用户名: 密码: 验证码:
大豆对SMV3号株系的抗性遗传及分子标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆花叶病毒(SMV)病是世界性大豆病害,在我国各大豆产区普遍发生,对大
    豆生产危害严重,利用抗病品种是控制SMV最经济而有效的措施。东北是我国大豆主
    产区,SMV3号株系是强毒株系,抗源较少。筛选鉴定和研究新抗源具有重要的理论价
    值和实践意义。本研究利用SMV3号株系对大豆资源进行了抗性鉴定,筛选出抗性种
    质,并利用农艺性状和RAPD标记分析了部分抗源的遗传关系。通过对抗病×感病杂
    交组合后代分析,明确了高抗SMV的大豆品系95-5383的抗性遗传规律。利用BSA法
    筛选出与SMV抗性基因紧密连锁的RAPD标记,并将其转化成SCAR标记。利用作图
    群体将RAPD标记定位于大豆遗传连锁图上。具体研究结果如下:
     1.利用人工汁液摩擦法对不同来源的347份大豆种质资源接种SMV3号株系进行
    抗性鉴定。筛选出113份高抗资源,占32.56%;112份材料中抗SMV3,占32.27%;122
    份感病,占35.16%。抗源主要来自于东北春作大豆区(辽宁)和黄淮海夏作大豆区(山
    东、山西、北京)以及美国和韩国,南方大豆产区抗源较少。不同品种接种后的症状类
    型不同,表明品种和株系间存在互作。国外引进资源接种后顶枯症状较多,表明症状反
    应和地理来源有一定关系。本文还分析了美国一些抗源对SMV3的抗性反应及抗性基
    因的关系。
     2.利用筛选出的高抗SMV3号株系的大豆品系95-5383与4个感病品种(品系)
    HBI、铁丰21、Amsoy、Williams和抗病品种PI486355配制5个杂交组合,对各组合
    的F1、F2代接种SMV鉴定抗性。结果表明,95-5383与各感病品种杂交组合的F1代
    表现为感病,F2群体分离比例为3感(花叶+顶枯):1抗,表明95-5383对SMV3号
    株系的抗性受一对隐性基因控制。95-5383×PI486355的F2代接种后有感病植株分离,
    表明二者对SMV3的抗性基因是不等位的。利用BSA法对95-5383×HBI的F2代进行
    鉴定,筛选出与SMV抗病基因紧密连锁的共显性RAPD标记OPNII_(980/1070)。RAPD引
    物OPNII在95-5383和抗池扩增出OPNII_(980)片段,在HBI和感池扩增出OPNII_(1070)片
    段,在F1同时扩增出OPNII_(980)和OPNII_(1070)。用该引物分析95-5383×HBI的F2个体,
    OPNII_(980/1070)与95-5383抗病基因的遗传距离为2.1cM。
     3.从95-5383和HBI中分别回收OPNII_(980)和OPNII_(1070)特异片段,克隆在PGEM-
    T easy vector中,并进行序列分析。结果表明OPNII_(980)和OPNII_(1070)的实际长度分别
    为986bp和1084bp,同源性为93.4%,主要差别是在两个不同区段插入(缺失)54bp
    和35bp的碱基。用克隆的RAPD片段OPNII_(980)作探针(SOPNII)对亲本基因组DNA
    
    
    
     中国农业科学陨博十学位论义
    进行 Southern 65交,结果表明 OPN。。和 OPN川。。在人豆基因组中是以低拷贝形式
    存在。用n PD引物OPN和y卜于探针9口PN!1分析科丰1。南农1!3吕毛重组自交
    系作图群体,将 Opp和 SOPN定位于 F迹锁群的抗病基冈簇上.根据克隆片段
    OPN。羽IOPNll;。。的序列设计合成了一对SCAR引物SCNll,SCNll在95·5383中
    扩增出与 OPN。人小相同的片段 SCN。,在 HB中扩增出与 OPN。大小相同
    的片段SCN。,。,在FI同时扩增出SCN!l_、。SCNn对95·5383 X HBI的FZ群体
    扩增结果与RAPD引物OPNll分析结果完全吻台。SCAR标记SCNll。。,。对于大豆
    抗SMV标记辅助选抒育种和抗病性鉴定有很)“泛的应用前景。
     4.选用已经鉴定出的68份高抗SMV3的大亘资源,利用农艺性状和nPD分析
    品种间的遗传关系。从 60个 nPD引物中筛选出 11个多态性引物,共扩增出刃个片
    段,多态性片段为33条。扩增产物的有无分别以1和0记录,选用J_。rd公式计算
    品种之间的相似系数,利用UPGMA法构建了树状图。RAPD聚类结果和农艺性状聚
    类结果具有一定的吻合性。聚类结果表明亲源关系相同、地理来额相同的品种多数聚在
    一类。分聚在不同组间的人豆品种迢传背景存在差异,可能具有不同的抗病基因。用
    OPN分析了68份抗性资源,其中有25份扩增出OPN。,衰明这些品种可能携带
    与95-5383相同的抗性基因,而其它扩增出OPN!l。;。。和OPNll。。的抗性品种可能
    携带不同于95.5383的抗性基因。
Soybean mosaic virus (SMV) occurs worldwide and is a major soybean disease
     in China, resulting in yield losses and seed-quality deterioration . Using resistant
     varieties is the most economic and effective method to control SMV. Northeast
     China is the main soybean production region in China and the virulence of SMV 3
     is the strongest. It抯 very important to identify and study new resistant
     germplasms. We have screened resistant soybean germplasm by inoculation of
     SMV3 and investigated the genetic diversity of part of the resistant varieties with
     RAPD and morphological characters. We have demostrated the inheritance of
     resistence of 95-5383 by studying the progenies of the crosses of
     resisantxsusceptible . We have identified one RAPD marker closely linked to
     SMV resistance gene by BSA and converted it into SCAR marker. The RAPD
     marker have been mapped in soybean molecular linkage group by using a mapping
     populations. The main results are summarized as followings:
    
     1. 347 soybean accessions have been identified for the resistance to SMV3
     by artificially inoculation with SMV 3, a strong virulent strain in Northeast
     China. The results showed that 113 accessions were highly resistant to SMV3.
     account for 32.56%; 112 accessions were moderately resistant to SMV3. account
     for 32.27%; 122 accessions were susceptible to SMV3, account for 35.16%.
     Resistant accessions were mainly originated from Northeast China (Liaoning),
     Huang Huaihai areas (Shandong, Shanxi province and Beijing), U.S. and South
     Korea. There were few resistant accessions from South China in our evaluation.
     Symptoms are different in different varieties when inoculated with the same SMV
     strain, showing there are interaction between soybean varieties and SMV strains.
     Top necrosis symptoms were observed in introduced varieties from abroad,
     indicating symptoms may relate to geographical origin of the accessions. Some
     varieties with known resistance gene introduced from U.S. were identified for the
     resistance to SMV3 and the relationship of resistance gene between Chinese
     accessions and U.S. accessions was discussed.
    
     2 One highly resistant soybean line (95-5383) was crossed with four
    
    
    
    
    
    
    
    
    
     susceptible soybean varieties/line (HB 1, Tiefeng2 1, Amsoy, Williams) and one
     resistant variety (P1486355) Their Fl and F2 individuals were identified for
     SMV resistance by inoculation with SMV3. The results showed that in the four
     crosses of resistantxsusceptible, Fl were susceptible and F2 populations
     segregated in a 1 resistant: 3 susceptible (mosaic and necrosis) ratio, indicating
     that 95-53 83 carries one recessive gene that confer resistance to SMV. There are
     segregations of susceptibility in F2 progenies from the cross of 95-5383x
     P1486355, indicating that the SMV resistance gene in 95-5383 is located at
     different loci from that in P14863 55. By bulked segregant analysis (BSA) in F2
     progenies of 95-5383xHB1, we have identified one codominant RAPD marker
     OPNI 1980/1070 closely linked to SMV resistance gene. DNA fragment OPN1 1980
     was amplified in 95-5383 and resistant bulk, OPN1 1)070 was amplified in HBI and
     susceptible bulk. OPN1 1980,10,0 was amplified in Fl. Identification of the markers
     in F2 plants of 95-5383xHB1 showed that the codominant marker OPN1 1930,10,0 is
     closely linked to the resistance gene in 95-5383, with genetic distance of 2.1cM.
    
     3 Both fragments of OPNI ~ and OPNI 110,0?amplified from 95-5383 and
     HB 1. respectively, were purified and cloned into PGEM-T easy vector and
     sequenced.
引文
1.马淑梅.1991.中国大豆品种对大豆花叶病毒(SMV)病抗病性鉴定结果.大豆科学,10(3):240-244
    2.王国勋等.1984.大豆病毒病的抗病育种.中国油料,(3):7-10
    3.长泽次男等.1981.大豆抗病毒病的育种.国外农学-大豆,6:13-16
    4.刘玉芝等.1997.对大豆花叶病毒病抗源的筛选.吉林农业科学,(1):30-34
    5.刘丽君等.1994.大豆SMV病源相关蛋白的诱导与耐病性获得.大豆科学,13(4):345-348
    6.刘俊君等.1994.大豆花叶病毒NIb基因的cDNA克隆和序列分析.中国科学,B辑24(3):265-71
    7.刘俊君等,1993.大豆花叶病毒外壳蛋白基因的克隆和其在大肠杆菌中的表达.生物工程学报,9(3):198-203
    8.刘德璞等.1997,导入外源DNA获得抗SMV大豆品系.大豆科学,16(4):277-282
    9.向远道等.1991.大豆对4个大豆花叶病毒株系的抗性及其连锁遗传研究.遗传学报,18(1):51-58
    10.吕文清等.1991.六个SMV毒株在大豆不同品种上病毒浓度的变化与比较.大豆科学,10(4):277-284
    11.吕文清等.1985.东北三省大豆花叶病毒(SMV)株系的种类与分布.植物病理学报,15(4):225-228
    12.孙大敏等.1990.东北(SMV)三株系在大豆杂交亲本选配及后代选择应用.大豆科学,9(1):60-64
    13.孙永吉等.1991.野生大豆抗花叶病毒的研究.大豆科学,10(3):212-216
    14.孙志强.1992.播种期和某些质量遗传基因对大豆籽粒斑驳形成的影响.大豆科学,11(3):204-212
    15.孙志强等.1990.大豆对大豆花叫病毒1,2,3号株系抗性的遗传.中国油料,(2):20-24
    16.庄炳昌等.1993.接种大豆花叶病毒后,大豆叶片超氧物歧化酶,过氧化物酶和蛋白组份的变化.植物病理学报,23(3):261-265
    17.许志纲等.1983.大豆花叶病毒株系的鉴定.南京农学院学报,3:36-40
    18.严隽析.1985.大豆花叶病毒抗性遗传的初步研究.大豆科学,4(4):249-257
    19.余子林等.1986.湖北地区大豆花叶病毒的研究.全国大豆病害学术讨论会论文摘要汇编
    
    
    20.吴宗璞等.1986.大豆品种对SMV不同毒株抗性反应与种粒斑驳关系的研究.大豆科学,5(2):153-160
    21.张玉东等.1989.大豆对二个大豆花叶病毒本地株系的抗性遗传研究.作物学报,15(3):213-219
    22.张明厚等.1998.东北亚四国(地区)SMV株系毒力比较.大豆科学,17(2):101-107
    23.张明厚等.1998.我国东北部五省市对大豆主栽品种的毒力测定.植物病理学报,28(3):237-242
    24.李延华,吕文清.1989.大豆花叶病毒—强株系在抗性不同大豆品种上的症状及病毒浓度.大豆科学,8(4):395-399
    25.李默然等.1986.筛选大豆花叶病毒种传率低品种的研究.大豆科学,5(3):245-248
    26.杨崇良等.1993.大豆品种生育特性对大豆花叶病毒种传率的影响.山东农业科学,4:9-11
    27.杨崇良等.1997.北方大豆品种资源抗大豆花叶病毒筛选.植物病理学报,27(1):27-28
    28.沈文飚等.1997.大豆花叶病毒(SMV)的侵染对大豆叶片过氧化物酶及其同工酶的影响.南京农业大学学报,20(4):88-92
    29.邹继军.1999.大豆灰斑病抗病基因分子标记及抗病种质资源遗传多样性研究.东北农业大学博十学位论文
    30.陆京杰等,1992.大豆花叶病毒(SMV)的侵染对大豆光合作用的影响.植物生理学通讯,28(2):104-106
    31.陈永萱等.1986.大豆花叶病毒二个新株系的鉴定.植物保护学报,13(4):221-226
    32.陈怡.1991.大豆对两个大豆花叶病毒株系的抗性遗传研究.黑龙江农业科学,91(5):21-24
    33.陈怡等.1990.大豆品种抗花叶病毒3号株系的遗传研究初报.黑龙江农业科学,(5):23-25
    34.周雪平等.1994.大豆花叶病毒外壳蛋白基因克隆及在病毒检测中的应用.病毒学报,10(1):81-85
    35.尚佑芬等.1989.影响大豆花叶病毒种子传毒有关因素的研究.山东农业科学,(5):34-36
    36.尚佑芬等.1997.黄淮地区大豆花叶病毒株系鉴定.山东农业科学,(6):24-27
    37.林红.1997.黑龙江省野生大豆优异资源鉴定与筛选.作物品种资源,(2):41-42
    38.林建兴等.1983.大豆抗病毒病新品种的选育.大豆科学,(2):125-130
    39.罗瑞梧等.1991.大豆花叶病流行因素和发生预测研究.植物保护学报,18(3):267-272
    
    
    40.罗瑞梧等.1990.山东省大豆花叶病毒株系鉴定.山东农业科学,(5):16-19
    41.郑翠明等.1998.不同种粒抗性大豆品种感染SMV后可溶性蛋白和游离氨基酸的研究.植物病理学报,28(3):227-231
    42.郑翠明等.1999.不同抗性大豆品种接种SMV后种皮POD、SOD、PPO的变化.中国农业科学,32(1):99-101
    43.祝其昌等.1990.不同杂交组合与选择方法对大豆抗花叶病选育效果的比较.大豆科学,9(1):77-82
    44.胡吉成.1989.大豆花叶病毒种子传染的研究.吉林农业科学,(4):5-7
    45.胡吉成等.1987.春大豆花叶病毒(SMV)三株系与褐斑粒关系的研究.吉林农业科学,3:1-4
    46.胡国华等.1995.大豆抗种粒斑驳基因效应的研究.遗传学报,22(2):133-141
    47.胡蕴珠.1985.大豆对二个SMV株系抗性的遗传研究.南京农业大学学报,(3):17-22
    48.胡蕴珠等.1997.对SMV不同抗性的大豆品种体内过氧化物酶活性变化的研究.大豆科学,16(1):28-33
    49.钟兆西等.1986.筛选SMV抗源品种的初步研究.大豆科学,5(3):239-244
    50.徐香玲等.1996.Ri质粒介导大豆花叶病毒外壳蛋白基因转化大豆的研究.大豆科学,15(4):279-288
    51.栾晓燕.1997.大豆对SMV3号株系成株抗性遗传的研究.大豆科学,16(3):223-226
    52.栾晓燕等.1997.大豆抗性种质对SMV3号株系种粒斑驳的抗性遗传.黑龙江农业科学,(5):1-3
    53.栾晓燕等.1998.大豆品种感染SMV后光合产物的积累和分配.大豆科学,17(1):44-47
    54.栾晓燕等.1998.不同抗性大豆品种感染SMV后叶绿素和光合速率变化分析.黑龙江农业科学,8-10
    55.皱淑华等.1990.对大豆花叶病不同抗性的大豆品种的电泳分析.作物学报,16(3):284-287
    56.郭井泉等.1991.种子带毒率及有翅蚜降落量对SMV流行的影响.植物保护学报,18(1):29-33
    57.郭井泉.1992.控制大豆花叶病毒危害的种子带毒率临界水平.东北农学院学报,23(3):220-225
    58.郭井泉.1989.大豆花叶病毒(SMV)主要介体及其传毒效率研究.大豆科学,8(1):55-63
    
    
    59.郭井泉等.1991.SWV种传特性及其田间流行的种子传毒率预测.病毒学杂志,6(2):171-178
    60.郭蓓等.2000.大豆耐盐基因的PCR标记.中国农业科学,33(1):10-16
    61.高桥幸吉.1963.日本SMV的划分.日本植物病理学会,83(3):41-45
    62.梅丽艳.1997.大豆花叶病毒种子带毒极其检测技术研究.黑龙江农业科学,(3):17-19
    63.梅丽艳.1997.抗大豆花叶病毒种传、种皮斑驳大豆品种的筛选.大豆通报,(3):11
    64.盖钩镒等.1989.大豆资源对SMV株系抗性的鉴定.大豆科学,8(4):323-330
    65.章元寿等.1990.大豆花叶病毒病种子氨基酸含量测定.南京农业大学学报,13(1):127-128
    66.储瑞银等.1992.应用聚合酶链式反应扩增大豆花叶病毒外壳蛋白基因及其序列分析.植物学报,34(7):523-528
    67.智海剑等.1996.大豆花叶病毒对大豆生长的影响.中国油料,18(1):44-47
    68.葛莘.1986.影响大豆花叶病毒种子传毒和种子斑驳因素的研究.植物病理学报,16(4):211-218
    69.董宏平等.1997.大豆花叶病毒(SMV)侵染大豆种胚的研究.南京农业大学学报,20(1):35-38
    70.廖林等.1990.大豆花叶病(SMV)影响大豆产量原因分析.黑龙江农业科学,(5):15-17
    71.廖林等.1993.大豆花叶病(SMV)若干抗性鉴定指标分析.大豆科学.12(2):131-136
    72.廖林等.1995.大豆花叶病引起的大豆顶端坏死症.作物学报,21(6):707-710
    73.廖林等.1989.感染大豆花叶病毒(SMV)病的大豆品种几项生理特性变化的初步探讨.大豆科学,8(2):191-195
    74.廖林等.1994.大豆花叶病的抗性遗伟:Ⅰ.几个引用抗原地东北大豆花叶病毒二号株系.遗传学报,21(5):403-408
    75.廖林等.1990.大豆花叶病(SMV)症状与大豆品种、病毒毒株及环境条件关系的研究.大豆科学,9(2):149-156.
    76.廖林等.1993.不同抗性大豆品种感染大豆花叶病毒后一些生理生化性状的变化.中国油料,(1):26-29
    77.濮祖芹等.1983.大豆品种(品系)对大豆花叶病毒六个株系的抗性反应.南京农学院学报,(3):41-45
    
    
    78. 濮祖芹等.1982.大豆花叶病毒的株系鉴定.植物保护学报,9(1): 15-19
    79. Adam-Blondon A.F. et al. 1994. SCAR, RAPD and RFLP markers linked to a dominant gene(Are) conferring resistance to anthracnose in common bean. Theor. Appl. Genet.88:865-870
    80. Ashfield T. et al. 1998. Rpg1,a soybean gene effective against races of bacterial blight,maps to a cluster of previously identified disease resistance genes. Theor. Appl.Genet. 96:1013-1021
    81. Bai G.H. et al. 1999. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Genetics and resistance. 89(4):343-348
    82. Bajwa, M.A., Pacumbaba, R.P. 1996. Location of Soybean Mosaic Virus in seed-parts of individual dormant and germinating mottled and non-mottled soybean seeds. Journal of Phytopathology. 144(3): 151-155
    83. Barret, P et al. 1998. Development of a SCAR(sequence characterised amplified region)marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. Theor. Appl. Cenet. 97:828-833
    84. Barua ,U.M. 1993. Identification of RAPDmarkers linked to a Rhynchosporium secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Heredity. 71:177-184
    85. Bowers, G.R. 1991. Strain specificity of Soybean Mosaic Virus seed transmission in soybean. Crop Science. 31:1171-1174
    86. Bowers,G.R. 1992. Inheritance of resistance to soybean mosaic virus in 'Buffalo' and 'HLSsoybean. Crop Sci. 32:67-72
    87. Burow M.D. 1996. Identification of peanut RAPDmarkers diagonostic of root-knot nematode resistance. Molecular breeding. 2:369-379
    88. Buss, G.R., Roane, C.W. 1989. Inheritance of reaction to soybean mosaic virus in two soybean cultivars. Crop Science. 29:6,
    89. Buss, G.R. 1997. Registration of V94-5152Soybean Germplasm Resistant to Soybean Mosaic Potyvirus. Crop Science. 37:1987-1988
    90. Buzzell, R.I., Tu, J.C. 1984. Inheritance of resistance to soybean mosaic virus. J. Hered. 75:82
    91. Buzzell, R.I. and Tu, J.C. 1989. Inheritance of a soybean stem-tip necrosis reaction to Soybean Mosaic Virus. Joumal of Heredity. 80(5): 400-401
    
    
    92. Cai Daguang e t al. 1997. Positional cloing of a gene for nematode resistance in sugar beet. Science. 275:832-834
    93. Carlos A. Urrea.et al. 1996. A Codominant Radomly Amplified Polymorphic DNA(RAPD) Marker useful for indirect selection of bean golden mosaic virus resistance in Common Bean. J. Amer. Soc. Hort. Sci. 121(6):1035-1039
    94. Caner, T. E. 1997.Registration of'Graham' Soybean. Crop Science. 37:293-294
    95. Chen, P. and Buss, G.R. 1994. Inheritance in soybean of resistant and necrotic reactions to soybean mosaic virus. Crop sci. 34:414-422
    96. Chen, P. and Buss, G.R. 1994. Inheritance in soybean of resistant and necrotic reactions to Soybean Mosaic Virus. Crop Science. 34:414-422
    97. Chen F.Q. et al. 1994. Mapping genes for resistance to barley stripe rust. Theor. Appl. Genet.88:215-219
    98. Chen, P. and Buss, G. R. 1993. Resistance to Soybean Mosaic Virus conferred by two independent dominant genes in PI 486355. Journal of Heredity. 84(1):25-28;
    99. Chen,P and Buss, G.R. 1991.Allelism among genes for resistance to Soybean Mosaic Virus in strain-differential soybean cultivars. Crop Science. 31:305-309
    100. Cho, Eui Kyoo and Goodman,R.M. 1979. Strains of Soybean Mosaic Virus: Classification based on virulence in resistant Soybean cultivars. Phytopathoiogy. 69(5):467-470
    101. Cho, Eui Kyoo. 1982. Evaluation of resistance in soybean to Soybean Mosaic Virus strains Crop Science 22:1133-1136
    102. Concibido V.C. 1994. DNA marker analysis of loci underlying resistance to soybean cyst nematode. Crop Sci. 34:240-246
    103. Concibido V.C. 1996. RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci. 36:1643-1650
    104. Concibido V.C. et al. 1996. Targeted comparative genome analysis and qualitative mapping of a major partial-resistance gene to the soybean cyst nematode. Theor. Appl. Genet. 93:234-241
    105. Concibido, V.C. 1997. Genome mapping of soybean cyst nematode resistance genes in 'peking', PI90763, and PI88788 using DNA markers. 37:258-264
    106. Cregan P.B. et al. 1999. An integrated genetic linkage map of the soybean Genome. Crop Sci. 39:1464-1490
    
    
    107. Cregan P.B. et al. 1999. Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor. Appl. Genet. 98:919-928
    108. Cregan,P.B. 1999. Two simple sequence repeat markers to select for soybean cyst nematode resistance coditioned by the rhgl locus. Theor. Appl. Genet. 99:811-818
    109. Davis T.M. 1995. Template mixing: a method of enhancing detection and interpretation of codominant RAPD markers. Theor. Appl. Genet. 91:582-588
    110. Debener T. 1999. Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor. Appl. Genet.99:891-899
    111. Dedryver, F. et al. 1996. Molecular markers linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome 39:830-835
    112. Diers B.W. 1992. Mapping phytophthora resistance loci in soybean with restriction fragment length polymorphism markers. Crop Sci. 32:377-383
    113. Diers B.W. et al. 1997. Genetic relationships among soybean plant introductions with resistance to soybean cyst nematodes. Crop Sci. 37:1966-1972
    114. Divaret 1. 1999. RAPD markers on seed bulks efficiently assess the genetic diversity of a Brassica Oleracea L. collection. Theor. Appl. Genet. 98:1029-1035
    115. Doganlar S. et al. 1998. Molecular mapping of the py-1gene for resistance to corky root rot in tomato. Theor. Appl. Genet. 97:784-788
    116. Doldi M.L. 1997. Genetic diversity in soybean as determined by RAPD and microsatellite analysis. Plant breeding. 116:331-335
    117. Garcia, G.M.et al. 1996. Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from, Arachis cardenasii into Arachis hypogaea. Genome. 39:836-845
    118. Haley S.D. et al. 1993. Identification of RAPD markers linked to a major rust resistance gene block in common bean. Theor. Appl. Genet. 86:505-512
    119. Hartwig, E.E. 1982 Soybean Mosaic Virus investigation with susceptible and resistant soybeans
    120. Hnetkovsky, N. et al. 1996. Genetic mapping of loci underlying field resistance to soybean sudden death syndrome(SDS). Crop Sci. 36:393-400
    121. Hunst, P.L. 1982. Isolation and comparison of two strains of Soybean Mosaic Virus. Phytopathology. 72(7)710-713
    122. Hunt G.J. 1992. Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theor. Appl. Genet. 85:15-20
    
    
    123. Imsande. 1998. QTL in SoyBase: A new perspective. Soybean Genetics Newsletter.25:146-149
    124. Jain A. et al. 1994. Potential use of radom amplified polymorphic DNA(RAPD) technique to study the genetic diversity in Indian mustard and its relationship to heterosis. Theor. Appl. Genet. 88:116-122
    125. Jayaram, C.and Hill,J.H. 1992. Complete nucleotide sequences of two Soybean Mosaic Virus strains differentiated by response of soybean containing the Rsv resistance gene. Journal of General Virology. 73(8): 2067-2077
    126. Junyi Gai and Zhiyong Zhang. 1997. RAPDand RFLP markers linked with the gene resistant to a SMV train in china. Soybean genetic newsletter. 24:75-76
    127. Keim P. 1989. Restriction fragment length polymorphism diversity in soybean. Theor. Appl. Genet. 77:786-792
    128. Keim P. et al. 1997. A high-density soybean genetic map based on AFLP markers. Crop. Sci. 37:537-543
    129. Kiihl ,R.A.S., and Hartwig,E.E. 1979. Inheritance of reaction to Soybean Mosaic Virus in soybeans. Crop Science 19:372-375
    130. Lim,S.M 1985. Resistance to Soybean Mosaic Virus in soybeans. Phytopathology.75:199-201
    131. Lin J.J. 1996. Identification of molecular markers in soybean comparing RFLP, RAPD and AFLP DNA Mapping techniques. Plant molecular biology reporter. Plant molecular biology reporter. 14(2):156-169
    132. Link. W. 1995. Genetic diversity in European and Mediterranean faba bean geerm plasm revealed by RAPD markers. Theor. Appl. Genet. 90:27-32
    133. Lorenzen L.L.1995. Soybean pedigree analysis using map-based molecular markers: I tracking RFLP markers in cultivars. Crop Sci. 35-1326-1336
    134. Lu Z.X. 1999. Development and characterization of a codominant marker linked to root-knot nematode resistance, and its application to peach rootstock breeding. Theor. Appl, Genet.99:115-122
    135. Ma, G..P. Chen. 1995. Genetic characteristics of two genes for resistance to Soybean Mosaic Virus in PI486355. Thor. Appl. Genet. 91:907-91
    136. Mago R. 1999. Resistance gene analogus from rice :cloning, sequencing and mapping. Theor. Appl. Genet.99:50-57
    137. Maisonneuve, B. et al. 1994. Rapid mapping of two genes for resistance to downy mildew from Lactuca serriola to existing clusters of ressistance genes. Theor. Appl. Genet. 89:96-104
    
    
    138. Mansky, L.M.and Durand, D.P 1991 Effects of temperature on the maintenance of resistance to Soybean Mosaic Virus in soybean. Phytopathology. 81:535-538
    139. Mansur, L.M. 1996. Genetic mapping of agronomic trait using recombinant inbred lines of soybean. Crop Sci. 36:1327-1336
    140. Martin G.B. et al. 1993. Map-based cloing of a protein kinase gene conferring disease resisance in tomato. Science. 262:1432-1435
    141. Mcmullen M.D. 1994. Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Molecular plant-microbe interactions. 7:708-712
    142. Michelmore R 1995 Molecular approaches to manipulation of disease resistance genes. Annu. Rev. Phytopathol. 15:397-427
    143. Michelmore R.W. et al. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Genetics. 88:9828-9832
    144. Miklas,PN. et al. 1993. Identification and potential use of a molecular marker for rust resistance in common bean. Theor. Appl. Genet.85:745-749
    145. Myburg A. A. Et al. 1998. Development of RAPD and SCAR markers linked to the Russian wheat aphid resistance gene Dn2 in wheat. Theor. Appl. Genet. 96: 1162-1169
    146. Nutter F.W. 1998. Quantification of within-field spread of soybean mosaic virus in soybean using strain-specific monoclonal antibodies. 88:895-901
    147. Ohmori, T. 1996. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor. Appl. Genet.91:151-156
    148. Omunyin, M.E., Hill,J.H., Miller, W.A..1996. Use of unique RNA sequence-specific oligonucleotide primers for RT-PCR to detect and differentiate Soybean Mosaic Virus strains. Plant Disease. 80(10): 1170-1174
    149. P.B.Cregan et al. 1999. Two simple sequence repeat markers to select for soybean cyst nematode resistance coditioned by the rhg1 locus. Theor. Appl. Genet. 99:811-818
    150. Pacumbaba, R.P.1995. Seed transmission of Soybean Mosaic Virus in mottled and nonmottled soybean seeds. Plant Disease. 79(2): 193-195
    151. Paran, l. and Michelmore, R.W. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85:985-993
    152. Poulsen D.M.E. et al. 1995. The use of bulk segregant analysis to identify a RAPD marker linked to leaf rust resistance in barley. Theor. Appl. Genet. 91:270-273
    
    
    153. Prabhu K. V. 1998. Molecular markers linked to white rust resistance in mustard Brassica juncea. 97:865-870
    154. Ren, Q. 1997. Soybean Mosaic Virus incidence level and infection time:interaction effects on soybean Crop Science.37:1706-1711
    155. Richard A. V. And Henry T.N. 1992. Use of RAPD markers to determin the genetic diversity of diploid wheat genotypes. Theor. Appl. Genet. 84:835-838
    156. Roane,C.W. 1983. Inheritance of reaction to two viruses in the soybean cross "York"X"Lee68". the Journal of Heredity 74:289-291
    157. Rongwen J.1995. The use of microsatellite DNA markers for soybean genotype identification. Theor. Appl. Genet. 90:43-48
    158. Salimath S.S. 1999. Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rpsl-k disease resistance gene. Theor. Appl. Genet. 98:712-720
    159. Salimath S.S.and Bhattacharyya M.K. 1999. Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rpsl-k disease resistance gene. Theor. Appl. Genet. 98:712-720
    160. Santos, J.B.D. et al. 1994 Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor. Appl. Genet. 87:909-915
    161. Sarfatti M. 1991. RFLP mapping of Ⅱ, a new locus in tomato conferring resistance against Fusarium oxysporum f.sp.lycopersici race 1. Theor. Appl. Genet. 82:22-26
    162. Sharma. S.K.et al 1995. Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor. Appl. Genet. 91:647-654
    163. Shoemaker R.C. 1992. Molecular genetic mapping of soybean: map utilization. Crop Sci. 32:1091-1098
    164. Shoemaker R.C. 1995. Integration of the soybean molecular and classical genetic linkage groups. Crop. Sci. 35:436-446
    165. Skorupska H.T. 1993. Restriction fragment length polymorphism in soybean germplasm of the southern USA. Crop Sci. 1169-1176
    166. Skorupska H.T. 1993. Restriction fragment length polymorphism in soybean germplasm of the Southern USA. Crop Sci. 33:1169-1176
    167. Staskawicz, B.J. 1995. Molecular genetics of plant disease resistance. Science 268:661-667
    
    
    168. Stiles J.I. 1993. Using radomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor. Appl. Genet. 85:697-701
    169. Tatineni,V. 1996. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci.36:186-192
    170. Thompson J.A. and Nelson R.L.1998 Core set of primers to evaluate genetic diversity in soybean. Crop Sci. 38:1356-1362
    171. Thormann,C.E. 1994. Comparision of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor. Appl. Genet. 88:973-980
    172. Tu, J.C. 1989.Effect of different strains of Soybean Mosaic Virus on growth, maturity, yield, seed mottling and seed transmission in several soybean cultivars. Journal of Phytopathology. 126: 3, 231-236
    173. Tu, J.C. 1992.Symptom severity, yield, seed mottling and seed transmission of Soybean Mosaic Virus in susceptible and resistant soybean: the influence of infection stage and growth temperature. Journal of phytopathology. 135(1):28-36
    174. Van der Beek,J.G. et al. 1992. Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 on chromosome 1. Theor. Appl. Genet. 84;106-112
    175. Yu, Y. G. Saghai Maroof, M. A.1996. Divergence and allelomorphic relationship of a Soybean Virus resistance gene based on tightly linked DNA microsatellite and RFLP markers. Theor. Appl. Genet. 92:64-69
    176. Yu, Y.G. Saghai Maroof, M. A. 1993 RFLP and Microsatellite Mapping of a Gene for Soybean Mosaic Virus Resistance. Phytopathology. 84:60-64
    177. Zhiyong Zhang, Shouyi, chen and Junyi, Gal. 1998. A codominant SCAR marker linked to SMV resistance gene Rsa. Soybean Genetics Newsletter. 25:27-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700