用户名: 密码: 验证码:
基于种群自适应策略的差分演化算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决复杂的计算问题,研究人员多年来一直在寻找以大自然为蓝本的模型和象征。优化,是许多自然过程的核心。正如达尔文的进化论,每一个物种都要经过数百万年,通过调整自身结构来适应周围的环境。我们观察到,优化和生物演化之间的基本关系是发展计算智能的一个重要范例。正是基于这样的思想,演化算法被提出用于执行非常复杂的搜索和优化。
     差分演化算法(DE),一直被视为一种可靠和通用的基于种群的元启发式优化技术,并广泛的在各类问题中展现了令人瞩目的性能。在过去十年里,归功于差分演化算法的简单性、可靠性、高性能和易于实施,DE在众多研究人员中已经获得了广泛的知名度。与传统的演化算法不同,DE算法通过增加一个带权值的移动向量来执行扰动操作,并修正一些随机选择的候选粒子维度的值。正因为这样的内在机制,差分演化算法能能够在演化早期高度地探索整个搜索空间,而在优化的后期变得更加注重自身剥削和开发。然而,DE并是不总能保证收敛到全局最优解,他会偶尔陷入局部停滞或者早熟收敛,而导致优化精度的降低甚至失败。
     本论文针对传统差分演化算法局部停滞和早熟收敛等问题,研究了一类自适应种群谐调框架和方法,采用马尔科夫链和信息熵的理论,提出了基于DE的改进种群自适应策略。同时,将改进算法应用于系统设计问题,解决了分数阶混沌系统的参数辨识问题,无限脉冲响应数字滤波器的设计问题以及质子交换膜燃料电池的最优化建模问题。本文主要工作概括如下:
     (1)差分演化算法的自适应种群谐调控制研究
     通过权衡当前的解搜索状态和需要的种群分布两个指标,提出了一种崭新的动态自适应种群谐调策略(APTS)。在APTS中,首先设计了一个基于精英的种群增量策略,他在决策空间的适当位置中生成一些新个体帮助搜索更优的可行解。其次,设计了一个基于平庸的种群缩减策略,他依据排序方法删除一些性能较差的个体以减少计算负荷,并预留一些空间给新的带有种群多样性的扰动个体。此外,上述两个种群策略都由一个状态观测器所控制。该状态观测器被建立用于监控种群的演化进程,并适时地控制APTS的灵敏度。为验证算法有效性,实现了APTS的收敛性分析,为其提供了理论保障。同时,通过一个全局性的性能比较实验,与其他6种顶尖的DE算法比较来发现最优者。实验结果表明JADE-APTS在低维问题(30维)中获得了富有竞争性的性能,在高维问题(100维)中获得了最佳性能。此外,方差分析的结果同样证实了APTS能够有效地加速收敛率和提高可行解的搜索精度。
     (2)基于马尔科夫链的种群自适应改进研究及其信息熵指标判据
     一个改进的种群自适应处理技术(CP)被应用于DE以解决各种优化问题。在CPDE中,实现了一个随机的策略跳变框架(MHT),依靠非均匀的马尔科夫链来选择不同的子优化控制器,更好地改进当前解搜索的状态。具体的来说,子优化控制器有两种,其一,称作改进的sigmoid函数种群增长策略。增加一些新个体进入种群,提供他们最新的信息分享给种群并帮助粒子逃脱局部困境。其二,称作基于信息熵和等级排序指标的种群减少策略。基于每个粒子的聚集熵指标和等级排序指标,删除一些过渡个体以避免不期望地计算损失和过度的搜索复杂度。其次,实现了CEC05基准函数下,CPDE与其他8种最先进演化算法(即,5种DEs和3种EAs)的性能比较实验以证明所提出方法的可行性。同时,维度可扩展性测试实验也同样证实,CP框架总能加速DE算法的搜索效能和效率,尤其是在高维问题中效果更为明显。最后,收敛速度实验和时间复杂度推导进一步证明了CP框架对迄今为止的所有差分演化变体算法不产生任何额外的计算负担。
     (3)基于改进差分演化算法的分数阶混沌系统参数辨识
     采用一种改进的差分演化算法(SDE),首先研究了分数阶Lorenz,Lu和Chen系统在确定性环境下的未知阶次和参数的估计问题。SDE的主要特点是有效的种群切换利用策略。他同时考虑收敛速度和计算负荷,根据适应度多样性非周期地增加和减少一些粒子。其次,研究上述3个系统在随机性环境下的未知阶次和参数的估计问题,即噪声扰动下的算法性能。五种最先进智能算法被应用于测试实验来验证SDE算法的有效性。实验结果表明我们的方法要比其他5种算法性能更优,尤其是在噪声扰动情况下。
     (4)基于种群概率可控差分演化算法的无限脉冲响应数字滤波器设计
     提出了一种基于马尔科夫跳变(开关切换)的种群更新DE算法用以解决限脉冲响应数字滤波器的设计问题。所提出的算法是一种带有可控概率种群大小的差分演化变体(CPDE),通过适应度多样性非周期地增加和减少一些粒子,权衡搜索广度和自身精度。进一步,6种公认优秀的演化算法被采纳用于设计上述6种典型的IIR滤波器,并和CPDE进行性能比较实验,以证明所提出方法的可行性。此外,我们还讨论了IIR数字滤波器设计的一些关键方面,如价值函数值、噪声扰动、收敛速度、成功率以及参数测量等。实验结果表明,我们提出的算法是可行且强有力的。
     (5)基于混合差分演化算法的质子交换膜燃料电池最优化建模
     基于极化曲线研究了一类适用于工程优化的电化学PEMFC模型。采用改进的一种改进的差分演化算法(HDE),引入动态种群谐调策略,对3个质子交换膜燃料电池模型进行参数辨识(即SR-12Modular PEM Generator, Ballard Mark V FC和BCS500-W stack模型)。在HDE中,种群的大小可以动态自适应地根据现今的搜索状态和所需的种群分布进行调节。同时,我们还测试在3%的噪声扰动下,算法对PEMFC的辨识性能。实验结果表明,即使实验过程被噪声破坏,HDE仍能获得较令人满意的辨识性能。此外,6种最顶尖的智能算法被应用于测试实验来验证HDE算法的有效性。
To tackle complex computational problems, researchers have been looking into na-ture for years for inspiration. Optimization is at the heart of many natural processes like Darwinian evolution itself. Through millions of years, every species had to adapt their physical structures to fit to the environments they were in. A keen observation of the underlying relation between optimization and biological evolution led to the development of an important paradigm of computational intelligence-the evolutionary computing techniques for performing very complex search and optimization.
     Differential Evolution is a reliable and versatile function optimizer. DE, like most popular Evolutionary Algorithms (EAs), is a population-based tool. Over the past decade, the DE algorithm has gained wide-spread popularity among researchers due to its sim-plicity, reliability, high performance and easy implementation. Unlike traditional EAs, DE operates perturbation by adding a weighted moving vector and modifying the values of some randomly selected coordinates. Due to its structure, a DE scheme can be highly explorative in the prophase of the evolution and subsequently become more exploita-tive during the optimization. However, the DE does not guarantee the convergence to the global optimum. It is occasionally trapped into local stagnation or premature convergence resulting in a low optimizing precision or even failure.
     In this dissertation, firstly, to remedy some of DE's pitfalls, I propose an adaptive population tuning scheme (APTS) for DE. Secondly, an enhanced adaptive population-handling technique is proposed to solve various types of optimization problems. Thirdly, I study the applications of differential evolution in identification of fractional-order sys-tems, digital IIR filters design and optimum modeling of PEM fuel cells. The main con-tribution of this dissertation are as follows.
     (1) Adaptive population tuning scheme for differential evolution
     An adaptive population tuning scheme (APTS) for DE is proposed to dynamically adjust the population size. More specifically, an elite-based population-incremental strat- egy is proposed to place several new individuals in appropriate areas to discover new pos-sible solutions. Meanwhile, an inferior-based population-cut strategy is also presented to remove several poor particles according to its ranking method and to reserve a place for a better reproduction. Moreover, both dynamic population strategies are controlled by a status monitor, which is used to keep track of the progress of individuals and improve the sensitivity of the proposed APTS. The experimental studies were carried out on25global numerical optimization problems used in the CEC2005special session on real-parameter optimization. An overall performance comparison between the JADE-APTS variant and other five State-of-the-Art DEs was also carried out. The experimental results illustrated that JADE-APTS achieves a competitive performance in30dimensional problems and exhibits the best performance in100dimensional problems. In addition, the ANOVA results verify that APTS can accelerate the convergence and enhance accuracy.
     (2) Enhanced differential evolution with entropy-based population adapta-tion and markov chain model
     An enhanced adaptive population-handling technique (CP) is proposed for DE algo-rithm to solve various types of optimization problems. In CPDE, we advocate a stochastic strategy-hopping framework in which the probability of selecting different sub-optimizers to improve the online solution-searching status is completely followed by a Markov chain. One sub-optimizer, called population increasing strategy, adds new individuals into the population to share their up-to-date information when particles are clustered together in a region and trapped into the local basin; the other sub-optimizer, namely population de-creasing strategy, removes redundant particle with its entropy and ranking metrics to save computational load. Extensive experiments have been carried out to compare it with five state-of-the-art DE variants and three other EAs on25commonly used CEC2005con-test test instances. In addition, a scalability study was implemented to show the effect of problem dimension.In the end, runtime complexity analysis and convergence rate com-parison are also validated that CP framework does not impose any serious burden on the time complexity of the existing DE variants.
     (3) Identification of fractional-order systems via a switching differential evo-lution subject to noise perturbations
     A switching differential evolution (SDE) algorithm is employed to identify the or-ders and parameters of incommensurate fractional-order Lorenz, Lii and Chen systems. The main feature of SDE is the switching population utilization strategy which improves the quality of the population and decreases the number of calculations by nonperiodic partial increasing or declining individuals. The results are shown in comparison with five other existing methods. The results obtained by our approach are better than other EAs especially in stochastic environment.
     (4) Digital IIR filters design using differential evolution with a controllable probabilistic population size
     An improved differential evolution is proposed for digital ⅡR filter design. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simul-taneously by nonperiodic partial increasing or declining individuals according to fitness diversities. Compared with six existing State-of-the-Art algorithms-based digital Ⅱ filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive. In addition, we discuss as well some important aspects for ⅡR filter design, such as the cost function value, the influence of (noise) perturbations, the conver-gence rate and successful percentage, the parameter measurement, etc. As to the simula-tion result, it shows that the presented algorithm is viable and comparable.
     (5) Optimum modeling of PEM fuel cells by a hybrid differential evolution
     A hybrid differential evolution (HDE) algorithm-based parameter identification ap-proach is proposed in terms of the voltage-current characteristics for the problem of pro-ton exchange membrane (PEM) fuel cell stack modeling. It attempts to utilize an adaptive population tuning scheme, in which the population size can be adjusted dynamically based on the solution-searching status and the desired population distribution. Thus, this active control approach realizes the optimum modeling of the SR-12Modular, the Ballard and the BCS500-W stack. The results indicate that satisfactory identification performance can be achieved by HDE even if the experimental data are corrupted by noise. Simulation results manifest that the proposed HDE reaches both better and more robust results in comparison with three versions of DEs, two versions of EAs, as well as CLPSO.
引文
[1]Back T, Fogel D B, Michalewicz Z. Evolutionary Computation 1:Basic Algo-rithms and Operators[M]. Bristol and Philadelphia:Institute of Physics Publishing, 2000.
    [2]Friedberg R M. A learning machine[J]. part IBM,1958,2:2-13.
    [3]陈亮.改进自适应差分进化算法及其应用研究[D].上海:东华大学,2012:8-13.
    [4]Holland J H. Adaptation in Natural and Artificial Systems [M]. Michigan:Univer-sity of Michigan Press,1975.
    [5]Deb K, Agawa R B. Simulated binary crossover for continuous search space[J]. Complex Systems,1995,9:115-148.
    [6]Leung Y W, Wang Y P. An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization[J]. IEEE Transactions on Evolutionary Computa-tion,2001,5:41-53.
    [7]Zhang Q, Leung Y W. An orthogonal genetic algorithm for multimedia multicast routing[J]. IEEE Transactions on Evolutionary Computation,1999,3:53-62.
    [8]Hinterding R. Gaussian mutation and self-adaption in numeric genetic algo-rithm[C]//In Proceeding of the 2nd IEEE International Conference on Evolutionary Computation. Piscataway:IEEE Press,1995:384-389.
    [9]Ling S H, Leung F H F. An improved genetic algorithm with average-bound crossover and wavelet mutation operations [J]. Soft Computing,2007,11:7-31.
    [10]Goldberg D E, Riehardson J. Genetic algorithms with sharing for multi-modal function optimization[C]//In Proc.2nd International Conference on Genetic Algo-rithms and their applications. Cambridge:MA,1987:41-49.
    [11]Yin X, Genmay N. A fast genetic algorithm with sharing scheme using cluster anal-ysis methods in multi-modal function optimization [C]//Proceedings of the Interna-tional Conference in Innsbruck. Berlin, Germany:Springer-Verlag,1993:450-457.
    [12]Miller B L, shaw M J. Genetic algorithms with dynamic niche sharing for multi-modal function optimization[C]//In Proceeding of the IEEE International Confer-ence on Evolutionary Computation. Piscataway:IEEE Press,1996:786-791.
    [13]Deb K, Goldberg D. An investigation of niche and species formation in genetic function optimization[C]//In Proc.3nd International Conference on Genetic Algo-rithms. SanMateo, CA:MorganKaufmann,1989:42-50.
    [14]Mahfoud S W. Niching methods for genetic algorithms [D]. Urbana-Champaign: University of Illinois,1995:8-13.
    [15]Jong K. An analysis of the behavior of a class of genetic adaptive systems[J]. Dissertation Abstracts International,1975,36:5140B.
    [16]Collins R J, Jefferson D R. Selection in massively parallel genetic algorithms[C]//In proceeding Fourth International Conference on Genetic Algorithms. San Mateo, CA:Morgan Kaufmanu Publishers,1991:1-40.
    [17]Hutter M. Fitness uniform selection to preserve genetic diversity[C]//In Proc.2002 Congress on Evolutionary Computation(CEC-2002). Hawaii, US:IEEE Press, 2002:783-788.
    [18]Legg S, Hutter M. Fitness Uniform Deletion:A Simple Way to Preserve Di-versity [C]//Proc Genetic and Evolutionary Computation Conference (GECCO'05). Washington D.C, USA:IEEE Press,2005:25-29.
    [19]Reeves C R. Using genetic algorithms with small populations [J]. In Forrest,1993, 1:92-99.
    [20]Schlierkamp-Voosen D, Muhlenbein H. Strategy adaption by competing subpopu-lations[M]. Berlin, Germany:Springer-Verlag,1994:199-208.
    [21]Deb K, Anand A, Joshi D. A computationally efficient evolutionary algorithm for real-parameter evolution[J]. Evolutionary Computation,2002,10:371-395.
    [22]Koumousis V K, Katsaras C P. A Saw-Tooth Genetic Algorithm Combining the Ef-fects of Variable Population Size and Reinitialization to Enhance Performance[J]. IEEE Transactions on Evolutionary Computation,2006,10:19-28.
    [23]Back T, Fogel D B, Michalewicz Z. Evolutionary Computation 2:Advanced Algo-rithms and Operators[M]. Bristol and Philadelphia:Institute of Physics Publishing, 2000.
    [24]Goldberg D E. Genetic algorithm in search, optimization and machine learing[M]. MA:Addison Wesley,1989.
    [25]Koza J R. Genetic Programming:On the Programming of Computers by Means of Natural Section[M]. USA:MIT Press,1992.
    [26]Koza J R. Hierarchical Genetic Algorithms Operating on Populations of Computer Programs[C]//In Proceeding of the Eleventh International Joint Conference on Ar-tificial Intelligence. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 1989:768-774.
    [27]Fogel L J. On the Organization of Intellect[D]. Los Angeles, USA:University of California,1964:125-139.
    [28]Fogel L J, Owens A J, Walsh M J. Artificial Intelligence through Simulated Evo-lution[M]. New York:Wiley,1966.
    [29]Fogel D B. Evolutionary Computation:Toward a New Philosophy of Machine Intelligence[M]. USA:IEEE Press,1995.
    [30]Yao X, Liu Y. Fast Evolutionary Programming[C]//Proceedings of the Fifth Annual Conference on Evolutionary Programming. USA:MIT Press,1996:451-460.
    [31]Yao X, Liu Y, Lin G. Evolutionary Programming made Faster[J]. IEEE Transac-tions on Evolutionary Computation,1999,3:82-102.
    [32]Schwefel H P. Evolutionsstrategie und numerische optimierung[D]. Germany: Technical University of Berlin,1975.
    [33]Rechenberg I. Evolutionsstrategie:Optimierung technischer Systeme nach Prinzipien der Biologischen Evolution [M]. Stuttgart:Frommann-Holzboog Ver-lag,1973.
    [34]Schwefel H P. Numerical Optimization of Computer Models [M]. Chichester:Wi-ley,1981.
    [35]Auger A, Hansen N. A Restart CMA Evolution Strategy with Increasing Popula-tion Size[C]//IEEE Congress on Evolutionary Computation. Edinburgh, UK:IEEE Press,2005:1769-1776.
    [36]Hansen N, Ostermeier A. Adapting arbitrary normal mutation distributions in evolution strategies:the covariance matrix adaptation[C]//Proceedings of IEEE In-ternational Conference on Evolutionary Computation. Nayoya University, Japan: IEEE Press,1996:312-317.
    [37]Storn R, Price K V. Differential Evolution:A Simple and Efficient Heuristic for Global Optimization Over Continuous Space[J]. Journal of Global Optimization, 1997,11:341.
    [38]Reynolds R G. Cultural algorithms:theory and applications[M]. UK Maidenhead: McGraw-Hill,1999:367-378.
    [39]Rosin C D, Below R K. New Methods for Competition Coevolution[J]. Evolution-ary Computation,1997,5:1-29.
    [40]Geem Z W, Kim J H, Loganathan G V. Harmony search[J]. Simulation,2001, 76:60-68.
    [41]Tang Y, Wang Z, Fang J. Parameters identification of unknown delayed genetic reg-ulatory networks by a switching particle swarm optimization algorithm[J]. Expert Systems with Applications,2011,38:2523-2535.
    [42]Dorigo M, Gambardella L M. Ant Colony Systems:A Cooperative Learning Ap-proach to the Traveling Salesman Problem [J]. IEEE Transactions on Evolutionary Computation,1997,1:53-66.
    [43]Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine,2002,22:52-67.
    [44]Simon D. Biogeography-Based Optimization[J]. IEEE Transactions on Evolution-ary Computation,2008,12:702-713.
    [45]Sun J, Zhang Q, Tsang E P K. DE/EDA:A new evolutionary algorithm for global optimization[J]. Information Sciences,2005,169:249-262.
    [46]Mininno E, Neri F, Cupertino F, et al. Compact Differential Evolution[J]. IEEE Transactions on Evolutionary Computation,2011,15:32-54.
    [47]Neri F, Iacca G, Mininno E. Disturbed Exploitation compact Differential Evolu-tion for limited memory optimization problems [J]. Information Sciences,2011, 181:2469-2487.
    [48]Rahnamayan S, Tizhoosh H, Salama M. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation,2008,12:64-79.
    [49]Wang Y, Cai Z, Zhang Q. Enhancing the search ability of differential evolution through orthogonal crossover[J]. Information Sciences,2012,185:153-177.
    [50]Noman N, Iba H. Accelerating differential evolution using an adaptive local search[J]. IEEE Transactions on Evolutionary Computation,2008,12:107-125.
    [51]Gong W, Cai Z, Ling C X. DE/BBO:A Hybrid Differential Evolution with Biogeography-Based Optimization for Global Numerical Optimization[J]. Soft Computing,2011,15:645-665.
    [52]Tang Y, Wang Z D, Fang J A. Feedback learning particle swarm optimization^]. Applied Soft Computing,2011,11:4713-4725.
    [53]Das S, Abraham A, Chakraborty U K, et al. Differential Evolution Using a Neighborhood-Based Mutation Operator[J]. IEEE Transactions on Evolutionary Computation,2009,13:526-553.
    [54]Omran M G H, Engelbrecht A P, Salman A. Bare bones differential evolution[J]. European Journal of Operational Research,2009,196:128-139.
    [55]Weber M, Neri F, Tirronen V. A study on scale factor in distributed differential evolution[J]. Information Sciences,2011,181:2488-2511.
    [56]Zaharie D. Control of population diversity and adaptation in differential evolution algorithms[C]//In proceedings of the 9th. International Conference on Soft Com-puting. Czech Republic:P. Osmera,2003:41-46.
    [57]Tasoulis D K, Pavlidis N G, Plagianakos V P, et al. Parallel differential evolu-tion[C]//In Proceedings of the IEEE Congress on Evolutionary Computation. San Diego, California, USA:IEEE Press,2004:2023-2029.
    [58]Falco ID, Cioppa A D, Maisto D, et al. Satellite image registration by distributed differential evolution[J]. Lectures Notes in Computer Science,2007,4448:251-260.
    [59]Dorronsoro B, Bouvry P. Improving Classical and Decentralized Differential Evo-lution with New Mutation Operator and Population Topologies [J]. IEEE Transac-tions on Evolutionary Computation,2011,15:67-98.
    [60]Fan H Y, Lampinen J. a trigonometric mutation operation to differential evolu-tion[J]. Journal of Global Optimization,2003,27:105-129.
    [61]Qin A K, Suganthan P N. Self-adaptive differential evolution algorithm for numer-ical optimization[C]//IEEE Congress on Evolution Computing (CEC2005). Edin-burgh, UK:IEEE Press,2005:1785-1791.
    [62]Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J], IEEE Transactions on Evolution-ary Computation,2009,13:398-417.
    [63]Mallipeddi R, Suganthana P N, Pan Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011,11:1679-1696.
    [64]Mallipeddi R, Mallipeddi S, Suganthan P. Ensemble strategies with adaptive evo-lutionary programming[J]. Information Sciences,2010,180:1571-1581.
    [65]Wang Y, Cai Z, Zhang Q. Differential Evolution with Composite Trial Vector Gen-eration Strategies and Control Parameters[J]. IEEE Transactions on Evolutionary Computation,2011,15:55-66.
    [66]Zhang J Q, Sanderson A C. JADE:adaptive differential evolution with optional ex-ternal archive[J], IEEE Transactions on Evolutionary Computation,2009,13:945-958.
    [67]Gong W, Cai Z, Ling C X, et al. Enhanced Differential Evolution with Adaptive Strategies for Numerical Optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011,41:397-413.
    [68]Liu J, Lampinen J. A fuzzy adaptive differential evolution algorithm[J]. Soft Com-puting,2005,9:448-462.
    [69]Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differ-ential evolution:a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation,2006,10:646-657.
    [70]Neri F, Tirronen V. Scale factor local search in differential evolution[J]. Memetic Computing,2009,1:153-171.
    [71]Ali M, Pant M. Improving the performance of differential evolution algorithm using Cauchy mutation[J]. Soft Computing,2011,15:991-1007.
    [72]Weber M, Neri F, Tirronen V. Distributed differential evolution with explorative-exploitative population families [J]. Genetic Programming and Evolvable Ma-chines,2009,10:343-371.
    [73]Brest J, Maucec M S. Self-adaptive differential evolution algorithm using popula-tion size reduction and three strategies [J]. Soft Computing,2011,15:2157-2174.
    [74]Ghosh A, Das S, Chowdhury A, et al. An improved differential evolution algorithm with fitness-based adaptation of the control parameters[J]. Information Sciences, 2011,181:3749-3765.
    [75]Podlubny I. Fractional Differential Equations [M]. New York:Academic Press, 1999.
    [76]Wu G C, Zhang S. A generalized Tu formula and Hamiltonian structures of frac-tional AKNS hierarchy[J]. Physics Letters A,2011,375:3659.
    [77]Tang Y, Wang Z D, Fang J A. Pinning control of fractional-order weighted complex networks[J]. CHAOS,2009,19:013112.
    [78]Hilfer R. Applications of Fractional Calculus in Physics[M]. Singapore:World Scientific,2000.
    [79]Zaslavsky G. Chaos, fractional kinetics, and anomalous transport[J]. Physics Re-ports,2002,371:461.
    [80]Hempel S, Koseska A, Kurths J, et al. Inner composition alignment for infer-ring directed networks from short time series[J]. Physical Review Letters,2011, 107:054101.
    [81]He J H, Elagan S K, Li Z B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus[J]. Physics Letters A, 2012,376:257.
    [82]Yuan L G, Yang Q G. Parameter identification and synchronization of fractional-order chaotic systems [J]. Communications in Nonlinear Science and Numerical Simulation,2012,17:305.
    [83]Eleuch H, Prasad A. Chaos and regularity in semiconductor microcavities[J]. Physics Letters A,2012,376:1970-1977.
    [84]Grigorenko I, Grigorenko E. Chaotic Dynamics of the Fractional Lorenz Sys-tem[J]. Physical Review Letters,2003,91:034101.
    [85]Tang Y G, Zhang X Y, Hua C C, et al. Parameter identification of commensurate fractional-order chaotic system via differential evolution[J]. Physics Letters A, 2012,376:457.
    [86]Li C G, Chen G R. Chaos and hyperchaos in the fractional-order Rossler equa-tions[J]. Physica A,2004,341:55.
    [87]Arena P, Fortuna L, Porto D. Chaotic behavior in noninteger-order cellular neural networks[J]. Physical Review E,2000,61:776.
    [88]Hartley T T, Lorenzo C F, Qammer H K. Chaos in a Fractional Order Chua's System[J]. IEEE Transactions on Circuits and Systems 1,1995,42:485.
    [89]Zheng Y, Nian Y B, Wang D J. Controlling fractional order chaotic systems based on Takagi-Sugeno fuzzy model and adaptive adjustment mechanism[J]. Physics Letters A,2010,375:125.
    [90]Das S, Suganthan P N. Differential Evolution:A Survey of the State-of-the-Art[J]. IEEE Transactions on Evolutionary Computation,2011,15:4.
    [91]Arenas A, Diaz-Guilera A, Kurths J, et al. Synchronization in complex networks[J]. Physics Reports,2008,469:93.
    [92]Tang Y, Qiu R H, Fang J A, et al. Adaptive lag synchronization in unknown stochas-tic chaotic neural networks with discrete and distributed time-varying delays[J]. Physics Letters A,2008,372:4425.
    [93]Tang Y, Wang Z, Wong W K, et al. Multiobjective synchronization of coupled systems[J]. CHAOS,2011,21:025114.
    [94]Vincent U E, Guo R. Finite-time synchronization for a class of chaotic and hy-perchaotic systems via adaptive feedback controller [J]. Physics Letters A,2011, 375:2322.
    [95]Li Z, O'Doherty J E, Hanson T L, et al. Unscented Kalman Filter for Brain-Machine Interfaces[J]. PLoS ONE,2009,4:e6243.
    [96]Ralph J F, Oxtoby N P. Quantum filtering one bit at a time[J]. Physical Review Letters,2011,107:274101.
    [97]Pajevic S, Plenz D. Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches [J]. PLoS Computational Biology,2009,5:e1000271.
    [98]Tang Y, Gao H J, Kurths J, et al. Evolutionary pinning control and its application in UAV coordination[J]. IEEE Transactions on Industrial Informatics,2012,8:828-838.
    [99]Luukko J, Rauma K. Open-Loop Adaptive Filter for Power Electronics Applica-tions[J]. IEEE Transactions on Industrial Electronics,2008,55:910-917.
    [100]Arenas A, Diaz-Guilera A, Kurths J, et al. Synchronization in Complex Net-works[J]. Physics Reports,2008,469:93-153.
    [101]Liu Y H, Kuo C Y, Chang C C, et al. Electro-osmotic flow through a two-dimensional screen-pump filter[J]. Physical Review E,2011,84:036301.
    [102]Luque S P, Fried R. Recursive Filtering for Zero Offset Correction of Diving Depth Time Series with GNU R Package diveMove[J]. PLoS ONE,2011,6:e15850.
    [103]Tumminello M, Michele L F, Mantegna R N. Kullback-Leibler distance as a mea-sure of the information filtered from multivariate data[J]. Physical Review E,2007, 76:031123.
    [104]Yu D, Parlitz U. Inferring Network Connectivity by Delayed Feedback Control[J]. PLoS ONE,2011,6:e24333.
    [105]Chen S, Istepanian R H, Luk B L. Digital IIR filter design using adaptive simulated annealing[J]. Digital Signal Processing,2001,11:241-251.
    [106]Karaboga N, Kalinli A, Karaboga D. Designing IIR filters using ant colony opti-misation algorithm[J]. Engineering Applications of Artificial Intelligence,2004, 17:301-309.
    [107]Krusienski D J, Jenkins W K. Particle swarm optimization for adaptive ⅡR filter structures [C]//Congress on Evolutionary Computation, CEC2004. Portland, OR, US:IEEE Press,2004:2805-2810.
    [108]Dai C, Chen W, Zhu Y. Seeker optimization algorithm for digital ⅡR filter de-sign[J]. IEEE Transactions on Industrial Electronics,2010,51:1710-1718.
    [109]Karaboga N. Digital ⅡR filter design using differential evolution algorithm[J]. EURASIP Journal on Applied Signal Processing,2005,8:1269-1276.
    [110]Dorigo M, Stutzle T. Ant Colony Optimization[M]. Cambridge:MIT Press,2004.
    [111]Tang Y, Wang Z, Fang J. Feedback learning particle swarm optimization[J]. Ap-plied Soft Computing,2011,11:4713-4725.
    [112]Dai C, Chen W, Li L, et al. Seeker optimization algorithm for parameter estimation of time-delay chaotic systems[J]. Physical Review E,2011,83:036203.
    [113]Chakraborty U K, Abbott T E, Das S K. PEM fuel cell modeling using differential evolution[J]. Energy,2012,40:387.
    [114]Zaidi S M J. Comparative Study of Electrochemical Methods for Determination of Methanol Permeation Through Proton-Exchange Membranes [J]. Arabian Journal for Science and Engineering,2011,36:689.
    [115]Mubarak M. Estimation of the Frechet Distribution Parameters ABased on Record Values[J]. Arabian Journal for Science and Engineering,2011,36:1597.
    [116]Tang Y, Gao H, Kurths J, et al. Evolutionary pinning control and its application in UAV coordination[J]. IEEE Transactions on Industrial Informatics,2012,8:828-838.
    [117]Beicha A. Modeling and simulation of proton exchange membrane fuel cell sys-tems[J]. Journal of Power Sources,2012,205:335.
    [118]Correa J M, Farret F A, Popov V A, et al. Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells[J]. IEEE Transactions on Energy Conversion,2005,20:211.
    [119]Vargas J V C, Bejan A. Thermodynamic Optimization of Internal Structure in a Fuel Cell[J]. International Journal of Energy Research,2004,28:319.
    [120]Vargas J V C, Ordonez J, Bejan A. Constructal flow structure for a PEM fuel cell[J]. International Journal of Heat and Mass Transfer,2004,47:4177.
    [121]Vargas J V C, Ordonez J, Bejan A. Constructal PEM fuel cell stack design[J]. International Journal of Heat and Mass Transfer,2005,48:4100.
    [122]Saberi S, Nookabadi A S, Hejazi S R. Applying Agent-Based System and Negoti-ation Mechanism in Improvement of Inventory Management and Customer Order Fulfilment in Multi Echelon Supply Chain [J]. Arabian Journal for Science and Engineering,2012,37:851.
    [123]Askarzadeh A, Rezazadeh A. An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model[J]. IEEE Transactions on Industrial Electronics,2012,59:3473.
    [124]Ye M Y, Wang X D, Xu Y S. Parameter identification for proton exchange mem-brane fuel cell model using particle swarm optimization [J]. International Journal of Hydrogen Energy,2009,34:981.
    [125]Ohenoja M, Leiviska K. Validation of genetic algorithm results in a fuel cell model[J]. International Journal of Hydrogen Energy,2010,35:12618.
    [126]Dai C H, Chen W R, Cheng Z L, et al. Seeker optimization algorithm for global op-timization:A case study on optimal modelling of proton exchange membrane fuel cell (PEMFC)[J]. International Journal of Electrical Power and Energy Systems, 2011,33:369.
    [127]Chakraborty U K. Advances in Differential Evolution, studies in computational intelligence[M]. Berlin:Springer,2008.
    [128]Storn R, Price K V, Lampinen J. Differential Evolution-A Practical Approach to Global Optimization[M]. Berlin, Germany:Springer-Verlag,2005.
    [129]Storn R, Price K V. Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces[R]. MN:ICSI, Bloomington,1995. http://www.icsi.berkeley.edu/-storn/litera.html.
    [130]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York:Springer-verlag,1995.
    [131]Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm[J]. IEEE Transaction on Systems Man and Cybernetics:Part A,2008,38:218-237.
    [132]Tasgetiren M F, Suganthan P N, Pan Q K. An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem[J]. Applied Mathematics and Computation,2010,215:3356-3368.
    [133]Tang Y, Wang Z D, Wong W K, et al. Multiobjective synchronization of coupled systems[J]. CHAOS,2011,21:025114.
    [134]Yildiz A R. A comparative study of population-based optimization algorithms for turning operations[J]. Information Sciences,2012,210:81-88.
    [135]Das S, Suganthan P N. Differential Evolution:A Survey of the State-of-the-Art[J]. IEEE Transactions on Evolutionary Computation,2011,15:4-31.
    [136]Eiben A E, Marchiori E, Valko V A. Evolutionary algorithms with on-the-fly pop-ulation size adjustment[J]. Lecture Notes in Computer Science,2004,3242:41-50.
    [137]Tan K C, Lee T H, Khor E F. Evolutionary Algorithms With Dynamic Population Size and Local Exploration for Multiobjective Optimization[J]. IEEE Transactions on Evolutionary Computation,2001,5:565-588.
    [138]Epitropakis M G, Tasoulis D K, Pavlidis N G. Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators [J]. IEEE Transactions on Evolu-tionary Computation,2011,15:99-119.
    [139]Iorio A, Li X. Solving rotatedmulti-objective optimization problems using dif-ferential evolution[C]//Australian Conference on Artificial Intelligence. Cairns, Australia:Springer,2004:861-872.
    [140]Lu H, Yen G G. Rank-Density-Based Multiobjective Genetic Algorithm and Benchmark Test Function Study [J]. IEEE Transactions on Evolutionary Computa-tion,2003,7:325-343.
    [141]Leong W F, Yen G G. PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives[J]. IEEE Transaction on Systems Man and Cybernetics:Part B,2008,38:1270-1293.
    [142]邱玉霞,谢克明.基于泛函分析的思维进化算法收敛性研究[J].计算机工程与应用,2006,22:36-38.
    [143]龚怀云,寿纪麟,王绵森.应用泛函分析[M].西安:西安交通大学出版社,1995:10-16.
    [144]Suganthan P N, Hansen N, Liang J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization [R]. IIT Kanpur, Kanpur, India:Nanyang Technol. Univ., Singapore,2005.
    [145]Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation,1997,1:67-82.
    [146]Neri F, Tirronen V. Recent advances in differential evolution:a survey and experi-mental analysis[J]. Artificial Intelligence,2010,33:61-106.
    [147]Tang Y, Gao H, Zou W, et al. Identifying Controlling Nodes in Neuronal Networks in Different Scales[J]. PLoS ONE,2012,7:e41375.
    [148]Mao X, Yuan C. Stochastic differential equations with Markovian switching[M]. UK:Imperial College Press,2006.
    [149]Shen S G, Han R S, Guo L Z, et al. Survivability evaluation towards attacked WSNs based on stochastic game and continuous-time Markov chain[J]. Applied Soft Computing,2012,12:1467-1476.
    [150]Farhang-Mehr A, Azarm S. Diversity Assessment of Pareto Optimal Solution Sets:An Entropy Approach[C]//In Proceedings of the Congress on Evolutionary Computation. Hawaii, US:IEEE Press,2002:723-728.
    [151]Wang Y N, Wu L H, Yuan X F. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure[J]. Soft Com-puting,2010,14:193-209.
    [152]Akay B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding[J]. Applied Soft Computing,2012,, doi:10.1016/j.asoc.2012.03.072.
    [153]Shannon C E. A Mathematical Theory of Communication[J]. Bell System Techni-cal Journal,1948,27:379-423,623-656.
    [154]Burg J P. Maximum Entropy Spectral Analysis[D]. State of California, USA: Stanford University,1975.
    [155]Petalas Y G, Parsopoulos K E, Vrahatis M N. Entropy-based Memetic Particle Swarm Optimization for computing periodic orbits of nonlinear map-pings [C]//IEEE Congress on Evolutionary Computation. Singapore:IEEE Press, 2007:2040-2047.
    [156]Tang Y, Wang Z, Gao H, et al. A constrained evolutionary computation method for detecting controlling regions of cortical networks [J]. IEEE/ACM Trans. On Computational Biology and Bioinformatics,2012,, doi:10.1109/TCBB.2012.124.
    [157]Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transactions on Evolutionary Computation,2006,10:281.
    [158]Vapnik V N. The Nature of Statistical Learning Theory[M].[S.1.]:New York: Springer-verlag,1995.
    [159]Garcia-Martinez C, Lozano M, Herrera F, et al. Global and local real-coded genetic algorithms based on parent-centric crossover operators[J]. European Journal of Operational Research,2008,185:1088.
    [160]Hansen N, Ostermeier A. Completely derandomized selfadaptation in evolution strategies[J]. Evolutionary Computation,2001,9:159.
    [161]Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation,1997,1:67.
    [162]Zhu W, Fang J, Tang Y, et al. Digital IIR Filters Design Using Differential Evo-lution Algorithm with a Controllable Probabilistic Population Size[J]. PLoS One, 2012,7:e40549.
    [163]Caputo M. Linear models of dissipation whose Q is almost frequency independent-Ⅱ[J]. Geophysical Journal. Royal Astronomical Society,1967,13:529.
    [164]Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics,2002,29:3.
    [165]Lu J, Chen G, Cheng D, et al. Bridge he gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos,2002,12:2917.
    [166]Sheu L J, Chen H K, Chen J H, et al. Chaos in the Newton-Leipnik system with fractional order[J]. Chaos, Solitons and Fractals,2008,36:98.
    [167]Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolution-ary Computation,2009,13:398.
    [168]Wang Y, Cai Z, Zhang Q. Differential Evolution with Composite Trial Vector Gen-eration Strategies and Control Parameters[J]. IEEE Transactions on Evolutionary Computation,2011,15:55.
    [169]Brest J, Greiner S, Boscovic B, et al. Self-adapting control parameters in differ-ential evolution:a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation,2006,10:646.
    [170]Tang Y, Zou W, Lu J Q, et al. Stochastic resonance in an ensemble of bistable sys-tems under stable distribution noises and nonhomogeneous coupling[J]. Physical Review E,2012,85:046207.
    [171]Somiya K, Gurkovsky A G, Heinert D, et al. Reduction of coating thermal noise by using an etalon[J]. Physics Letters A,2011,375:1363.
    [172]Peng H P, Li L X, Yang Y X, et al. Conditions of parameter identification from time series[J]. Physical Review E,2011,83:036202.
    [173]Lafuerza L F, Colet P, Toral R. Nonuniversal Results Induced by Diversity Distribu-tion in Coupled Excitable Systems[J]. Physical Review Letters,2010,105:084101.
    [174]唐漾.复杂网络动力学及其应用的若干问题研究[D].上海:东华大学,2010:47-55.
    [175]Ghosh S, Das S, Vasilakos A V, et al. On Convergence of Differential Evolution Over a Class of Continuous Functions With Unique Global Optimum [J]. IEEE Transaction on Systems Man and Cybernetics:Part B,2012,42:107-124.
    [176]Price K V, Chakraborty U K. Eliminating drift bias from the Differential Evolu-tion Algorithm[J]. Advances in Differential Evolution, Studies in Computational Intelligence,2008,143:33-88.
    [177]Teng N S, Teo J, Hijazi M. Self-adaptive population sizing for a tune-free differen-tial evolution [J]. Soft Computing,2009,13:709-724.
    [178]Osipov G V, Kurths J, Zhou C. Synchronization in Oscillatory Networks[M]. Berlin:Springer,2007.
    [179]du Plessis M C, Engelbrecht A P. Using competitive population evaluation in a differential evolution algorithm for dynamic environments [J]. European Journal of Operational Research,2012,218:7-20.
    [180]Yu D. Estimating the topology of complex dynamical networks by steady state control:Generality and limitation[J]. Automatica,2010,46:2035-2040.
    [181]Lin W Z, Fang J A, Xiao X, et al. iDNA-Prot:Identification of DNA Binding Proteins Using Random Forest with Grey Model[J]. PLoS ONE,2011,6:e24756.
    [182]Xiao X, Wang P, Chou K C. GPCR-2L:predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid composi-tions[J]. Molecular Biosystems,2011,7:911-919.
    [183]Xiao X, Wang P, Chou K C. iNR-PhysChem:A Sequence-Based Predictor for Identifying Nuclear Receptors and Their Subfamilies via Physical-Chemical Prop-erty Matrix[J]. PLoS ONE,2012,7:e30869.
    [184]Wang P, Xiao X, Chou K C. NR-2L:A Two-Level Predictor for Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features[J]. PLoS ONE,2011, 6:e23505.
    [185]Wu Z C, Xiao X, Chou K C. iLoc-Plant:a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites [J]. Molecular BioSystems,2011,7:3287-3297.
    [186]Wu Z C, Xiao X, Chou K C. iLoc-Gpos:A Multi-Layer Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Gram-Positive Bacterial Proteins[J]. Protein & Peptide Letters,2012,19:4-14.
    [187]Xiao X, Wu Z C, Chou K C. A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites[J]. PLoS ONE,2011,6:e20592.
    [188]Chou K C, Wu Z C, Xiao X. iLoc-Hum:Using accumulation-label scale to pre-dict subcellular locations of human proteins with both single and multiple sites [J]. Molecular Biosystems,2012,8:629-641.
    [189]Xiao X, Wu Z C, Chou K C. iLoc-Virus:A multi-label learning classifier for iden-tifying the subcellular localization of virus proteins with both single and multiple sites[J]. Journal of Theoretical Biology,2011,284:42-51.
    [190]Tang Y, Wang Z, Fang J. Pinning control of fractional-order weighted complex networks[J]. CHAOS,2009,19:013112.
    [191]Schumann-Bischoff J, Parlitz U. State and parameter estimation using uncon-strained optimization[J]. Physical Review E,2011,84:056214.
    [192]Kalinli A, Karaboga N. Artificial Immune Algorithm for IIR Filter Design[J]. Engineering Applications of Artificial Intelligence,2005,18:919-929.
    [193]Kalinli A, Karaboga N. A New Method for Adaptive IIR Filter Design Based on Tabu Search Algorithm[J]. International Journal of Electronics and Communica-tions,2005,59:111-117.
    [194]Karaboga N. Digital ⅡR Filter Design Using Differential Evolution Algorithm[J]. EURASIP Journal on Advances in Signal Processing,2005,2005:1269-1276.
    [195]Krusienski D J, Jenkins W K. Particle Swarm Optimization for Adaptive IIR Filter Structures[C]//IEEE Congress on Evolution Computing (CEC2004). Portland, OR, US:IEEE Press,2004:965-970.
    [196]White M S, Flockton S J. Adaptive Recursive Filtering using Evolutionary Algo-rithms[M]. Berlin, Germany:Springer-verlag,1997:361-376.
    [197]Krusienski D J, Jenkins W K. Design and Performance of Adaptive Systems Based on Structured Stochastic Optimization[J]. IEEE Circuits and Systems Magazine, 2005,5:8-20.
    [198]Lu L Y, Liu W P. Information filtering via preferential diffusion[J]. Physical Re-view E,2011,83:066119.
    [199]Dai C H, Chen W R, Zhu Y F. Seeker optimization algorithm for digital IIR filter design[J]. IEEE Transactions on Industrial Electronics,2010,57:1710.
    [200]Abido M A, Al-Ali N A. Multi-Objective Optimal Power Flow Using Differential Evolution[J]. Arabian Journal for Science and Engineering,2012,37:991.
    [201]McConnell V P. Composites fuel growth of fuel cell technology [J]. Composites Technology,2009,10:10.
    [202]Kim J, Lees M, Srinivasan S. Modeling of proton exchange mem-brane fuel cell performance with an empirical equation[J]. Journal of The Electrochemical Soci-ety,1995,142:2670.
    [203]Amphlett J C, Baumertr M, Mannr F. Performance modeling of the Ballard mark IV solid polymer electrolyte fuel cell:Empirical model development[J]. Journal of The Electrochemical Society,1995,142:9.
    [204]Busquet S, Hubert C, Labbe J, et al. A new approach to empirical electrical mod-elling of a fuel cell, an electrolyser or a regenerative fuel cell[J]. Journal of Power Sources,2004,134:41.
    [205]Mann R F, Amphlett J C, Hooper M A I, et al. Development and application of a generalized steady-state electrochemical model for a PEM fuel cell[J]. Journal of Power Sources,2000,86:173.
    [206]Correa J M, Farret F A, Canha L N, et al. An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach[J], IEEE Trans-actions on Industrial Electronics,2004,51:2004.
    [207]Jia J, Li Q, Wang Y, et al. Modeling and Dynamic Characteristic Simulation of a Proton Exchange Membrane Fuel Cell[J]. IEEE Transactions on Energy Conver-sion,2009,24:283.
    [208]Li Q, Chen W R, Wang Y Y, et al. Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Opti-mization[J]. IEEE Transactions on Industrial Electronics,2011,58:2410.
    [209]Larminie J, Dicks A. Fuel Cell System Explained[M]. U.K.:Wiley, Chichester, 2002.
    [210]Al-Duwaish H N. Identification of Hammerstein Models with Known Nonlinearity Structure Using Particle Swarm Optimization[J]. Arabian Journal for Science and Engineering,2011,36:1269.
    [211]Eslamian S S, Gohari S A, Zareian M J, et al. Estimating Penman-Monteith Refer-ence Evapotranspiration Using Artificial Neural Networks and Genetic Algorithm: A Case Study [J]. Arabian Journal for Science and Engineering,2012,37:935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700