用户名: 密码: 验证码:
基于色素荧光的浮游藻识别测定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国海域赤潮频发,对海洋渔业、养殖业、水产资源造成极大的损害,对海洋生物和人类健康的发展构成威胁,迫切需要建立一种快速、有效地监测浮游藻群落组成的方法,以实现赤潮的应急、常规监测。浮游藻三维荧光光谱能给出激发-发射范围的全部荧光指纹信息,对浮游藻的分类识别有很大的应用潜力,是近年来备受关注的浮游藻群落测定方法之一。目前的研究主要针对浮游藻活体荧光展开,对于远海海域及海洋调查采集的大量浮游藻膜样品无法进行测定,迫切需要建立针对膜样品分析的技术,从而实现对浮游藻群落组成的识别测定。同时针对本课题组前期基于小波分析建立的浮游藻活体荧光识别技术对某些赤潮藻的识别率较低的问题,本文采用多种技术提取光谱特征,着力建立各种识别技术之间的互补联立谱库,完善现有的浮游藻活体荧光识别测定技术。
     第一部分:在对我国近海海域赤潮与非赤潮期间浮游藻群落组成结构特点总结的基础上,选择39种浮游藻(优势藻和赤潮藻)进行研究,分别测得目标藻种在不同生长条件下的色素萃取液三维荧光光谱,综合利用小波、小波包、二维小波变换及Bayes判别分析、多元线性回归等方法,分别建立浮游藻色素萃取液的三种荧光识别测定技术,基本上实现了浮游藻群落组成门类水平和属水平(发生赤潮时)上的识别分析,具体研究成果如下:
     1以相对标准偏差(RSD)为标准,检验了浮游藻色素萃取液荧光光谱的稳定性;通过组间组内方差分析,得到不同门、属间的浮游藻色素萃取液荧光光谱具有较明显的差异性。
     2分别采用小波(db7,coif2小波)、小波包、二维小波变换对浮游藻色素萃取液荧光光谱进行特征提取,通过Bayesian判别分析法选择分类判别能力最佳的浮游藻识别特征谱,并构建相应的浮游藻色素萃取液荧光识别特征谱库;在此基础上,结合非负最小二乘法解析的多元线性回归分别建立相应的浮游藻色素萃取液荧光识别测定技术。对各种技术进行测试:对于单种藻样品,得到门水平上的平均识别正确率分别为95.5%,95.4%,95.5%,94.3%,平均识别相对含量分别为89.4%,87.6%,88.8%,87.3%;属水平上的平均识别正确率分别为89.3%,89.1%,90.1%,87.8%。对于模拟混合藻样品,当门上比例达50%时,小波、小波包技术能对除黄藻门以外的其它6个门类达90%以上的识别正确率,二维小波技术对黄藻门、蓝藻门识别效果不好;当混合比例达60%时,三种技术能对除黄藻门以外的其它6个门类藻均达85%以上的识别正确率。在属水平上,当浮游藻优势度达80%时,能对优势种达75%以上的识别正确率。当浮游优势度达90%时,能对优势种达80%以上的识别正确率。
     3将db7小波识别技术用于现场浮游藻膜样品的识别测定,结果显示对硅藻的识别和HPLC-CHEMTAX结果一致,隐藻不能被正确识别。将HPLC-CHEMTAX显示相对含量较高的现场样品谱加入到所建荧光识别特征谱库进行识别,整体识别情况有所改善,除硅藻能被正确识别外,隐藻的识别正确率明显提高。表明所建技术用于浮游藻样品浮游藻群落组成的识别分析是可行的。如果通过现场培养浮游藻或是现场采集浮游藻样品(尤其是赤潮期间采样)获得现场谱更新识别特征谱库,识别结果将会得以改善。
     第二部分:选择近海海域常见的53种浮游藻(优势藻和赤潮藻)进行研究,分别测得目标藻种在不同生长条件下的活体三维荧光光谱,综合利用小波、小波包、二维小波变换及Bayesian判别、系统聚类分析及多元线性回归等方法,分别建立小波、小波包、二维小波的浮游藻活体荧光识别测定技术,并研究各种技术对光谱特征的提取能力及相互补充作用,最终建立互补联立谱库的识别测定技术,实现浮游藻群落组成门类水平和属类水平(发生赤潮时)的识别分析,具体研究成果如下:
     1.分别采用小波(db7,coif2小波)、小波包、二维小波变换提取浮游藻活体荧光光谱特征,结合多元线性回归法分别建立3种浮游藻活体荧光识别测定技术。将各种识别技术用于对浮游藻单种样品、混合样品进行测试,并研究不同技术对浮游藻特征谱的提取能力及相互补充作用,最终建立了以db7-ca3小波标准谱库为一级谱库,其它特征谱库作为二级谱库进行补充的联立识别测定技术。
     2.将联立谱库识别技术用于浮游藻样品的识别测定,对于浮游藻单种样品,得到门水平上的平均识别正确率为96.0%,属水平上的平均识别正确率为87.4%,其中Oc,Db,Ld,Rh,Ks,Pl,As的识别率分别提高16.7,10,6.8,11.7,14.2,16.7,33.3个百分点。对于不同比例(60%,70%,80%,90%)的浮游藻模拟混合样品,在门水平上的平均识别正确率分别为89.3%,93.8%,96.1%和96.9%;平均识别相对含量分别为58.4%,68.7%,77.5%和86.1%;在属水平上的平均识别正确率分别为64.7%,92.6%,93.8%和93.9%。其中,Cf(60%优势度)和Db(60%的优势度)的识别率分别提高31.2和35.2个百分点。
     3.将联立谱库识别技术用于胶州湾和围隔实验采集的24个水样分析:23个水样门类识别结果与镜检结果一致,属水平上对于优势度大于80%(藻细胞丰度)的8个水样,5个水样的优势藻能被正确识别。
     4.将联立谱库识别技术用于渤海、胶州湾水体分析,得到海域的浮游藻群落组成识别情况与历史资料研究较好地保持一致。
     本文的创新之处在于基于浮游藻色素萃取液三维荧光光谱,综合利用小波、小波包及二维小波分析技术建立浮游藻色素萃取液荧光识别测定技术,用于满足大量浮游藻膜样品的快速分析需要。同时基于浮游藻活体三维荧光光谱,综合利用小波、小波包及二维小波分析技术建立浮游藻活体荧光识别测定技术,并研究各种技术对光谱特征的提取能力及相互补充作用,建立互补联用谱库,提高了某些浮游藻尤其是某些赤潮藻的识别正确率。实现了在海域正常情况下能够在门类水平上测定浮游藻群落组成,赤潮发生时在属水平上对引发赤潮的肇事藻进行快速识别。
Harmful algal blooms are ubiquitous natural phenomena caused by the excessive growthof phytoplankton. In recent years, more and more red tides have occurred in the marine areasof China and the key bio-species here have rapidly increased. This has led to severe economicinjury, serious risks to the local marine culture and fishing industry, and increased potentialhuman health risks. These problems have drawn significant attention from the scientificcommunity, and call for a rapid and effective method for emergency monitoring ofphytoplankton communities. The three-dimensional fluorescence spectra can give all the‘fingerprint’ information of the algae within the wavelength coverage and is a potentialtechnique for the algae identification, which has drawn more attention for determining thephytoplankton community. Current researches conducted aiming at in vivo fluorescence ofphytoplankton, and large amounts of membrane samples can’t be measured by thesetechniques. It urgently needs to establish the method for the distant waters and analyzing thefilter samples and discriminate the algae population composition on the basis of it. Also, thefluorescence discrimination technique was established based on wavelet in our researchgroup, and there existed some problems such as the poor discrimination of some algae(especially some red tide algae). Here, some techniques were used to extract the featurespectra, and the complementary simultaneous feature spectra database was to be establishedand to perfect the in vivo fluorescence discrimination technique
     Part Ι: Based on the study of the composition of phytoplankton population in coastalarea of China,39algae species(most were dominant species or red tide algae) were selectedfor the experiment and cultured in different conditions for the3-D fluorescencemeasurements. Three kinds of mathematical method of wavelet, wavelet packet,2-D waveletanalysis, and some chemometrics methods such as Bayesian analysis, MLR(Multiple Linear Regression) were used together. The pigment extract fluorescence discrimination techniquewas established finally and it had better capabilities of yielding differentiated assessments ofalgae population distributions at the division level and the genus level(when the HABsbroken). Specific research results were as follows:
     1. The relative standard deviation (RSD) was used as a criteria to analysis the stability of thefluorescence spectra, and the variance (between-column variance and interclassvariance)was used to analyze the otherness between different division and genus level.
     2. Wavelets analysis(db7, coif2), wavelet packet analysis,2-D wavelet analysis were used toextract the feature spectra of algae species, and the optimal feature spectra were selectedby Bayesian analysis to compose the reference spectra database. Based on the database,three different discrimination fluorescence techniques were established by non-negativeleast squares. Above all techniques were tested: For single samples, the correctlydiscriminating ratios(CDRs) were95.5%,95.4%,95.5%and94.3%,with the relativecontent were89.4%,87.6%,88.8%,87.3%at the division level, respectively;And theCDRs were89.3%,89.1%,90.1%and87.8%at the genus level, respectively. Forsimulative mixtures, when the mixed proportion was50%, the CDRs could be greaterthan90%except Xanthophyta by the wavelet and the wavelet packet techniques; and thediscrimination was a little poor by the2-D technique for the Xanthophyta andCyanophyta. When the mixed proportion was60%, the CDRs could be greater than85%except Xanthophyta by the three techniques. For the discrimination at the genus level,when the proportion of the dominant species reached80%, the dominant algae speciescould be recognized and the CDRs was greater than75%. When the proportion of thedominant species reached90%, the CDRs was greater than80%and20red tide algaecould be recognized correctly with the CDRs of90%.
     3. The db7fluorescence technique was used to analyse the filter samples, the results wereconsistent with the results of HPLC-CHEMTAX for the discrimination of Diatom.However, it couldn’t discriminate the Cryptomonas correctly. When the feature spectra database was expanded by adding the field spectra and to analyze the sample, thediscrimination results were improved especially for the discrimination of Cryptomonas. Itclearly seen that the fluorescence technique could be used to analyze the filter samples ofthe phytoplankton, and if more and more field sample spectra were obtained to update thefeature spectra database, the technique would be gain better discrimination results.
     Part Π:53algae species(most were dominant species or red tide algae) were selected forthe experiment and cultured in different conditions for the3-D fluorescence measurements.Three kinds of mathematical methods of wavelet, wavelet packet,2-D wavelet analysis, andsome chemometrics methods such as Bayesian analysis, Cluster analysis and MLR(MultipleLinear Regression) were used together, three in vivo fluorescence discrimination techniquewere established, and the complementarities between the different fluorescence techniquewas discussed to establish the simultaneous discrimination technique which had bettercapabilities of yielding differentiated assessments of algae population distributions at thedivision level and the genus level(when the HABs broken). Specific research results were asfollows:
     1. Wavelets analysis(db7, coif2), wavelet packet analysis,2-D wavelet analysis were usedto extract the feature spectra of algae species, and three different discriminationfluorescence techniques were established by non-negative least squares. And thecomplementarities were discussed. And the simultaneous discrimination technique wasestablished finally and the db7norm spectra database was the first database of thediscrimination and other feature spectra were construct the second data database.
     2. The simultaneousness spectra database technique was tested: for the single samples, theaverage CDRs was96.0%at the division level, the CDRs was87.4at the genus level.The algae species such as Oc,Db,Ld,Rh,Ks,Pl,As, the CDRs of which were increase16.7,10,6.8,11.7,14.2,16.7,33.3percentage point. For the simulative samples whenthe algae dominance were60%,70%,80%,90%, the CDRs were89.3%,93.8%,96.1%and96.9%at the division level, with the average relative contents of58.4%,68.7%, 77.5%, and86.1%, respectively; the CDRs were64.7%,92.6%,93.8%and93.9%,respectively at the genus level. In which, Cf (60%dominance) and (60%dominance) Dbwere increase31.2and35.2percentage point, respectively.
     3. For24particular field samples from Jiaozhou Bay and Enclosure experiment, the resultsof23samples were consistent with the microscopic examination at the division level;and5samples from8samples were successfully recognized at the genus level which thealgae dominance achieved80%of the total biomass.
     4. For particular applications in Bohai sea and Jiaozhou Bay, it was possible to estimate thephytoplankton community composition and relative abundance of different classes, andthe whole results agree with that of published papers.The innovation of this paper is: Based on3-D fluorescence spectra of the phytoplankton
     pigment extract, three kinds of mathematical method of wavelet, wavelet packet and2-Dwavelet analysis were synthetically applied to establish the pigment extract fluorescencediscrimination technique. The technique could meet the demand of the distant waters andanalyzing large amounts of membrane samples. Another innovation was based on the in vivofluorescence spectra of phytoplankton, three kinds of mathematical method of wavelet,wavelet packet and2-D wavelet analysis were synthetically applied to extract the featurespectra and the complementarities were studied. The complementary simultaneousdiscrimination technique was established finally and the CDRs were improved for somespecies especially for some red tide algae. The technique not only can discriminate algaepopulations at division level, but also can identify the algae species causing harmful algaeblooms(HAB) at genus level when HAB happens.
引文
[1] Jeffrey S W, Mantoura R F C, Wright S W (eds). Phytoplankton pigments in oceanography: guidelinesto modern methods, UNESCO Monographs on Oceanographic Methodology, UNESCO, Paris,1997,10.
    [2] Sieburth J,Mc N, Smetacek V,et al. Pelagic ecosystem structure, Heterotrophic compartments of theplankton and their relationship to plankton size fraction. Limnology&Oceanography,1978,23:1256-1263.
    [3] Sathyendranath S, Gouveia A D, Shetys S R, et al. Biological control of surface temperature in theArabian Sea. Nature,1991,349:54-56.
    [4] Webber M, Edwards-Myers E, Campbell C, et al. Phytoplankton and zooplankton as indicators ofwater quality in Discovery Bay, Jamaica. Hydrobiologia,2005,545(1):177-193.
    [5] Villegas I, Giner J D. Phytoplankton as biological indicator of water quality. Water Reaserch,1973,7:479-487.
    [6]王宪,李文权.闽南和台湾浅滩近岸上升流区浮游植物碳同化速率的研究.生态学报,1992,12(3):219-224.
    [7]张秋丰,尹翠玲,徐玉山,等.2006年夏季渤海湾赤潮重点监控区的网采浮游植物群落.天津科技大学学报,2007,22(3):19-23.
    [8]王俊.渤海近岸浮游植物种类组成及其数量变动的研究.海洋水产研究,2003,24(4):44-50.
    [9]孙军,刘东艳,杨世民,等.渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究.海洋与湖沼.2002,33(5):461-471.
    [10]康元德.渤海浮游植物的数量分布和季节变化.海洋水产研究,1991,12:31-44.
    [11]王俊,康元德.渤海浮游植物种群动态的研究.海洋水产研究,1998,19(1):51-59.
    [12]董婧,李培军,刘悦,等.黄海北部近岸浮游植物生态特征分析.水产科学,1999,18(5):12-15.
    [13]杜秀宁,刘光兴.2006年冬季北黄海网采浮游植物群落结构.海洋学报,2009,31(5):132-147.
    [14]刘永清,周青云,王梅,等.2003年胶州湾红岛海域生物现状的初步研究Ι:浮游藻现状的初步调查与研究.海洋科学,2005,29(5):84-88.
    [15]柳丽华.黄海及长江口毗邻海域浮游植物群落结构和多样性分析:[硕士学位论文].中国海洋大学水生生物学,2007.
    [16]田伟,孙军,樊孝鹏,等.2008年春季东海近海浮游植物群落.海洋科学进展,2010,28(2):170-178.
    [17]王丹,孙军,安佰正.2006年秋季东海陆架浮游植物群集.应用生态学报,2008,19(11):2435-2442.
    [18]谢文玲.东海典型海域浮游硅藻群落结构与动态研究.[博士学问论文]:厦门大学植物学专业,2006.
    [19]罗民波,陆健健,王云龙,等.东海浮游植物数量分布与优势种.生态学报,2007,27(12):5076-5085.
    [20]栾青杉.长江口及其邻接水域浮游植物群集生态学研究:[硕士学位论文].中国海洋大学遗传学专业.
    [21]吴玉霖,傅月娜,张永山,等.长江口海域浮游植物分布及其径流的关系.海洋与湖沼,2004,35(3):246-251.
    [22]乐凤凤,宁修仁.南海北部浮游植物生物量的研究热点及影响因素.海洋学研究,2006,24(2):60-69.
    [23]乐凤凤,孙军,宁修仁,等.2004年夏季中国南海北部的浮游植物.海洋与湖沼,2006,37(3):238-248.
    [24]蓝文陆,黄凌风,郭丰,等.厦门岛东南岸沙滩栖甲藻的种类组成及优势种的季节变化.海洋学报,2005,27(6):131-137.
    [25]彭欣,宁修仁,孙军,等.南海北部浮游植物生长对营养盐的响应.生态学报,2006,26(12):3959-3968.
    [26]朱根海,宁修仁,蔡昱明,等.南海浮游植物种类组成和丰度分布的研究.海洋学报,2003,25(增刊2):8-23.
    [27]徐宗军,孙萍,朱明远,等.南海北部春季网采浮游植物群落结构初步研究.海洋湖沼通报,2011,(2):100-106.
    [28]孙军,宋书群,乐凤凤,等.2004年冬季南海北部浮游植物.海洋学报,2007,29(5):132-145.
    [29]刘杰,李丽,贺娟.南海海域浮游植物分布特征及研究进展.海洋地质与第四纪地质,2010,30(3):133-142.
    [30]翟红昌.基于HPLC技术的南海北部浮游植物色素与群落结构研究。[博士学位论文]:中国海洋大学:生态学,2010.
    [31]陈纪新,黄邦钦,刘媛,等.应用特征色素研究东海和南海北部浮游植物的群落结构.地球科学进展,2006,21(7):738-746.
    [32]柯志新,黄良民,谭烨辉,等.2007年夏季南北部浮游植物的物种组成丰度分布.热带海洋学报,2011,,30(1):131-143.
    [33]华泽爱.赤潮灾害.北京:海洋出版社,1994.
    [34]周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展,2006,21(7):673-679.
    [35]中国赤潮研究与防治(一),中国海洋学会赤潮研究与防治学术研讨会论文集。北京:海洋出版社,2005.
    [36]张有份.海洋赤潮知识100问.北京:海洋出版社,2000,10.
    [37]邹景忠,韩笑天,有害赤潮生物分类学,2003,中国现代海洋科学丛书:海洋环境保护科学,济南:山东教育出版社,331-351.
    [38]周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展,2006,21(7):673-679.
    [39]国家海洋局《中国海洋环境质量公报》,2001-2010.
    [40] Suzuki K, Handa N, Kiyosawa H, et al. Temporal and spatial distribution of phytoplankton pigmentsin the central Pacific Ocean along175oE during the boreal summers of1992and1993. Journal ofPhysical Oceanography,1997,53:383-396.
    [41] Chisholm S W, Olson R J, Zettler E R. A novel free-living prochlorophyte abundant in the oceaniceuphotic zone. Nature,1988,334:340-343.
    [42] Boddy L, Morris C W, Wilkins M F, et al. Neural network analysis of flow cytometric datafor40marine phytoplankton species. Cytometry,1994,15:283-293.
    [43] Tang X, Kenneth Stewart W, He Huang, et al. Automatic plankton image recognition. ArtificialIntelligence Review,1998,12:177-199.
    [44] Hans du Bu, f Bayer M M. Automatic Diatom Identification. Singapore World Scientific PublishingCo Pre Ltd,2002.
    [45]王明时,王学名,张磊.显微图像分析技术在赤潮生物识别中的应用.天津大学学报,2004,37(5):392-395.
    [46]高亚辉,罗金飞,骆巧琦,等.数学形态学在海洋浮游植物显微图像处理中的应用.厦门大学学报,2008,47(2):242-245.
    [47]高亚辉,杨军霞,骆巧琦,等.海洋浮游植物自动分析和识别技术.厦门大学学报,2006,45(2):40-44.
    [48] Ji G R, Zheng H Y, Qiao X Y, et al. An improved threshold denoising algorithm based onmulti-wavelet for cell image edge detection. IEEE Second International Symposium on IntelligentInformation Technology Application,2008.
    [49]周立俭,姬光荣,冯晨.基于多小波的浮游植物细胞图像边缘检测方法.通信技术,2008,41(7):242-246.
    [50]史珊珊,基于分形理论的浮游植物显微图像识别研究:[硕士学位论文],青岛:中国海洋大学信号与信息处理专业,2009.
    [51] Scholin C A, Herzog M, Sogin M, et al. Identification of group and strair-specific genetic markers forglobally distributed Alexandrium(Dinoflagellate). Journal of Phycology,1994,30:999-1011.
    [52] Zechman F W, Zimmer E A. Theriot E C. Use of ribosomal DNA internal transcribed spacers forphylogenetic studies in diatoms. Journal of Phycology,1994,30:507-512.
    [53]陈月琴,何家菀,庄丽,等.二种淡水微囊藻Rdna16S-23S基因间隔区的序列测定与分析.水生生物学报,1999,23(1):41-46.
    [54]陈月琴,王宁,周慧,等.棕囊藻赤潮原因种的分子鉴定和起源分析.海洋学报,2002(24):99-103.
    [55]董云伟,董双林.赤潮异弯藻和海洋原甲藻LSU rDNA扩增及序列分析.中国海洋大学学报,2004,34(3):358-364.
    [56]李秀芹.应用双特异性分子探针技术对圆海链藻(Thalassiosira rotula)进行定性定量检测研究。
    [硕士学位论文]:青岛,中国海洋大学海洋生物学专业,2005.
    [57]唐祥海,于仁成,颜天,等.中国沿海亚历山大藻(Alexandrium)核糖体rDNA部分序列分析及该藻属分子系统进化研究。海洋与湖沼,2006,37(6):529_535.
    [58]王波,米铁柱,吕颂辉,等.几株原甲藻核糖体大亚基RNA基因的部分克隆及序列分析.海洋学报,2007,29(1):120-126.
    [59]黄健,梁姗,秦洁.利用ITS-5.8SrDNA序列对2株海洋亚历山大藻进行的分子鉴定,中国海洋大学学报,2008,38(2):285-290.
    [60] Galluzzi L, Bowers H A, Tengs T,Glasgow B, et al. Development of real-time PCR assays forrapiddetection of pfiesteria piscicida and related dinoflagellates.Applied and EnvironmentalMicrobiology,2000,66(11):4641-4648.
    [61]何闪英,程刚,苟万里,等.运用荧光定量PCR技术检测中肋骨条藻的研究。高技术通讯,2006,16(3):313-318.
    [62]何闪英,吴小刚.赤潮研究中圆海链藻实时荧光定量PCR检测方法的建立。水产学报,2007,31(2):193-198.
    [63] Costas E, Lopez-Rodas V. Enumeration and separation of the toxic dinoflagellate Alexandriumminutum from natural samples using immunological procedures with blocking antibodies. Journal ofExperimental Marine Biology and Ecology,1996,198:81-87.
    [64] Fabienne G, B atrice B, Laetitia P, et al. One step immunochromtographic assay for the rapiddetection of Alexandrium minutum. Biosensors and Bioelectronics,2010,25(1):1235-1239.
    [65]温若冰.噬菌体展示技术筛选藻毒素结合多肽、毒素调查及甲藻钙调蛋白基因的研究.[博士学位论文]:中国海洋大学海洋生物学专业,2010.
    [66] Jeffrey S W, Mantorar F C, Wright S W. Phytoplankton pigments in oceanography:guide lines tomodern methods. Pairs: UNESCO Publishing,1997.
    [67] Eric J M, Marty J C, Denant V, et al. Phytoplanktonic sources of volatile aldehydes in the RiverRhone Estuary. Estuarine, Coastal and Shelf Science,1991,32:463-482.
    [68] Mackey M D, Higgins H W, Mackey D J, et al. CHEMTAN user’s manual: a program for estimatingclass abundances from chemical markers-application to HPLC measurements of phytoplanktonpigments. Australia Hobart: CSIRO Marine Laboratories Report229,1997.
    [69] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent researchdevelopments. Org. Geochem,1998,29:1163-1179.
    [70]彭兴跃,洪海征,黄明,等.厦门港海水光合色素特征.台湾海峡,2001,21(1):79-84.
    [71] Stoń J, Kosakowska. A qualitative and quantitative analysis of Baltic phytoplankton pigments.Oceanoligia,2000,42:449-471.
    [72]韩博平,韩志国,付翔.藻类光合作用机理与模型.北京:科学出版社,2003.
    [73] Jeffrey S W, Mantourar F C, Wright S W. Phytoplankton pigments in oceanography: Guidelines tomodern methods. Paris: UNESCO Publishing,1997:661.
    [74] Lohrenz S E, Carroll C L, Weidemann A D, et al. Variations in phytoplankton pigments, size structureand community composition related to wind forcing and water mass properties on the North Carolinainner shelf.Continental Shelf Research,2003,23:1447-1464.
    [75] Wright S W, Shearer J D. Rapid extraction and high-performance liquid chromatography ofchlorophylls and carotenoids from marine phytoplankton. J Chromatogr,1984:281-295.
    [76] Abaychi J K, Riley J P. The determination of phytoplankton pigments by high performance liquidchromatography. Anal Chim Acta,1979,107:1-11.
    [77] Mantoura R F C, Llewellyn C A. The rapid determination of algal chlorophyll and carotenoidpigments and their breakdown products in natural waters by reverse-phase high performance liquidchromatography. Anal Chim Acta,1983,151:397-314.
    [78] Mackey M D, Mackey D J, Higgins H W, et al. CHEMTAX-a program for estimatingclassabundances from chemical markers: application to HPLC measurements of phytoplankton.Marine Ecology Progress Series,1996,144:265-283.
    [79] Gibb S W, Cummings D G, Irigoten X,et al.Phytoplankton pigment chemotaxonomy of thenortheastern Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography,2001,48(4-5):795-823.
    [80] Qian Y, Jochens A E, Kennicutt II M C, et al. Spatial and temporal variability of phytoplanktonbiomass and community structure over the continental margin of the northeast Gulf of Mexico basedon pigment analysis.Continental Shelf Research,2003,23(1):1-17.
    [81] Furuya K, Hayashi M, Yabushit Y,et al.Phytoplankton dynamics in the East China Sea in spring andsummer as revealed by HPLC-derived pigment signatures. Deep Sea Research Part II: Topical Studiesin Oceanography,2003,50(2):367-387.
    [82] Wright S W, Jeffrey S W. Pigment markers for phytoplankton production. Marine OrganicMatter:Biomarkers, Isotopes and DNA,2006,71-104.
    [83]姚鹏,于志刚,米铁柱.海洋浮游藻类的化学分类法.海洋环境科学,2003(1):75-80.
    [84] Furuya K, Hayashi M, Yabushita Y et al. Phytoplankton dynamics in the East China Sea in spring andsummer as revealed by HPLC-derived pigment signatures. Deep-Sea Res Ⅱ,2003,50:367-387.
    [85]焦念志,杨燕辉.中国海原绿球藻研究.科学通报,2002,47:485-491.
    [86]王海黎、洪华生.近岸海域光合色素的生物标志作用研究1.台湾海峡特征光合色素的分布及其对浮游植物类群结构的指示.海洋学报,2000,22:94-102.
    [87]彭兴跃,洪海征,黄明,等.厦门港海水光合色素特征.台湾海峡,2002,21(1):78-85.
    [88]陈纪新,黄邦钦,刘媛,等.应用特征光合色素研究东海和南海北部浮游植物的群落结构.地球科学进展,2006,21(7):738-746.
    [89]侯建军,武模戈,赖红艳,等.基于HPLC的化学分类法对一些有害浮游植物的分类分析.湖北民族学院学报(自然科学版),2007,25(4):442-447.
    [90] Yao Peng,Yu Zhigang,Deng Chunmei.Pigment signatures of some diatoms isolated from China seas.Acta Oceanologica Sinica,2006,25(1):108-118.
    [91] Yu Zhi-gang, Deng Chun-mei, Yao Peng, et al. Prasinoxanthin-containing prasinophyceae discoveredin Jiaozhou Bay, China [J]. Journal of Integrative Plant Biology,2007,49(4):497-506.
    [92] Rohacek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, andmutual relationships.Photosynthetica,2002,40:13-29.
    [93] Weng J H, Chen Y N, Liao T S. Relationships between chlorophyll fluorescence parameters andphotochemical reflectance index of tree species adapted to different temperature regimes.FunctionalPlant Biology,2006,33(3):241-246.
    [94] Yentsch C S, Yentsch C M. Fluorescence spectral Signatures: The Characterization of PhytoplanktonPopulations by Theuse of Excitation and Emission Spectra. Mar Res,1979,37:471-483.
    [95] Cleveland J S, Perry M J. Quantum Y. Relative specific Absorption and Fluorescence innitrogenlimited Chaetoceros Grasilis. Mar Biol,1987,94:489–497.
    [96] Sakeshaug E, Johnsen G., Andresen K et al. Modeling of lightdependent Algal Photosynthesis andGrowth:Experiments with Barents Sea Diatoms Thalassiosira Nordenskioedii and ChaetocerosFurcellatus. Deep Sea Res,1991,38:415–430.
    [97] SooHoo J B, Kiefer D A, Collins D J, et al. In vivo Fluorescence Excitation and Absorption Spectraof Marine Phytoplankton: Taxonomic characteristics and responsesto photoadaptation. PlanktonRes,1986,8:197–214.
    [98] Yentsch C S, Phinney D A. Spectral Fluorescence: an Ataxonomic Tool for Studying the Structure ofPhytoplankton Populations. Plankton.Res,1985,7:617–632.
    [99] Oldham P B, Zillioux E J, Warner I M. Spectral ‘fingerprinting’of Phytoplankton Populations by twodimensional Fluorescence and Fouriertrans formbased Pattern Recognition. Mar.Res,1985,43:893–906.
    [100] Cowles T J, Desiderio R A, Neuer S. In situ Characterization of Phytoplankton fromvertical Profilesof Fluorescence Emission Spectra.Mar.Biol,1993,115:217–222.
    [101] Poryvkina L, Babichenko S, Kaitala S, et al. Spectral Fluorescence Signature in the Characterizationof Phytoplankton Community Composition. Plankton.Res,1994,16:1315–1327.
    [102] Lee T Y, Tsuzuki M, Takeuchi T, et al. Quantitative determination of cyanobacteria in mixedphytoplankton assemblages by in vivo fluorimetric method [J]. Analytica Chimica Acta,1995,302:81-87.
    [103] Sepp l J, Balode M. The use of spectral fluorescence methods to detect changes in the phytoplanktoncommunity. Hydrobiologia.1998,363(1-3):207-217.
    [104] Sepp l J, Balode M.Spatial distribution of phytoplankton in the Gulf of Riga during spring andsummer stage. Journal of Marine Systems1999,23:51-67.
    [105] Boddy L, Morris C W, Wilkins M F, et al. Identification of72Phytoplankton species by radial basisfunction neural network analysis of flow cytometric data[J]. Marine Ecology Progress Series,2000,195:47~59
    [106] Beutler M, Wiltshire K H, Meyer B, Moldaenke C, et al. A fluorometric method for the differentiationof algal populations in vivo and in situ. Photosynthesis Research,2002,72:39~53.
    [107] Beutler M, Wiltshire K H, Meyer B, Moldaenke C, Luring C, Meyerhofer M, Hansen U P, Dau H. Afluorometric method for the differentiation of algal populations in vivo and in situ. PhotosynthesisResearch,2002,72:39~53.
    [108] Sepp l J, Yl stalo P, Kaitala S, H llfors S, Raateoja M, Maunula P (2007)Ship-of-opportunity basedphycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the BalticSea. Estuar Coast Shelf Science.73:489-500.
    [109] Aymerich I F, Piera J, Soria-Frisch A, et al. A rapid technique for classifying phytoplanktongfluorescence spectra based on self organizing maps. Applied spectroscopy,200963(6):716-726.
    [110]夏达英,王振先,夏敬芳,等.海水叶绿素a现场测量仪研究.海洋与湖沼,1997,28:433-439.
    [111]王书涛,王玉田,车仁生,等.基于小波变换的叶绿素荧光光谱测量系统研究.应用光学,2005,26:49-52.
    [112][112]赵冬至,张丰收,杜飞,等.基于高光谱反射率的藻类水体基线荧光峰高度与叶绿素a浓度关系研究.高技术通讯,2004,5:70-74.
    [113]廉双喜.赤潮监测和预报的构想.海洋技术,2002,21(2):74-78.
    [114]张前前,等.浮游藻活体三维荧光光谱特征提取.高技术通讯,2005,15(4):75-78
    [115]张前前,类淑河,王修林,王磊,于萍.浮游藻活体三维荧光光谱分类判别方法研究.光谱学与光谱分析,2004,24(10):1227-1229
    [116]张前前.东海典型赤潮藻检测的荧光光谱特征研究:[博士学位论文].青岛:中国海洋大学海洋化学专业,2005.
    [117]马伟华,刘珑龙,张建民.基于径向基函数网络的浮游植物活体三维荧光光谱分类.计算机辅助工程,2006,3:68-71.
    [118]卢璐,苏荣国,王修林,等.基于四阶导数的浮游藻叶绿素荧光激发光谱特征研究.光谱学与光谱分析,2007,27(11):2307-2312.
    [119]李林川,王博亮,谢杰镇,等.基于LabVIEW的海洋赤潮生物荧光实时采集系统。厦门大学学报(自然科学版),2007,46(4):547-549.
    [120]王志刚,刘文清,张玉钧,等.三维荧光光谱法分类测量水体浮游植物浓度.中国环境科学,2008,28(2):136-141.
    [121]张芳,王良,苏荣国,宋志杰,王修林,祝陈坚.小波分析在活体浮游藻离散三维荧光光谱特征提取及识别中的应用研究.传感技术学报,2007,20(10):2143-2150.
    [122]张芳,苏荣国,王修林,华洋,宋志杰.浮游藻荧光特征提取及识别测定技术.中国激光,2008,35(12):2052-2059.
    [123]张芳.基于小波分析的东海浮游藻种类的荧光光谱识别技术研究.[博士论文].青岛中国海洋大学.2008.
    [124]王金霞,罗固源.应用荧光光谱法检测蓝藻生物量.现代科学仪器,2011,6:111-113.
    [125]朱晶晶.我国近海浮游植物色素的荧光光谱特征分析.[硕士学位论文]:中国海洋大学海洋化学专业,2006.
    [126] Merry R J E. Wavelet Theory and Applications. A Literature study. Eindhoven University ofTechnology Department of Mechanical Engineering Control Systems Technology Group.
    [127] Mallat S G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEETrans. PAMI,1989,11(7):674-693.
    [128] Daubechies I. Orthonormal Bases of Compactly Supported Wavelets, Comm. Pure and Applied Math.,1998,41:909-996.
    [129] Smith, Julius O. Spectral Audio Signal Processing. W3k Publishing, http://books.w3k.org/,2011,IBBN978-0-9745607-3-1.
    [130]张贤达.现代信号处理(第二版).北京:清华大学出版社.2002.
    [131]胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计—小波分析.西安:西安电子科技大学出版社.
    [132]王德华,周叔子.基于小波与多重网络方法的一类偏微分方程数值解.长沙电力学院学报,2006,21(3):62~65.
    [133]邓小炎,朱静芬.解偏微分方程的多步-小波-Galerkin方法.高校应用数学学报,2007,22(3):332-342.
    [134]刘珺,贾焕玉,黄庆.基于小波变换的1-10TeV宇宙线周期变化研究.原子核物理评论,2004,21(1):38-42.
    [135]张阳德,周以,李小莉.基于生物医学信号处理技术的医疗检测与诊断.中国医学工程,2005,13(1):52-55.
    [136]乔灵宝.小波分析及其在医学中的应用.数理医药学杂志,2003,16(2):155-156.
    [137]姚艳丽,田逢春,刘国金,徐鑫.用于光学小波变换的图像压缩方法.光电工程,2009,36(3):74-78.
    [138]柳磊.基于小波变换的图像压缩算法研究.光机电信息,2010,27(6):39-44.
    [139]徐秋平,韦琦.独立分量分析在PET图像去噪处理中的应用.哈尔滨理工大学学报,2009,14(6):61-65.
    [140]曲延华,王婷君,薛嗣麟,等.基于改进小波变换的医学图像融合方法.计算机应用,2009,29(10):2698-2699.
    [141]蒋媛.基于NSCT变换的SAR图像融合的算法.科学技术与工程,2010,10(29):1671-1815.
    [142]张国华,张学东.基于可变邻域的小波变换的球团图像边缘检测算法.鞍山科技大学学报,2005,28(6):423-426.
    [143]黄雅平,罗四维,陈恩义.基于独立分量分析的虹膜识别方法.计算机研究与发展,2003,40(10):1451-1456.
    [144]李道远,常敏,袁春风.基于小波变换的数字水印综述.计算机工程与应用,2003,23:64-67.
    [145] Eric J, Stollnitz, Tony D, et al. Wavelets for computer graphics:A primer, part1. IEEE ComputerGraphics and Applications,1995,15(3):76–84.
    [146]李月琴,栗苹,闫晓鹏,等.小波变换模极大去噪法在无线电引信信号处理中的应用.兵工学报,2008,29(10):1172-1176.
    [147]杨冬.基于小波变换的磁定向信号去噪.通信技术,2010,5(43):198-203.
    [148]王岩,苏健民,于慧伶.小波分析在语音识别系统中的研究与应用.林业劳动安全,2007,20(1):38-41.
    [149]杨立强,郝天珧,宋海斌,等.应用小波变换和C3想干算法检测地震剖面相轴.物探化探计算技术,2004,26(4):302-305.
    [150]侯遵泽,杨文采,刘家琦.中国大陆地壳密度差异多尺度反演.地球物理学报,1998,41(5):642-649.
    [151]管辉,陈永会,李小强.基于小波分析的滚动轴承故障诊断方法的研究.机械工程与自动化,2008,(6):100-104.
    [152]郑洋.小波变换在旋转机械故障检测中的应用研究.机械研究与应用.2008,21(6):111-112.
    [153]邱小童,孙康.小波分析在高速旋转机械故障特征提取中的应用.《机械设计与制造》,2004,(2):10-11.
    [154]王进,段晨东.一种基于冗余小波变换等效功率谱的故障特征提取方法.振动与冲击,2010,29(10):36-39.
    [155]朱军,柴晓冬.小波变换用于FTIR光谱定量分析.计算机技术与发展,2008,18(11):197-203.
    [156]单杨,朱向荣,许青松,等.近红外光谱结合小波变换-径向基神经网络用于奶粉蛋白质与脂肪含量的测定.红外与毫米波学报,2010,29(6):128-131.
    [157]吴桂芳,何勇.小波阈值降噪模型在红外光谱信号处理中的应用研究.光谱学与光谱分析.2009,29(12):3246-3249.
    [158]王立琦,朱秀超,张礼勇.基于小波分析的近红外光谱数据预处理.哈尔滨商业大学学报,2009,25(6):700-792.
    [159]李庆波,黄彦文,张广军,等.基于可见-近红外光谱的植物叶绿素含量无损检测方法研究.光谱学与光谱分析,2009,29(12):3275-3278.
    [160]王艳,相秉仁.小波变换计算分光光度法可行性研究.药物唔系杂志,2005,25(10):1225-1229.
    [161]邵学广,顾华,蔡文生,等.一维核磁共振谱数据的小波变换压缩.光谱学与光谱分析,1999,19(2):139-141.
    [162]何峰江,陶果,罗厚义.应用小波分析估计核磁共振测井信噪比.核电子学与探测技术,2005,25(5):471-474.
    [163]陈小强,赖万昌,张震,等.小波分析在X荧光光谱去噪声中的应用.核电子学与探测技术,2009,29(4):796-798.
    [164]朱殿明,杨鸿鹏,骆晓森,等.基于小波变换的人血清血卟啉荧光光谱分析法.光谱学与光谱分析,2007,27(12):2553-2557.
    [165]王玉田,李艳春.小波阈值去噪法在农药荧光分析中的应用.应用光学,2006,27(3):192-194.
    [166]王京港,程明霄,林锦国,等.基于小波变换的拉曼光谱仿真分析.计算机仿真,2010,27(8):334-337.
    [167]郭皞岩,胡绍明,权光日,等.小波去噪与平均算法去噪在拉曼光谱中的应用.计算机工程与设计,2007,28(7):1504-1507.
    [168] Kutil R, Engel D, Methods for the anisotropic wavelet packet transform. Applied and ComputationalHarmonic Analysis.2008,25:295-314.
    [169]杨守至,杨晓忠.尺度紧支撑双正交多小波.应用数学,2001,14(3):92-96.
    [170]黄丽芳,方志军.基于多小波变换的医学图像压缩.计算机与现代化,2010,11:39-42.
    [171]段晨东.基于第二代小波变换的混合小波降噪方法.中国机械工程,2007,18(14):1700-1702.
    [172]郑军,诸静.基于第二代小波变换的电力设备图像特征提取.电工技术学报,2003,18(6):98-102.
    [173]肖亮,韦志辉,吴慧中.基于图像内容的脊波变换域数字水印模型和算法研究.电子与信息学报,2005,26(9):1440-1449.
    [174]邓承志.基于多尺度脊波字典的图像去噪算法.计算机工程,2010,36(23):207-211.
    [175] Donobo D L, Duncan M R. Digital curvelet transform: Strategy, implementation and experiments.Proc SPIE,2000,12-29.
    [176]白键,冯象初.基于曲线波变换的图像分解.电子学报,2007,35(1)123-126.
    [177]卢小泉,刘宏德.分析化学中的小波分析技术.北京:化学工业出版社.2005,67-95.
    [178]徐宝国,宋爱国.基于小波包变换和聚类分析的脑电信号识别方法.仪器仪表学报.2009,30(1):26-28
    [179] YANG Bang-hua, YAN Guo-zheng, YAN Rong-guo G, et al.Adaptive subject-based feature extractionin brain-computer interfaces using wavelet packet best basis decomposion. Medical Engineering&Physies.2007,29(1):48-53.
    [180]喻俊馨,王计生,黄惟公,等.小波包分析在刀具声发射信号特征提取中的应用.数据采集与处理.2005,20(3):346-350.
    [181]刘中田,吴福朝,罗阿里,等.基于卷积型小波包的谱线自动提取方法.光谱学与光谱分析.2006,26(2):372-376.
    [182]沈鑫,杜宇人.一种基于最优小波包基的电泳荧光信号去噪方法.扬州大学学报,2011,14(2):70-73.
    [183]赵学智,陈统坚,叶邦彦,等.基于卷积型小波包变换的信号消噪算法.数据采集与处理,2003,18(3):292-295.
    [184]张益波,田鸿儒,逯家辉,等.基于小波包多尺度分析的感康近红外光谱快速分析方法的研究.时珍国医国药,2011,22(5):1137-1139.
    [185]吕进,林敏,庄松林,等.基于正交小波包的茶叶近红外光谱特性分析.光谱学与光谱分析,2005,25(11):1790-1792.
    [186]周伟,桂林,周林,等. MATLAB小波分析高级技术.西安电子科技大学出版社,2006.
    [187]刘财,王典,杨宝俊,等.二维小波变换在地震勘探面波消除中的应用.地球物理学进展.2003,18(4):711-714.
    [188]程德芳,徐小华,马军强,等.基于二维小波变换的指纹去噪.邢台职业技术学院学报,2011,28(3):69-71.
    [189]王安娜,陈宇,吴洁,等.二维小波变换在虹膜特征提取中的应用研究.生命科学仪器,2007,5(8):37-41.
    [190]郭皓.中国近海生物图谱。北京:海洋出版社,2004.
    [191] Mantoura. R F C, Wright S W, Jefrrey S W, et al. Filtration and storage of pigments from microalgae.In. Jeffrey S W, Mantoura R F C&Wright S W.[Eds.] Phytoplankton Pigments in Oceanography:Guidelines to Modern Methods. Monographs on oceanographic methodology, UNESCO Publishing.1997,283-306.
    [192] Suzuki R,Ishimaru T, An improved method for the determination of phytoplankton cholrophyll usingN,N-dime-thylformamide J.Oceanogr.Soc,1990,46(4):190-194.
    [193] Suzuki R, Fujita Y. Chlorophyll decomposition in Skeletonema costatum: a problem in chlorophylldetermination of water samples. Mar. Ecol. Prog. Ser.1986,28:81-85.
    [194] Moran R, Porath D. Chlorophyll determination in intact tissues using N,N-dime-thylformamide.Plant.Physiol,1980,65:478-479.
    [195]焦念志.一种新的叶绿素高效萃取剂及其应用方法.海洋科学,1994,3:20.
    [196]陈国珍.《荧光分析法》.北京:科学出版社,1990.
    [197]何文琪,王超明,吴丹,等.芳烃混合物的三维荧光光谱的降秩因子分析.光谱学与光谱分析,1993,13(5):33-36.
    [198]王伦,周运友,孙益民,等.三维荧光光谱法连续测定苯胺、二苯胺和N-甲基苯胺.分析化学,1995,25(1):97-99.
    [199]宋继梅,唐碧莲.原油样品的三维荧光光谱特征研究.光谱学与光谱分析,2000,20(1):115-118.
    [200] Andersson G G,Dable B K,Booksh K S. Weighted parallel factor analysis for calibration ofHPLC-UV/Vis spectrometers in the presence of Beer’s law deviations. Chemometrics and IntelligentLaboratory Systems,1999,49:195~213
    [201] Bro R, Sidiropoulos N D, Smilde A k. Maximum likelihood fitting using ordinary least squaresalgorithms. Journal of Chemometrics,2002,16:387~400
    [202] Wentzell P D, Nair S S, Guy R D. Three-way analysis of fluorescence spectra of polycyclic aromatichydrocarbons with quenching by nitromethane. Analytical Chemistry,2001,73:1408~1415
    [203] Mcknight D M,Boyer E M,Wsterhoff P K,et al. Spectrofluorometric characterization of dissolvedorganic matter for indication of precursor organic material and aromaticity. Limnology andOceanography,2001,46:38~48
    [204] Rinnan A,Andersene C M. Hnadling of First一order Rayleigh scatter:in PARAFAC modeling ofFluorescence excitation一emission data.Chemometr Intell Lab,2005,76:91-99.
    [205] Zepp R G, Sheldon W N, Moran M A. Dissolved organic fluorophores in southeastern US coastalwaters: Correction method for eliminating Rayleigh and Raman scattering peaks inexcitation-emission matrice. Marine Chemistry,2004,89(1~4):15-36.
    [206]许禄.化学计量学:一些重要方法的原理及应用.北京:科学出版社,2004.
    [207]李熙,关泽群,秦昆,等.基于贝叶斯推理的像元内部端元选择模型.光学学报,2009,29(9):2557~2583
    [208]邢云燕,武小悦,刘琦.指数寿命系统可靠性增长的动态Bayes评估方法.系统工程学报,2010,25(5):712~716.
    [209]梁逸曾.白灰黑复杂多组分分析体系及其化学计量学方法。长沙:湖南科学技术出版社,1996.
    [210] Kowalczuk P, Stoń-Egiert J, Cooper WJ, et al. Characterization of chromophoric dissolved organicmatter(CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy. MarineChemistry,2005,96(3-4):273-292.
    [211] Colin A. Stedmon and Rasmus Bro.Characterizing dissolved organic matter fluorescence with parallelfactor analysis: a tutorial. Limnology and Oceanography: methods.2008,6:572-579.
    [212] Kolbowski J, Schreiber U. Computer-controlled phytoplankton analyzer based on a4-wavelengthPAM chl fluorometer. Kluwer Academic Publishers, Dordrecht. In:(ed. P M),1995,825-828.
    [213] Kaitala S,Babichenko S,Poryvkina L, Leebea A. fluorescent analysis of pigment composition ofnatural phytoplankton.Mar.technol.Soc.J.,1994,28,50-58.
    [214] Babichenko S,Kaiatla S,Leeben A,Poryvkina L,Sepp l J.Phytoplankton pigments and dissolvedorganic matter distribution in the Gulf of Riga. Jounral of Marine Systems1999,23:69-82
    [215]孙萍,李瑞香,李艳,等.2005年夏末渤海网采浮游植物群落结构.海洋科学进展,2008,26(3):354-363.
    [216]徐玉山,刘宪斌,张秋丰。渤海湾近岸海域浮游植物多样性研究。盐业与化工。2009,38(6):11-14.
    [217]孙军,刘东艳。2000年秋季渤海的网采浮游植物群落。海洋学报,2005,27(3):124-132.
    [218]孙军,刘东艳,王威,等。1998年秋季渤海中部及其邻近海域的网采浮游植物群落。生态学报,2004,24(8):1644-1656.
    [219]孙军,刘东艳,徐俊,等。1999年春季渤海中部及其邻近海域的网采浮游植物群落。生态学报,2004,24(9):2003-2016.
    [220]刘东艳,孙军,唐优才,等.胶州湾北部水域浮游植物研究I——种类组成和数量变化.青岛海洋大学学报,2002,32(1):67-72.
    [221]刘东艳,孙军,张利永.胶州湾浮游植物水华期群落结构特征.应用生态学报,2003,14(11):1963-1966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700