用户名: 密码: 验证码:
油田地面环状管线水力热力设计计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常,油气混输的水力热力设计计算是采用简便公式,即采用通过估算法确定的水力摩阻系数和总传热系数来计算输油管线的压降和温降。由于经验估算、考虑环境因素简单,由此带来较大的计算误差。为了克服上述缺点,本文在水力计算方面采用了适合于倾斜管线计算且计算精度较高的Beggs-Brill方法;在热力设计计算方面采用的是均相模型,即采用质量加权平均的方法来计算油汽水三相混合物的比热容,在温降公式中考虑了管道倾斜、焦耳—汤普森效应和水力坡降的影响。在油田地面集输环线保温层厚度设计中采用优化模型,既满足了管输的温降和压降要求,也保证了最佳的经济效益,同时避免了以往设计计算中繁琐的校核过程。
     本论文运用混输管线水力热力设计计算理论建立了一套油田地面生产环线水力热力设计计算方法,并在原有软件系统的基础上编制了相应的计算机软件,对原有水力热力计算系统进行了完善。该软件系统不但可以进行单一管线的水力热力正向与反向的设计计算,而更主要的是还可以进行油田地面生产环线水力热力优化设计计算,使得软件系统的使用范围更加广泛。该软件系统可以大大地减轻工程设计人员的劳动强度,提高设计计算的科学性和准确性,而且有利于提高油田地面管线系统设计计算和管理的现代化水平。
Conventional calculation of the hydraulic thermal design for oil-gas mixed transport mainly uses the simple formula, that is to say, adopting the estimation methods to determine the hydraulic friction coefficient and the total thermal conduction coefficient and calculate the pressure drop and the temperature drop in oil translation pipe. However, error can be caused because of empirical estimation and the simple consideration of the circumstance factors. In order to overcome this shortcomings, in this paper, the Beggs-Brill methods that has the advance of higher calculation precision and suits for the calculation of the inclination pipe are adopted. In the aspect of the thermal design calculation, the homogeneous phase models are adopted, that is to use average weighted mass methods to calculate the specific heat capacity of three phase states of oil, gas, and water, the effect of the inclination of the pipe, joule-thompson effect and the hydraulic drop are considered in temperature drop formula. The optimization model adopted in designation of the thickness of the heat insulation layer of the translation pipe can satisfy the requirements of the temperature drop and the press drop in translation pipe, and guarantee the optimal economic effect. Meanwhile, the multiplication amendment course in designation calculation can be avoided.This paper takes the advance of the mixture transports pipe hydraulic thermal designation calculation theory to create a suitable method of the oil field ground production circle pipe hydraulic thermal designation calculation. On the base of the presented software system, the corresponding computer software is compiled, perfected the presented hydraulic thermal calculation system. This software system not only can perform the single pipe forward and inversion hydraulic thermal designation calculation, but also can perform the oil field ground production circle pipe hydraulic thermal optimize designation calculation and made the range of the application widely. This software system relieves the work intensity for the program device people greatly, enhances the science and the accretion of the designation calculation, and is favorable to enhance the modernization level of the oil field ground pipe system designation calculation and administration.
引文
1.冯叔初:油气集输,石油大学出版社,1988。
    2.殷代印等:矿场油气集输,石油工业出版社,1997。
    3.陈家琅:石油气液两相管流,石油工业出版社(北京),1989。
    4.陈家琅等:抽油机井的气液两相流动,石油工业出版社(北京),1992。
    5.韩洪升等:石油工程非牛顿流体力学,哈尔滨工业大学出版社,1994。
    6.陈家琅等:评价铅直气液两相管流的压降计算方法,石油学报,1991,4。
    7.韩洪升:垂直管中气液两相气弹流和段塞流的流动规律,天然气工业,1989,1。
    8.劳力云等:气体/非牛顿流体两相流动与气/水两相流动阻力特性的比较,中国科学院力学研究所
    9.章龙江:水平管中气体-非牛顿液体的两相流动,油气储运,1993(3)12,pp25-28.
    10. Beggs H.D. and Brill J.P., A Study of Two Phase Flow in Inclined Pipes, J.P.T., 1973,5.
    11. Danesh A., Discussion of Evaluation of Inclined-Pipe, Two-Phase Liquid Holdup and Pressure-Loss Correlations Using Experimental Data, J. P.T., 1967,3,10.
    12. Acikgoz A., et al., An Experimental Study of Three-Phase Flow Regimes,Int. J. Multiphase Flow, 1992(3) 18, pp327-336.
    13.杨筱蘅等:输油管道设计与管理,石油大学出版社(山东东营),2003。
    14.韩洪升等;大庆萨南油田低温高含水原油流变性研究,油气储运,1992(2)11,pp42-46.
    15.魏兆胜等:油水混合物流变性的研究,大庆石油学院学报,1993(2)17 p026-30.
    16. Hasan A.R., Void Fraction in Bubbly and Slug Flow in Downward Vertical and Inclined Systems, SPE Production & Facilities,August 1995.
    17. Scott S.L., et al., Advances in Slug Flow Characterization for Horizontal and Slightly Inclined Pipelines, SPE 20628, 1990.
    18. Scott S.L., et al., Advances in Slug Flow Characterization for Horizontal and Slightly Inclined Pipelines, SPE 20628, 1990.
    19. Taitel T., Advances in Two Phase Flow Modeling, SPE 27959, 1994.
    20. Amaravadi S., et al., The Effect of Pressure on Two-Phase Zero-Net Liquid Flow in Inclined Pies, SPE 28544, 1994.
    21. Rashld Hasen A., et al., A New Model for Two-Phase Oil/Water Flow: Production Log Interpretation and Tubular Calculations, SPE Production Enginerring, May 1990, pp193-199.
    22.韩洪升:水平管中油气水混输的持液率和压降计算方法,第四届全国多相流、非牛顿流、物理化学流学术会议论文集,1993年10月。
    23. Barnea D. On the Effect of Viscosity on Stability of Stratefied Gas-Liquid Flow -Appication to Flow Pattern Transition at Various Pipe Inclinations, Chem. Eng. Sciens, 1991(8)46,pp2123-2131.
    24. Sridhar Amaravadi, et al.,The Effect of Pressure on Two-Phase Zero-Net Liquid Flow in Inclined Pipes, SPE 28544, 1994.
    25. El-Oun Z., Gas-Liquid Two-phase Flow in Pipelines, SPE 20645, 1990.
    26. Taitel Y., et al., Steatified Three Phase Flow in Pipes, Int.j. Multiphase Flow,1995(5)21, pp53-60.
    27. Aziz K. et al., Intermittent Two Phase Flow in Horizontal Two Phase Slug Flow, Can. J. Chem. Eng., 1978(56), pp653-663.
    28. Gregory G.A., Comments on the Prediction of Liquid Holdup for Gas-Liquid Flow in Inclined, Can.J. Chem. Eng., 1974,463.
    29. Mukherjee D., et al., Liquid Holdup Correlations for Inclined Two-Phase Flow, J. P. T., 1983(5)35,pp 1003-1008.
    30. Barnette J.A., New Pressure-Drop, Holdup Equation Agree With Field Data, Oil & Gas Journal, 1987(28),pp 103-108.
    31. Neogi s., et al., A Model for Multiphase(gas/oil/water) Stratified Flow in Horizontal Pipelines, SPE 28799, 1994.
    32. Mukherjee D., et al., Liquid Holdup Correlations forInclined Two-Phase Flow, J.P.T., 1983(5)35,pp 1003-1008.
    33. Sarshar M.M., Satellite Field Development; A Review of Problems Associated Their Transport of Multiphase Well Products and Prediction of Their Behaviour, OTC 7041, 1992, pp519-530.
    34. Rygg O.B., et al., The Dynamic Two- Phase Modelling of Offshore Live Crude Lines Under Rupture Conditions, OTC 6747, 1991.
    35. Liu Y.SPE Production Engineering.1990
    36. Taitel T., Advances in Two Phase Flow Modeling, SPE 27959, 1994.
    37.杨世铭等:传热学,高等教育出版社,1998。
    38.李玉星等:多相混输管道温降的计算,油气储运,2001,9。
    39.姚光镇等:抽气管道设计与管理,石油大学出版社(山东),1991。
    40.陈之航等:气液两相流动与传热,机械工业出版社(北京),1981。
    41.油田油气集抽设计手册编写组编:油田油气集枪设计手册(上册),石油工业出版社(北京).1994。
    42.赵洪激、刘扬等:树状双管掺热水集输系统参数优化技术,石油学报,1997.1。
    43.赵洪激,刘扬等:环形掺热水油气集输管网系统参数计算,天然气与石油,1998,4。
    44.刘晓燕,刘扬等:埋地原油集输管道保温层厚度优化设计,油气储运,2005,2。
    45.邢晓凯等:输油管道及保温层的同步设计,煤气与热力,2004,12。
    46.吴双应等:管道及其保温层同步设计的新方法[J].化工学报,2002,12。
    47.李友荣等:一种新的热力管道及其保温层设计方法[J].热能动力工程,2001,2。
    48.油田油气集输设计技术手册编写组:油田油气集输设计技术手册(下册),石油工业出版社(北京),1995。
    49.扬嘉瑜译:国外输油管道保温技术概况及发展,国外油田工程,1997,5。
    50.刘扬.石油工程优化设计理论和方法.北京:石油工业出版社,1994。
    51.卢名高实用最优化方法.北京:石油大学出版社,1996。
    52.杨冰.实用最优化方法及计算机程序.哈尔滨:哈尔滨船舶工程学院出版社,1994。
    53.王海琴:埋地热油管道变厚度保温层的设计,油气储运,2002,1。
    54.张熙民,传热学,中国工业建筑出版社,1993.6。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700