.2011,4:432-440P
    [50] Guan Changbin, Jiao Zongxia. Sectional lumped parameter model offluid-structure interaction in fluid-filled pipes. The6th IEEE Conference on IndustrialElectronics and Applications.2011:206–209P
    [51]刘长年.液压控制系统导论[M].北京:科学技术出版社,1987:92-103页
    [52]郭志恒,李利,刘银水,吴德发.水压驱动水下舞台的设计与试验研究.液压与气动.2010,(4):4-6页
    [53]王贵桥,张福波,吴迪,刘相华,王国栋.辊式淬火机液压多缸同步回路的优化设计.液压与气动.2008,(8):35-38页
    [54]张秀华.几种带补偿措施的双杆串联缸新同步回路的分析.机床与液压.2010,38(4):75-78页
    [55] Hong Sun, George T.-C Chiu. Motion synchronization for multi-cylinderelectro-hydraulic system.2001IEEE/ASME International Conference on AdvancedIntelligent Mechatronics Proceedings.2001:636-641P
    [56] Lorenz R D, Schmidt P B. Synchronized motion control for process automation.Proceeding of the1989Industry Applications Annual Meeting.1989,2:1693-1698P
    [57] Keron Y. Crossing-coupled biaxial computer control for manufacturing systems.ASME Journal of Dynamic Systems and Contro1.1980,102(12):265-272P
    [58]杨国来,左岗永,张琤琤,苏华山,陈俊远,李强.主从式水压双缸同步系统模糊PID控制的研究.液压与气动.2011,(2):8-10页
    [59]李军伟,赵克定.液压仿真转台中框等同式同步控制系统的研究.液压与气动.2004,(12):31-32页
    [60]侯宇栖,杨丽曼.基于滑模和PI的多轴转向系统交叉耦合控制.中国科技论文在线.2010,5(1):15-20页
    [61] Yang HY, Shi H, Gong GF, Hu GL. Electro-hydraulic proportional control ofthrust system for shield tunneling machine, Automation in Construction.2009,18(7):950-958P
    [62] Guang Fei Liu, Su Ling Li, Lei Zhang. The Synchronization control of thehydraulic press brake based on the virtual shaft control algorithm. Advanced MaterialsResearch.2011,383-390:574-579P
    [63] Jarczyk J.C., Alt B., Blath J.P., Svaricek, F., Schultalbers M.. Decoupling controlfor the speed synchronization task in the powertrain of a hybrid electric vehicle. IEEEInternational Conference on Control and Automation.2009:2154-2159P
    [64] Wen Peng, Lu Tewei. Decoupling control of a twin rotor MIMO system usingrobust deadbeat control technique. IET Control Theory and Applications.2008,2(11):999-1007P
    [65] Yaoxing Shang, Zongxia Jiao, Shaoping Wang, Xiaodong Wang. Dynamic robustcompensation control to inherent high-frequency motion disturbance on theelectro-hydraulic load simulator. International Journal of Computer Applications inTechnology.2009,36(2):117-124P
    [66] Liu Xingqiao, Chen Chong, Liu Guohai, Zhao Liang. Multi-motor synchronoussystem based on neural network decoupling control. Control Conference.2008:257–260P
    [67] Yongqiang Guo, Kangling Fang, Hongjun Zhou. Design of Fuzzy Feed-forwardDecoupling System based on FPGA. International Conference on Embedded Softwareand Systems.2008:405-409P
    [68]侯继伟,李世伦,陈鹰,宋波,杨震铭.高大空间火灾模拟及探测平台电液同步驱动控制.机械工程学报.2010,46(14):154-160页
    [69] Zhang Junliang, Lin Li. Synchronization motion control for electro-hydraulicsystem of tensioner for pipelaying vessel. Proceedings of the2009Fifth InternationalConference on Natural Computation.2009:287-291P
    [70] Jingtao Han, Sihai Jiao, Zhengyi Jiang. Research on Intelligent SynchronizationControl of Erecting System Driven by Two Hydraulic Cylinders. Advanced MaterialsResearch.2011,42(12):167-171P
    [71]李帅,魏建华.带长管道的阀控非对称缸系统的非线性控制.控制工程.2009,16(5):94-96页
    [72]盛选禹,难建斌,温诗铸.相对湿度对几种摩擦副静摩擦系数的影响.摩擦学学报.2001,21(1):42-46页
    [73]刘胜永,郝宏伟,万晓航,董兆伟.金属切削中的摩擦数值分析.机械设计与制造.2007,(4):119-121页
    [74] Jiun-Yih Chen, Britain A. Matarek, Justin F. Carpenter, Robert B. Gilbert.Analysis of Potential Conservatism in Foundation Design for Offshore PlatformAssessment. Offshore Technology Conference. Houston, USA,2010:27-31P
    [75]黄克智,陆明万,薛明德.弹性薄壳理论.北京:高等教育出版社,1988:10-25页
    [76]朱海燕,刘清友,莫丽,肖晓华.钻杆卡瓦牙板齿齿形设计.石油机械.2008,36(11):68-70页
    [77]王亚,王艳,朱瑞林.轴对称载荷圆柱壳解的研究.化工装备技术.2007,28(1):17-23页
    [78]李之达,黄婧.圆柱壳的弹塑性稳定性分析.湘潭大学自然科学学报.2008,30(3):65-72页
    [79]刘好增,赵喜来,刘洁.圆柱壳结构外压弹塑性稳定性问题的半解析有限元法.现代制造工程.2007,(7):8-13页
    [80]崔孝秉,张宏.卡瓦内悬挂管柱承载能力分析.石油学报.2000,21(1):57-91页
    [81] Robert M. McMeeking, Chad M. Landis, Salomon M.A. Jimenez. A principle ofvirtual work for combined electrostatic and mechanical loading of materials.International Journal of Non-Linear Mechanics.2007,42(6):831-838P
    [82]任露泉.试验设计及其优化.北京:科学出版社,2009:23-30页
    [83]庞善起,杜蛟,王蕊,陈利艳.由正交表变换得到的2阶平衡的相关免疫函数.数理统计与管理.2008,27(4):622-628页
    [84]任小强.接触问题神经网络求解技术及其应用.上海交通大学博士学位论文.2008:44-51页
    [85]杨伯源,张义同.工程弹塑性力学.北京:机械工业出版社,2003:65-73页
    [86]伍开松,翟志茂,彭钊玉,古剑飞.求解楔类接触问题的ANSYS方法评价.机械.2008,35(7):82-85页
    [87]贺晋宁.法兰电熔接头的有限元分析和优化设计.东南大学硕士学位论文.2006:28-35页
    [88]郭海丁,路志峰.基于BP神经网络和遗传算法的结构优化设计.航空动力学报.2003,(2):216-220页
    [89]白鹏,张喜斌,张斌.支持向量机理论及工程应用实例.西安:西安电子科技大学出版社,2008:55-63页
    [90]闫国华,朱永.生支持向量机回归的参数选择方法.计算机工程.2009,35(13):218-220页
    [91]王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定.中国海洋大学学报.2005,35(5):859-862页
    [92] Wu, Q. The hybrid forecasting model based on chaotic mapping, geneticalgorithm and support vector machine. Expert Systems with Applications.2010,37(2):1776-1783P
    [93]玄光男,程润伟.遗传算法与工程优化.于歆杰,周根贵译.北京:清华大学出版社.2004:125-132页
    [94] Peifeng Niu, Weiping Zhang. Model of turbine optimal initial pressure underoff-design operation based on SVR and GA. Neurocomputing.2012,78(1):64-71P
    [95]张晶,翟鹏程,张本源.惩罚函数法在遗传算法处理约束问题中的应用.武汉理工大学学报.2002,24(2):56-59页
    [96] zgür Yeniay. Penalty Function Methods for Constrained Optimization withGenetic Algorithms. Mathematical and Computational Applications.2005,10(1):45-56P
    [97]刘建峰,孙雅洲,卢泽生.基于遗传算法的微细铣削加工参数优化.航空精密制造技术.2010,46(5):23-27页
    [98]何绍武,邬义杰,周刚.基于改进遗传算法的圆锥滚子轴承优化设计方法的研究.组床与自动化加工技术.2006,(9):1-2,7页
    [99] Michalewicz Z, Schoenauer M. Evolutionary algorithm for constraint parameteroptimization problems.Evolutionary Computation.1996,4(1):1-32P
    [100] Wei Jianhua, Kong Xiaowu, Qiu Minxiu, Wu Genmao. Transient response of avalve control hydraulic system with long pipes. Chinese Journal of Mechanicalengineering.2004,17(1):31-35P
    [101] Martin Sj lund, Robert Braun, Peter Fritzson, Petter Krus. Towards EfficientDistributed Simulation in Modelica Using Transmission Line Modeling.3rdInternational Workshop on Equation-Based Object-Oriented Languages and Tools.2010,10:71-80P
    [102] M. Montanari, F. Ronchi, C. Rossi, A. Tilli, A. Tonielli. Control and performanceevaluation of a clutch servo system with hydraulic actuation. Control EngineeringPractice.2004,12(11):1369-1379P
    [103]王仁广,张爱民,李志远,刘昭度.基于速度变化的摩擦力模型的ABS液压管路瞬态特性分析.液压与机床.2009,37(6):74-80页
    [104]张辉.液压动态仿真软件DSHW积分算法改进及汽车ABS制动管道动态特性研究.东南大学硕士学位论文.2003:45-47页
    [105] Benjamin C.Kuo, and Farid Golnaraghi. Automatic Control Systems,8th ed..New York: John Wiley&Sons.2002:156-166P
    [106] Perez-Pinal, F.J.,Calderon, G.,Araujo-Vargas, I.. Relative coupling strategy.International Electric Machines and Drives Conference.2003:1162-1166P
    [107] Dong Sun. Position synchronization of multiple motion axes with adaptivecoupling control. Automatica.2003,39(6):997-1005P
    [108] Dezong Zhao, Chunwen Li, Jun Ren. Speed synchronization of multipleinduction motors with adjacent cross coupling control. Proceedings of the48th IEEEConference on Decision and Control.2009:6805-6810P
    [109] Daoguo Yang, Tianlong Gu, Huaiying Zhou, Jianmin Zeng, Zhengyi Jiang. Basedon Adjacent Cross-Coupling of Multi-Motor Synchronous Drive. Advanced MaterialsResearch.2011,201-203:1093-1097P
    [110]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略.中国电机工程学报.2007,27(15):59-63页
    [111] Zhao Dezong, Li Chunwen, Ren Jun. Speed Synchronization of MultipleInduction Motors with Total Sliding Mode Control. Systems Engineering-Theory&Practice.2009,29(10):110-117P
    [112]曹玲芝,李春文,牛超,赵德宗,魏尚北.基于相邻交叉耦合的多感应电机滑模同步控制.电机与控制学报.2008,12(5):289-295页
    [113] Julio E.Normey-Rico, Eduardo. F. Camacho. Dead-time compensators: A survey.Control Engineering Practice.2008,(16):407-428P
    [114]赵东亚,邹涛,王治平,何熊熊.基于Smith预估器的积分切换增益滑模控制.计算机与应用化学.2010,27(6):756-758页
    [115]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005:35-60页
    [116]朱晓东,范秉琪,杨祖轩,冯冬青.基于ITAE标准函数的纯滞后系统控制.郑州大学学报(工学版).2006,27(2):73-76页
    [117]童朝南,武延坤,刘磊明,李江昀.液压活套多变量系统的建模及积分变结构控制.自动化学报.2008,34(10):1306-1311页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700