用户名: 密码: 验证码:
IGBT逆变式等离子弧切割电源
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子切割法是以等离子弧为热源的高能率熔化切割方法,具有切割速度快、切口的热影响区窄、工件变形小、可切割材料广泛、操作方便等优点。目前空气等离子切割已成为机械制造工业中不可缺少的新工艺。
     切割逆变技术是针对切割电弧负载特性和切割工艺要求,应用现代电力电子学理论和自动控制理论,实现电能的高效变换和控制的一门应用学科。其研究内容横跨焊接电弧物理、切割工艺学、功率电子和电磁器件及开关电路拓扑等各个领域。切割逆变电源现在正向着高效、节能、优质的方向发展。
     本论文主要介绍了所研制的等离子切割电源的组成结构和控制原理。分别就电源主电路、控制系统中的驱动电路、保护电路以及高频引弧电路做了详细的分析,并从软硬件两个方面给予了系统的阐述。
     该切割电源选取IGBT为主控开关功率转换器件,采用输出功率较大的全桥式逆变结构,配以高频变压器和输出电抗器组成了本系统的主电路系统,讨论了高频变压器的设计要点,IGBT的特性与使用时的注意事项等,并在MATLAB中对所设计的主电路进行了仿真。
     控制电路以16位高性能单片机80C196KC为核心,对整个电源进行实时精确闭环控制,文中采用了目前比较常用的脉宽调制方法来控制切割电源的输出外特性,单片机输出的控制量经D/A转换后,通过脉宽调制芯片SG3525调制出两路互不重叠的触发脉冲,再经IGBT专用驱动模块进行功率放大后触发IGBT,以实现功率的输出。系统实时对输出电流进行采样,并将采样结果送入单片机进行A/D转换,在单片机内部实现离散PI算法后,输出相应的控制量来调节脉宽调制芯片的输出脉宽,进而调整输出电流,以此来达到控制切割电源外特性的目的。保护电路主要涉及到过流保护、过热保护、过压以及欠压保护等。
     在电源的主电路和控制电路部分都进行了可靠性与抗干扰设计,系统分析了可能影响电源正常工作的各种干扰及其产生原因,并在原理图设计、PCB制作以及程序编制的过程中采取了相应的软硬件抗干扰措施。所采取的硬件措施主要包括:屏蔽技术、滤波技术、隔离及接地技术等;采取的软件措施主要有:看门狗、冗余指令、数字滤波等。
     另外,还对逆变电源设计中存在的不足进行了探讨。通过试验,对该电源的实施方案、组成部分以及调试中的一些问题进行了分析,得到了初步的结果。
     最后,针对该切割电源的后续研究工作提出了进一步完善的建议,为本切割电源今后的深入研究打下了良好的基础。
Plasma cutting method is a high energy melting cutting method, which is based on plasma arc. It has advantages comparing with other cutting methods, such as high cutting speed , narrow heat effect zone, little deformation of workpiece , wide suitability , simple operation and so on. So far, plasma cutting has become an indispensable new technics in machine making technology.
     Inverter cutting technology is an important applying subject that requires arccutting load characteristics and cutting technics.It uses modern power electronics and automatic control theory to realize power transform and control. The research includes welding arc physical, cutting technology, power electronics and electromagnetic equipment, switching circuit topology, etc. Cutting inverter is designed to high efficiency, less power consumption and excellent quality.
     The component parts and control principle of plasma cutting inverter power source are introduced in the paper. Main circuit, safeguard circuit, driver circuit and high frequency arc starter are respectively analyzed. Hardware and software are both expatiated systematically.
     The main circuit is made up of rectifier, filter, high-frenquency transformer, output reactor, and full-bridge inverter, in which 4 IGBT modules are adopted. The key points in designing high-frequency transformer, as well as the characteristics of IGBT are discussed. The main circuit is simulated by simulink of MATLAB.
     At the same time, in order to obtain accurate and real-time control, high performance 16-bit microprocessor 80C196KC is adopted for control kernel. The digital signal from microprocessor are firstly converted into analogy signal, which is then modulated by pulse width modulate (PWM) chip SG3525 into two pulses without overlapping each other. At last the pulses are used to triggering IGBT after they are magnified. In addition, the resource distribution of microprocessor and the functions of peripheral circuit are given.The safeguard circiut mainly consists of over-current, over-heat, over-votage and low-vogate circuits.
     Reliability and noise resistance designs are also introduced. Various noises probably appearing in the whole system, as well as their causation, are analyzed systematically. Then, in order to reduce their bad infections, some hardware and software measures are adopted while designing schematic chart, PCB board, and compiling code.
     In addition, some problems in designing of inverter power source are also probed. The control system are debugged, and the implement measures, component parts and some problems arising in debugging process for the inverter power source were analyzed through the experimentation.
     At last, some advices on future research for the plasma cutting inverter power are given, and they will lay the foundation for the future research of plasma cutting power.
引文
[1]梁桂芳.等离子弧切割—第一讲 等离子弧切割的基本原理.
    [2]赵家瑞.逆变焊接与切割电源[M].北京:机械工业出版社,1996,261-262
    [3]陈苗荪.中国等离子弧切割机的现状及其分析[J].切割论坛,2006(9):23-25
    [4]朱学.物质的第四态—等离子体[J].常州信息职业技术学院学报,2004(9):24-26
    [5]杨波.几种新型特种切割方法及其特性对比[J].煤炭机械,2005(10):80-82
    [6]杭争翔,马学智,马枉钧等.等离子切割在热切割中的地位[J].沈阳工业大学学报,1999,21(6):480-481
    [7]#12
    [8]李建国,郭晓敏,刘竹.我国逆变焊机发展浅析[J].电焊机,1998(1):1-5
    [9]张华.我国切割技术的应用现状及发展趋势[J].机械工人,2004(5):22-25
    [10]韩志红等.空气等离子切割机的现状与发展[J].电焊机,1992(1)
    [11]张立,赵永健.现代电力电子技术—器件、电路及应用[M].北京:科学出版社,1992
    [12]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2004,102-132
    [13]盛祖全,张立,IGBT模块驱动及保护技术[J].电焊机,2000(11):6-13
    [14]钱文明等.IGBT驱动与保护电路的设计原理与应用研究[J].电焊机,1995(6)
    [15]Chrysiss,G.C.High Frequency Switching Power Supplies:Theory and Design,Second Edition,McGraw-Hill,1989
    [16]崔海现.等离子切割机电源的DSP控制系统的研制[J].仪器仪表标准化与计量,2006(3):23-28
    [17]伊海,李思海等.IGBT驱动电路性能分析[J].电力电子技术,1998,32(3)
    [18]王强等.IGBT驱动保护电路的改良设计[J].电子工程师,2004(10):41-43
    [19]朱敖正.逆变弧焊机的可靠性与IGBT保护若干问题探讨[J].电焊机,2000(2)
    [20]Mitsubishi Electric.MITSUBISHI IGBT MODULES CM100DY-24H,1998
    [21]Mitsubishi IGBT dataBook[M].1996:63-66
    [22]赵家瑞.逆变焊接与切割电源[M].北京:机械工业出版社,1996,53-54
    [23]李宪政.逆变弧焊电源主电路器件及整机可靠性[J].电焊机,1996(1):4-6
    [24]杨旭.开关电源技术[M].北京:机械工业出版社,2004
    [25]电子变压器专业委员会.电子变压器手册[M].沈阳:辽宁科学技术出版社,1998
    [26]任平平,王清,吴林.计算机仿真技术在逆变焊接电源中的应用[J].焊接,2002,(5):6-9
    [27]钟麟,王峰等.MATLAB仿真技术与应用教程[M].北京:国防工业出版社,2004
    [28]李维波.MATLAB在电气工程中的应用[M].北京:中国电力出版社,2006
    [29]Mammano.Phase shifted PWM Control A New integrated Controller Eases the Design of Efficient High frequency Bridge Power Switching.APEC,1991:775-881.
    [30]徐爱卿.Intel16位单片机[M].北京:北京航空航天大学出版社,2002
    [31]孙涵芳.Intel16位单片机[M].北京:北京航空航天大学出版社,1995
    [32]MAXIM技术书册,微系统监控电路
    [33]皮佑国,麦山等.IGBT弧焊逆变电源外特性研究[J].焊接技术,1998(4)
    [34]康劲松,郎玉峰等,IGBT集成驱动模块的应用研究[J].电工技术杂志,2000(5)
    [35]黄俊.半导体变流技术[M].北京:机械工业出版社,1986
    [36]朱锦洪,史耀武等.IGBT驱动电路的保护特性研究[J].电焊机,Vol.28,1998(6):25-27
    [37]熊腊森,刘长友.IGBT驱动保护电路EXB841与M57959L的研究[J].电焊机,2000,30(11):29-31
    [38]王福瑞等.单片机测控系统设计大全[M].北京:北京航空航天大学出版社,1998
    [39]汪建等.MCS-96系列单片机原理及应用技术[M].武汉:华中理工大学出版社,1998
    [40]刘勇,姚舜.逆变焊机的多重保护设计[J].焊接技术,Vol.29,2000(4)
    [41]魏继昆,谭蓉.用于逆变焊机的几种高频引弧器设计[J]电焊机,2004,34(12):35-37
    [42]常云龙,汪殿龙等.新型高频引弧装置的设计[J].沈阳工业大学学报,2002,24(1):8-10
    [43]何建军,刘明宇,綦秀玲等.新型高频引弧器的设计[J].电焊机,2004,34(5):56-58
    [44]Shao C J,Li D Y,Sun Z Z.The discusson of TIG welding are striking method and introdiction of new striking gererator[J].Welder,1997:19-22
    [45]Jiang H Z.Welding process and equipment[M].Beijing:Mechanical Industry Publishing House,1981
    [46]马跃洲,魏继昆,李鹤岐.WSM-400DN微机控制脉冲TIG焊机的研制,第九次全国焊接会议论文集:2-263-266。
    [47]马跃洲等.微机控制的IGBT逆变CO2电源[J].甘肃工业大学学报,1999,25(1):6-10
    [48]T.Kato,S.Lee,and K.Takeya.Modeling of a power electronic converter for EMC in the conduction emission frequency band.Trans IEE of Japan,120(11):1555-1560
    [49]G.Skibinski and J.Pankau,et al.Generation,control and regulation of EMI from AC drives,in Conf.Rec.IEEE-IAS Annu.Meeting,1997
    [50]李春旭,陈克选,张成.微机控制的等离子喷涂设备抗高频干扰的研究[J].甘肃工业大学学报,1999(25):5-8
    [51]邵贝贝.微控制器(单片机)抗干扰能力与电磁兼容性[J].电子技术,1996(11):39-42
    [52]张捍东.微机实时控制系统的硬件抗干扰[J].华东冶金学院学报,1995(2):195-199
    [53]王志强,吕东波.一种与逆变焊机配用的高频引弧器[J].电焊机,2000(30):41-42
    [54]王幸之,王雷等.单片机应用系统抗干扰技术[M].北京:北京航空航天大学出版社,2002
    [55]Mardiguian,Michel.EMI troubleshooting techniques,New York:McGraw-Hill,2000
    [56]李鹤岐,张志坚等.微机控制脉冲MIG焊机控制系统抗干扰设计[J].甘肃工业大学学报,2002(4):10-11
    [57]于海生,潘松峰等.微型计算机控制技术[M].北京:清华大学出版社,1999
    [58]谢剑英.微型计算机控制技术[M].北京:国防工业出版社,1991
    [59]邓涛.逆变弧焊机控制电路设计与调试[J].电焊机,1998(3):26-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700