用户名: 密码: 验证码:
钛合金高压容器成形过程的有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、航天工业的发展与技术进步,钛及钛合金在国防工业中的应用越来越广泛。作为航空、航天难变形材料,钛合金以其变形抗力大、工艺参数容差小、成形件质量对工艺参数敏感且难以控制等特点而成形困难。采用传统的工艺设计与控制方法,很难快捷而有效地生产出合格的零件。这亟待从工艺过程设计、质量控制体系和生产过程控制等方面入手来提高航空、航天难变形的工艺设计水平与成形制造精度。
     本文以航天用某型号高压容器为研究对象,针对其所用材料TC4合金的成形特点,采用有限元数值模拟软件,分析研究了不同工艺条件下TC4合金的成形规律,并以此为基础,对某牌号高压容器各组成部分的实际成形过程进行了数值模拟与仿真。主要成果和新见解如下:
     1.通过工艺分析和材料变形特点的研究,将所研究的高压容器分解为左、中、右三段,并分别采用不同的工艺过程进行成形。通过分析认为:左封头零件适用于精密热模锻工艺;中间筒形件适用于强力旋压工艺;右封头球形件适用于拉延成形工艺。
     2.采用刚(粘)塑性热力耦合有限元数值模拟方法,分析研究了TC4合金高压容器左封头的锻造成形过程,重点研究了在热模锻过程中成形件组织与工艺参数间的耦合分析问题,给出了TC4合金锻造过程中的载荷行程曲线及再结晶组织分布情况,并分析研究了主要工艺参数对左封头成形过程的影响规律。
     3.采用三维弹塑性有限元数值模拟方法,分析研究了TC4合金高压容器中间段筒形件的强力旋压过程,在分析钛合金材料强力旋压特点的基础上,初步确立了TC4合金强旋过程的工艺参数,研究了冷、热旋压工艺对TC4合金强力旋压过程的影响,获得了温度场对强力旋压工艺的影响规律以及旋轮作用区及其相邻区域的场变量分布情况。
     4.采用大变形弹塑性有限元数值模拟方法,分析研究了TC4合金高压容器右封头球形件的拉延成形过程,在对成形板料进行分区讨论的基础上,重点给出了钛合金球形件在拉延成形过程中的回弹规律,并就凸模压下速度对拉延成形过程的影响进行了研究。
With the development of aviation and astronavigation industry and the advancement of technology, the use of titanium and titanium alloy in national defence become wider and wider. Titanium alloy, as the materials difficult to deformation of aviation and astronavigation, has some characters hard to deformation, such as giant resistance of deformation, small processing parameter allowance and quality of formed parts sensitive to processing parameter and hard to control. It is difficult to produce qualified parts with high efficiency by existing facilities and traditional technologies of process design and control to satisfy production demand of modern national defence. It is urgent to be started with development of technological design, quality control system and product control in order to improve the design level of technology hard to deformation and the manufacturing accuracy.
    Taking the deformation of the high pressure vessel used in astronavigation as subject investigated, based on deformation characters of Ti-6Al-4V alloy, the properties of deformation of Ti-6Al-4V alloy have been analyzed by FEM numerical simulation in different technological conditions. On this basis, actual deformation processes of different parts of high pressure vessel are analyzed by numerical simulation. The main research findings and new outlooks are as follows:
    (1) According to research the process and forming characters of material, high pressure vessel researched is separated into three sections of the left, the middle and the right. These three sections are formed by different deforming process. Based on the thorough analysis and study, the left head is proper to precision thermal die forging, the middle cylindrical workpiece to power spinning and the right head to drawing.
    (2) The forging process of the left head of high pressure vessel of TU6A1-4V alloy is analyzed with rigid-visco-plastic thermodynamic coupled FEM numerical simulation. The coupling problem between microstructure of forgings and processing parameters in thermal die forging is studied. The load-distance curve and distribution
    
    
    
    of the recrystal microstructxxre in forging process of TJ-6A1-4V alloy are obtaiaed, and the influence of major processing parameters on deforming process is analyzed.
    (3) The power spinning of the middle cylindrical workpiece of high pressure vessel of Ti-6Al-4V alloy is analyzed with three-dimensional elastic-plastic FEM numerical simulation. On the basis of study of characters of power spinning of titanium alloy, processing parameters of power spinning of Ti-6Al-4V alloy are determined. The influence of cool spinning and thermal spinning on power spinning process of T1-6A1-4V alloy is studied. The influence of temperature on power spinning process and the distribution of field variable around roller are obtained, and power spinning process of the cylindrical workpiece with rib is analyzed.
    (4) The drawing process of the right head of high pressure vessel of Ti-6Al-4V alloy is analyzed with elastic-plastic FEM numerical simulation. On the basis of discussion of deformation of sheet, the spring-back of drawing deformation of ball workpiece of T1-6A1-4V alloy and the influence of velocity of punch on drawing process are studied.
引文
[1] 李云瑞.塑性加工导论.西安:西北工业大学出版社,1996
    [2] 沈其文.材料成形工艺基础.武汉:华中科技大学出版社,2001
    [3] 王勖成,邵敏.有限元法基本原理和数值方法.北京:清华大学出版社,2001(第二版)
    [4] 李寿萱.钣金成形原理与工艺.西安:西北工业大学出版社,1985
    [5] 理有亲,林兆荣,陈春奎等.钛钣冲压成形技术.北京:国防工业出版社,1986
    [6] 姚泽坤.锻造工艺学.西安:西北工业大学出版社,1998
    [7] 日本塑性加工学会.压力加工手册.北京:机械工业出版社,1984
    [8] 日本塑性加工学会.旋压成型技术.北京:机械工业出版社,1988
    [9] 王仲仁,特种塑性成形.北京:机械工业出版社,1995
    [10] 王成和,刘克璋.旋压技术.北京:机械工业出版社,1986
    [11] 徐洪烈.强力旋压技术.北京:国防工业出版社,1984
    [12] 赵云豪,赵永增,孙贵香等,流动缩旋紫铜简体的实验研究.金属成形工艺,1996,14(6):29—31
    [13] 张猛,胡亚军.回转塑性成形工艺与模具.武汉:武汉工业大学出版社,1994
    [14] R.Prakash,R.P.Singhal. Shear Spinning Technology for Manufacture of Long Thin Wall Tubes of Small Bore. J.Mater. Process. Technol.,1995,54(1-4):186-192
    [15] M.I.Rotarescu. A Theoretical Analysis of Tube Spinning Using Balls. J.Mater. Process.Technol.,1995,54:224-229
    [16] 李玉强.多道次拉深旋压成形规律的研究.西北工业大学硕士学位论文,2000年3月
    [17] M.M.EL-Khabeery, M.Fattouh,M.N.E-Sheikh. On the Conventional Simple Spinning of Cylindrical Aluminum Cups. International Journal of Machine Tools & Manufacture, 1991 (2):203-219
    [18] R.P. Singhal,P.K.Saxena,R.Prakash. Estimation of Power in the Shear Spinning of Long Tubes in Hard-to-work Materials. J.Mater. Process. Technol., 1990(23):
    
    29-40
    [19] Ismail Nawi,S.M.Mahdavian. Hydrodynamic Lubrication Analysis for Tube Spinning Process. Wear, 1998(200): 145-153
    [20] GE EN.T.(Ed.),Nee,A.Y.C.(Ed.). 5th Asia Pacific Congerence on Materials Processing. J.Mater. Process.Technol,2001(113):788-789
    [21] Matsunok. Recent Research and Development in Metal Forming in Japan. J.Mater. Process. Technol, 1997,6:1-3
    [22] Kawai.K.,Yang. A Flexible Shear Spinning of Truncated Conical Shell with a General-purpose Mandrel. J.Mater. Process. Technol.,2001(11):28-33
    [23] 潘家柱,马云风.国外普通旋压发展概况.锻压机械,1984,(4):33-37
    [24] 李云生,邢吉丰.国内普通旋压技术概况.锻压机械,1984,(4):29-32
    [25] Xue Kemin,Wang Zhen,Lu Yan. Elasto-plastic FEM Analysis and Experimental Study of Diametral Growth in Tube Spinning. J.Mater. Process. Technol.,1997, 69:172—175
    [26] Eamonn Quigley, John Monaghan. Metal Forming:an Analysis of Spinning Process. J.Mater. Process.Technol.,2000,103:114—119
    [27] 夏琴香,张淳芳,梁淑贤等.真空不锈钢旋压成形研究.新技术新工艺,1997,5:24—25
    [28] 杜坤,杨合.多道次普旋技术研究进展.机械科学与技术,2001,20(4):558—560
    [29] Wang Qiang,Z.R.Wang. Numerical Simulation and Experimental Study on the New Process of Two-roller Bending Spinning. Advanced Technology of Plasticity 1993-Proceeding of the Fourth International Conference on Technology of Plascity, Vol.3:1387-1390
    [30] Zhao Xianming,Lu Yan,Wang Tao. Optimization of the Technical Parameters and Test Research on Stagger Spinning. Advanced Technology of Plasticity 1993-Proceeding of the Fourth International Conference on Technology of Plascity, Vol. 3:1426-1431
    [31] 夏琴香.XPD型数控旋压机床控制系统的研制.中国有色金属学报,1998,(8):641—643
    [32] 王志刚.W83K—2400×20型数控封头无胎冷旋压机的微机控制系统.河北工业大学学报,1999,6(28):94—97
    [33] 陶青荣.旋压机自动控制系统.重型机械,1997,(3):19—23
    
    
    [34] 孙昌国,余达太等.旋压机床的自学习运动控制.北京科技大学学报,1998,5 (20):499—501
    [35] 吴诗悼,何声健.冲压工艺学.西安:西北工业大学出版社,1994
    [36] 陈明安,张新明.铝板/塑料混合成形中铝板大塑性变形区底有限元分析.中国有色金属学报,2002,12(1):71—75
    [37] 钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用.北京:北京理工大学出版社,1998
    [38] Chen Ming-an,Zang Xinming. Finite Element Analysis of Forming of Sheet Metal Blank in Manufacturing Metal/Polymer Macro-composite Components Via Injection Moulding. Int. J.Machine Tolls & Manufacture,2002,42(3):375-383
    [39] Marcal P V, King I D. Elastic-plastic Analysis of Two-dimensional Stress Systems by the Finite Element Method. Int. J .Mech. Sci., 1967, 8:143-155
    [40] 陈如欣,胡忠民.塑性有限元法及其在金属成形中的应用.重庆:重庆大学出版社,1989
    [41] P.C.Oalbraith,J.O.Hallquist. Shell-element Formulations in LS-DYNA 3D:Their Use in the Modeling of Sheet-metal Forming. J.Mater. Process. Technol.,1995,50 (1-4):155-167
    [42] 吕丽萍.有限元法及其在锻压工程中的应用.西安:西北工业大学出版,1989
    [43] 叶又,彭颖红,阮雪榆.三维板料成形过程的数值模拟.上海交通大学学报,1998,32(5):6—9
    [44] K.J.巴特,E.I.威尔逊.有限元分析中数值方法.北京:科学出版社,1985
    [45] 陈火红.MARC有限元实例分析教程.北京:机械工业出版社,2002
    [46] MARC manuals A-F. MARC Analysis Research Corporation,Palo Alto, Califirnia, USA,Revision K7,1997
    [47] 聂蕾.TC4合金的热模锻过程设计与质量控制.西北工业大学硕士学位论文,2000年3月
    [48] B.K.亚历山大等.钛合金半成品.宝鸡:宝鸡有色金属研究所,1984
    [49] Lee Rong-Shean,Huan Chang Lin. Process Design Based on the Deformation Mechanisism for the Non-isothermal Forging of Ti-6Al-4V Alloy. J.Mater. Process.Technol.,1998,79:224—235
    [50] 才金正,高德福,崔光洙.TC4钛合金热镦加热过程中应力场的分析研究.塑性工程学报,1997,4(2):74—77
    
    
    [51] 王振生.大直径钛质筒体旋压工艺研究.锻压技术,1999,(1):25-27
    [52] 胡宗式.TC4钛合金管材的强力旋压.钛工业进展,1999,1:20—22
    [53] 刘英伟,吕炎,王成录,一种筒形件强旋三维有限元力学模型的提出.塑性工程学报,1998,5(3):51—56
    [54] 许沂,单德彬,李萍等.筒形件强力旋压三维刚塑性有限元模拟中几个关键问题的研究.塑性工程学报,1999,6(4):49—53
    [55] 赵宪明,吴迪,吕炎.筒形件强力旋压变形机理的有限元分析.塑性工程学报,1998,5(3):61—64
    [56] 周耀明,王真,赵宪明等.筒形件强力旋压的刚塑性有限元分析.塑性工程学报,1994,1(1):37—40
    [57] Rajnish Prakash,R.RSinghal. Shear Spinning Technology for Manufacture of Long Thin Wall Tubes of Small Bore. J.Mater. Process.Technol.,1995,54:186—192
    [58] M.Hayama, H.Kudo,T. Murata. Development of Roller Pass Programming for Spinning Shells of Various Shapes. JSTP, 1992,33(5): 510—518
    [59] 王圣平.筒形件变薄旋压变形力学的研究.哈尔滨工业大学硕士学位论文,1985
    [60] 许沂,单德彬,李萍等.筒形件强力旋压三维刚塑性有限元模拟中几个关键问题的研究.塑性工程学报,1999,6(4):49—53
    [61] 李克智,吕炎.筒形件正旋时工艺参数对参数应力分布的影响.兵器材料科学与工程,1997,20(4):44—47
    [62] 吕炎,刘英伟,单德彬.筒形件强旋三维刚塑性有限元分析.中国有色金属学报,1999,9(1):118—122
    [63] 卫原平,王轶为.工艺参数对筒形件强力旋压过程的影响.模具技术,2000,4:12—16
    [64] Xue Kemin,Lu Ya, Zhao Xianming. The Disposal of Key Problem in the FEM Analysis of Tube Stagger Spinning. J.Mater.Process. Technol.,1997,69:176—179
    [65] 周照耀,阮锋,吕炎等.筒形件反旋的三维刚塑性有限元分析.锻压技术,1997,1:29—33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700