用户名: 密码: 验证码:
初应力对钢管混凝土拱桥极限承载力的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来钢管混凝土拱桥发展迅速,但其设计理论相对滞后于工程实践,其中钢管初应力对钢管混凝土拱桥极限承载力的影响就是问题之一。钢管混凝土拱桥在成桥前钢管要承受自重和混凝土的湿重,这样便产生了钢管初应力。本文利用大型通用软件ANSYS对钢管初应力作用下的钢管混凝土拱桥极限承载力进行了有限元分析及参数研究,研究主要内容与成果如下:
     1.基于通用有限元软件ANSYS,实现了考虑初应力的钢管混凝土拱桥极限承载力分析,并可计入双重非线性与初始几何缺陷。
     2.研究了钢管初应力对单肢圆管、哑铃型和四肢格构型钢管混凝土拱桥极限承载力的影响,并开展了基于长细比、含钢率、材料类型、矢跨比、偏心率、加载方式等的参数研究,以极限承载力降低不超过10%为界,建议对单肢圆管、哑铃型和四肢格构型钢管混凝土拱桥初应力度p分别控制在0.35、0.6和0.6以内。
     3.提出了钢管初应力对单肢圆管、哑铃型和四肢格构型钢管混凝土拱桥主拱承载力影响系数的简化计算公式,其计算值与有限元结果较吻合,具有较高的工程精度。
     4.针对某一主跨为368m的四肢格构型钢管混凝土拱桥进行了施工过程模拟仿真和极限承载力分析,结果表明钢管初应力度较大,且收缩徐变引起的初应力不容忽视,初应力不仅对面内极限承载力有一定的影响,而且对于面外极限承载力的影响不可忽视。
CFST arch bridges have become one of most rapid development bridge structures in recent years,but the design theories are relatively backward Compared with the engineering practice,such as a question of bearing capacity influence of steel tube initial stress to the CFST arch bridge is just one of them. Before the formation of CFST arch bridge,steel tube will withstand itselfweight and wet concrete weight, so this produce the initial stress of steel. In this thesis, Ultimate bearing capacity of CFST arch bridges of initial stress in steel tube steel is simulated by a large general-purpose software ANSYS,and the main result of this paper are presented as follows:
     1.With the steel tube initial stress considering,the Analysis of Ultimate bearing capacity of CFST arch bridge is achieved by finite element software ANSYS, in which dual non-linear and initial Geometric imperfections is added.
     2.It mainly analyses how the initial stresses influence the ultimate bearing capacity of single-tube,dumbbell and four limbs latticed CFST arch bridge. Some parameters are studied such as initial slenderness ratio, Steel ratio,material type,rise-span ratio,eccentricity ratio,the way of load etc. If the reduction extent of bearing capacity does not exceed 10%,thus initial stress factor of single-tube,dumbbells and four limbs latticed CFST arch bridge should be separately limited to 0.35,0.6 and 0.6.
     3. some simplified formula of bearing capacity factor of Initial stress on single-tube,dumbbell and four limbs latticed CFST arch bridge are primarily deduced. The calculated values is colse to finite element results, which have high precision
     4. construction process of the CFST arch bridge of four limbs latticed with a main span of 368m simulated by the large finite element software ANSYS, the ultimate bearing capacity of which is also analyzed.The results showed that CFST arch bridge with a larger initial stress of steel, and the initial stress caused by the shrinkage and creep can not be ignored;Initial stress not only for long-span CFST arch bridge in-plane ultimate strength to a certain extent, but also for the ultimate bearing capacity of out-of-plane has a impact,which more can not be ignored.
引文
[1]钟善桐.钢管混凝土结构(第3版).北京:清华大学出版社,2003
    [2]周水兴,向中富主编.桥梁工程(上、下).重庆:重庆大学出版社,2001
    [3]韩林海.钢管混凝土结构.北京:科学出版社,2000
    [4]徐升桥.丫髻沙大桥主桥设计研究.铁道标准设计.2001,21(6):2-7,
    [5]钟善桐.高层钢管混凝土结构.黑龙江科学技术出版社,1999
    [6]CHENG J. JIANG J J,XIAO RC, et al,Ultimate load carrying capacitty of the Lu Pu steel arch brige under static wind loads[J], Computers and Strctures, 2003,81 (2):61-73
    [7]T. Sakimoto, S.Komatsu. Ultimate Strength of Steel Arches under Lateral Loads.J.Civ.Engrg. JSCE.1976,No.252:1989-1994
    [8]T. Sakimoto,S.Komatsu. Ultimate Strength of Arches with Bracing Systems. J. Struct.Div, ASCE.1982,108(ST5):525-534
    [9]T. Sakimoto,S.Komatsu. Ultimate Strength Formula for Steel Arches.J.Struct. Engrg., ASCE.1983,109(3):613-627
    [10]S. Kuranishi.T.Yabubi. Some Numerical Estimation of Ultimate in-plane Strength of Two-Hinged Steel Arches.J.Civ.Engrg.,JSCE.1979,287:155-158
    [11]P. R. Calhoun,D.A.Dadeppo. Nonlinear Finite Element Analysis of Clamped Arches. J. truct. Engrg.,ASCE.1983,109(3):599-612
    [12]KarabinisA.I.,Effects of comfinement on concrete columns:Plasticity Approach, Journal of Structural Engineering.Vol.120 No.9:2747-2767
    [13]W.G.Godden. The Lateral Buckling of Tied Arches. Proc,Inst.CivilEng.,1954, 3(PartⅢ,Aug):275-286
    [14]T. Shinke,H.Zui, Y.Namita,Analysis of in-plane Elastic-Plastic Buckling and Load Carrying Capacity of Arches. J.Civ.Engrg.,JSCE.1975,224(3):50-70
    [15]T. Shinke,H.Zui,Y.Namita, Analysis and Experiments of in-Plane Load Carrying Capacity of Arches. J.Civ.Engrg., JSCE,1977,267(3):34-52
    [16]D. A. Dadeppo,R.Schmidt. Large Deflection Loads.J.Appl.Mech.,1976,41(4): 989-994
    [17]W. J. Austin. In-Plane Bending and Buckling of Arches.J.Struct.Div., ASCE.1971,97(5):1575-1595
    [18]W. J. Austin,T. J. Ross. Elastic Buckling of Arches under Symmetrical Loading. J.Struct.Div.,ASCE.1976,102(5):1085-1095
    [19]S. Komatsu,T.Shinke. Practical Formulation for in-plane Load Carrying Capacity of Arches. J.Civ.Engrg,JSCE.1977,267(2):39-52
    [20]T. Sakimoto,S. Komatsu. Ultimate Strength of Steel Arches under Lateral Loads. J.Civ.Engrg. JSCE.1976,2(252):1989-1994
    [21]T. Sakimoto,S. Komatsu. Ultimate Strength of Arches with Bracing Systems. J. Struct.Div.,ASCE.1982,108(ST5):525-534
    [22]T. Sakimoto,S. Komatsu. Ultimate Strength Formula for Steel Arches.J.Struct. Engrg.,ASCE.1983,109(3):613-627
    [23]S. Kuranishi.T.Yabubi. Some Numerical Estimation of Ultimate in-plane Strength of Two-Hinged Steel Arches. J. Civ.Engrg,JSCE.1979, 287(4):155-158
    [24]P. R.Calhoun,D.A.Dadeppo. Nonlinear Finite Element Analysis of Clamped Arches.J.truct.Engrg.,ASCE.1983,109(3):599-612
    [25]Karabinis A.I.,Effects of comfinement on concrete columns:Plasticity Approach, Journal of Structural Engineering.1984,120(9):2747-2767
    [26]钟善桐.近年来组合结构的发展概况.中国钢协钢—混凝土组合结构协会第五次年会论文集,杭州,1995
    [27]钟善桐,高伯杨.组合结构在我国的发展.中国钢协钢—混凝土组合结构协会第四次年会论文集,广州,1993
    [28]钟善桐,高伯杨.组合结构在我国的发展现状.中国钢协钢—混凝土组合结构协会第三次年会论文集,鞍山,1991
    [29]Shantong Zhong. The Development of Concrete Filled Steel Tubular Structure in China. Proceedings of the International Speciality Conference on Concrete Filled Steel Tubular Structures (Including Composite Beams), Harbin, China, 1988
    [30]Shantong Zhong. The Use of Concrete Filled Steel Tubular Structure in China. Proceedings of the International Speciality Conference on Concrete Filled Steel Tubular Structures, Harbin, China,1985
    [31]蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社,2003.3
    [32]韩林海,尧国皇.钢管初应力对钢管混凝土压弯构件承载力的影响研究.土木工程学报,2003(4):9-18
    [33]沈祖炎,黄奎生.矩形钢管混凝土轴心受力构件的设计方法.建筑结构,2005,35(1):3-4
    [34]张素梅.空心钢管混凝土三维非线性全过程分析[D].哈尔滨建筑大学,1991
    [35]蔡绍怀.钢管混凝土结构的计算与应用.北京:中国建筑工业出版社,1989:95-101
    [36]Knowles R. B., Park R. Axial load design for concrete filled steel tubes. Journal of Structural Division, ASCE,1970,96(10):2125-2153
    [37]查晓雄,钟善桐.钢管初应力对钢管混凝土压弯、压弯扭构件工作性能的影响.哈尔滨建筑大学学报,1997,30(2):45-53
    [38]蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算.建筑结构学报,1985,6(1):32-40
    [39]Furlong R. W. Strength of steel-encased concrete beam-columns. Journal of Structural Division, ASCE,1967,93(5):113-124
    [40]Knowles R. B., Park R. Strength of concrete filled steel tubular columns. Journal of Structural Division, ASCE,1969,95(12):2565-2587
    [4l]查晓雄,钟善桐.用有限元法分析钢管初应力对钢管混凝土轴压构件基本性能的影响.哈尔滨建筑大学学报,1997,30(1):41-49
    [42]黄霭明,李少云.管壁初始竖向应力对钢管混凝土柱极限承载力的影响.广东土木与建筑,2002,22(5):6-8
    [43]张晓庆,钟善桐,阎善章等.初应力对钢管混凝土偏心构件承载力影响的实验研究.哈尔滨建筑大学学报,1997,45(1):50-56
    [44]肖世为.巫峡长江大桥钢管混凝土构件极限承载力试验研究报告.2003.8
    [45]查晓雄.钢管初应力对钢管混凝土压弯扭构件工作性能影响的理论分析和试验研究.[博士学位论文].哈尔滨建筑大学.1996年
    [46]查晓维,钟善桐.钢管初应力对钢管混凝土压弯、压弯扭构件工作性能的影响.哈尔滨建筑大学学报,1997,26(2):45-53
    [47]黄世娟,钟善桐,阎善章等.初应力对钢管混凝土轴心构件承载力影响的实验研究.哈尔滨建筑大学学报,1996,30(6):44-50
    [48]钟善桐,查晓雄.高层建筑中钢管混凝土偏压柱施工初应力的限制.哈尔滨建筑大学学报,1999,32(1):21-25
    [49]查晓雄,唐家祥.初应力钢管混凝土压弯扭构件统一理论的研究.华中理工大学学报,1998,26(8):41-43
    [50]查晓雄,唐家祥,钟善桐.钢管混凝土高层及超高层建筑中平行立体交叉法施工及施工中初应力的影响.工业建筑,1998,28(11):32-34
    [5l]黄霭明.管壁初应力对钢管混凝土柱承载能力的影响.工程力学,1998,3(增刊):155-163
    [52]尧国皇,曾萌.钢管初应力对钢管混凝土轴压力学性能影响的研究.黑龙江工程学院学报,2002,16(4):11-13
    [53]尧国皇,韩林海.钢管初应力对钢管混凝土构件轴压刚度和抗弯刚度的影响.工业建筑,2004,34(7):57-60
    [54]韦灼彬,翰林海.钢管初应力对方钢管混凝土力学性能影响的试验研究.哈尔滨工业大学学报,2003,35(增刊):167-170
    [55]韦灼彬,翰林海.钢管初应力影响的方钢管混凝土承载力计算.哈尔滨工业大学学报,2003,35(增刊):164-66
    [56]徐升桥.丫髻沙大桥主桥设计研究.铁道标准设计,2001,12(6):2-7
    [57]赵跃宇,易壮鹏,王连华.初始应力对钢管混凝土拱桥面内极限承载力的影响[J].湖南大学报(自然科学版),2007,34(3):1-5
    [58]于洪刚,周水兴,陈强等.钢管初始应力对大跨度混凝土拱桥稳定承载力的影响.长沙理工大学学报,2005,25(2):18-22
    [59]于洪刚,周水兴,陈强等.中山大桥钢管初始应力稳定计算分析.重庆交通学院学报,2006,25(2):4-7
    [60]周海龙.单肢钢管混凝土拱桥考虑初始应力的承载力分析研究.[硕士学位论文],重庆交通大学,2006
    [61]邓继华,邵旭东.初应力对钢管混凝土拱肋节段极限承载力影响的有限元分析.中外公路,2007,27(3):104-109
    [62]黄福云,陈宝春.钢管混凝土拱桥初应力问题.公路交通科技,2006,11(23):68-72
    [63]周水兴.钢管混凝土拱桥承载力的影响研究.[博士学位论文],重庆大学,2007
    [64]项海帆,刘光栋.拱结构的稳定与振动.北京:人民交通出版社,1991
    [65]S.P.Timoshenko.弹性稳定理论.北京:科学出版社,1958
    [66]王勖成,邵文.有限单元法基本原理和数值方法.清华大学出版社,1997
    [67]王新忠,周水兴.钢管初应力对大跨度哑铃形钢管混凝土拱肋极限承载力影响研究.公路工程,2008,33(2):74-79
    [68]周水兴,刘琪,陈湛荣.钢管初应力对哑铃型钢管砼拱桥承载力影响分析.工程力学,2008,25(7):159-165
    [69]ANSYS公司.中国.ANSYS高级分析指南
    [70]王新敏.ANSYS工程结构数值分析[M].北京,人民交通出版社,2007
    [71]ANSYS, Inc. ANSYS Structure Analysis Guide Release 10.0
    [72]韩林海、钟善桐.钢管混凝土力学.大连理工人学出版社,1990
    [73]潘友光、钟善桐.钢管混凝土的轴压本构关系(上).建筑报,1990,11(1):10-20
    [74]X. X. Zha. FE analysis of fire resistance of concrete filled CHS columns. Journal of Constructional Steel Research,2003,59(6):769-779
    [75]钟善桐.钢管混凝土结构(修订版).黑龙江科学技术出版社.1994
    [76]袁刚.钢管混凝土拱桥稳定性分析.交通运输.2005
    [77]顾懋清,石绍甫.公路桥涵设计手册—拱桥(上册).北京:北京交通出版社,1997
    [78]公路圬工桥涵设计规范(JTG D61-2005) 中华人民共和国交通部
    [79]刘斌.混凝土灌注顺序对哑铃型钢管混凝土拱的影响,2008,5(2):39-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700