用户名: 密码: 验证码:
一种表面增强拉曼光谱基底材料的制备与碱基检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了在高灵敏度和特异性下快速检测出微量水平的病毒,人们发明了银表面增强拉曼光谱(surface enhanced Raman scattering, SERS)技术。这种技术能分辨在生物体中的病毒、病毒链和被剔除部分基因的病毒在拉曼光谱上的不同。无需对病毒进行复杂的操作,这种技术就可以快速检测和描绘出由病毒引起的拉曼光谱信息,然而这种技术的关键之处在于能制备出实用并且具有较强SERS效应的基底材料。
     本文以平均直径为200nm的聚苯乙烯微珠作为SERS的基底材料,用化学和物理方法使其表面均匀沉积一定厚度的银,然后检测嘧啶和嘌呤碱基的拉曼信号。
A spectroscopic assay based on surface enhanced Raman scattering (SERS) using silver nanorod array substrates has been developed that allows for rapid detection of trace levels of viruses with a high degree of sensitivity and specificity. This novel SERS assay can detect spectral differences between viruses, viral strains, and viruses with gene deletions in biological media. The method provides rapid diagnostics for detection and characterization of viruses generating reproducible spectra without viral manipulation, but the key of this spectroscopic assay is how to make the practical,feasible and effective substrate material for SERS.
     This paper chooses the tiny balls of polystyrene as the substrate material of SERS. The size of the tiny balls of polystyrene ranged from 150 to 250 nm (mean 200nm) in diameter, through chemical and physical methods it deposits a layer of Ag on the tiny balls, and then use it to to detect and measure Raman spectrum of pyrimidine and purine bases.
引文
[1]Matthias W. Klein, Martin Wegener, Nils Feth et al.. Experiments on second-and third-harmonic generation from magnetic metamaterials[J]. Opt. Express,2007,15(8):5238-5247
    [2]Vito Roppo, Marco Centini, Concita Sibilia et al.. Role of phase matching in pulsed second-harmonic generation: walk-off and phase-locked twin pulses in negative-index media[J]. Phys. Rev. A,2007,76(3):033829
    [3]Alexander K. Popov, Vladimir M. Shalaev. Compensating losses in negative-index metamaterials by optical parametric amplification[J]. Opt. Lett.,2006,31(14):2169-2172
    [4]N. Lazarides, G. P. Tsironis. Coupled nonlinear Schrdinger field equations for electromagnetic wave propagation in nonlinear left-handed materials[J]. Phys. Rev. E,2005,71(3):036614
    [5]Shuangchun Wen, Yuanjiang Xiang, Xiaoyu Dai et al.. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials[J]. Phys. Rev. A,2007,75(3):033815
    [6]Michael Scalora, Maxim S. Syrchin, Neset Akozbek et al.. Generalized nonlinear Schrdinger equation for dispersive susceptibility and permeability:application to negative index materials[J]. Phys. Rev. Lett.,2005,95(1):013902
    [7]Shuangchun Wen, Youwen Wang, Wenhua Su et al.. Modulation instability in nonlinear negative-index material[J]. Phys. Rev. E,2006,73(6):036617
    [8]Shuangchun Wen, Yuanjiang Xiang, Wenhua Su et al.. Role of the anomalous self-steepening effect in modulation instability in negative-index material[J]. Opt. Express,2006,14(4):1568-15.75
    [9]G. P. Agrawal. Nonlinear Fiber Optics[M].3nd edn.. San Diego:Academic,2001
    [10]Richard W. Ziolkowski, Ehud Heyman. Wave propagation in media having negative permittivity and permeability[J]. Phys. Rev. E,2001,64(5):056625
    [11]V. A. Vysloukh, N. A. Sukhotskova. Influence of third-order dispersion on the generation of a train of picosecond pulses in fiber waveguides due to self-modulation instability[J]. Sov. J. Quantum Electron.,1987,17(11):1509-1511
    [12]M. J. Potosek. Modulation instability in an extended nonlinear Schrodinger equation[J]. Opt. Lett.,1987, 12(11):921-923
    [13]Doering WE, Nie SM. Spectroscopic tags using dye-embedded nanoparticies and surface-enhanced Raman scattering,Anal.Chem,2003,75(22):6171-6176
    [14]Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering, Opt.Commun,2000,183:333-336.
    [15]Leung LWH, Weaver MJ. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces-carbon monoxide adsorption and electrooxidation on platinum-coated and palladiumcoated gold electrodes, J.Am. Chem. Soc,1987,109:5113-5119
    [16]Anderson MS. Locally enhanced Raman spectroscopy with an atomic force microscope, Appl.Phys. Lett,2000, 76:3130-3132
    [17]Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW. Scanning near-field optical microscopy with aperture probes:Fundamentals and applications J. Chem.Phys,2000,112:7761-7774
    [18]Seifar RM, Altelaar MAF, Dijkstra RJ, Ariese F, Brinkman UAT, Gooijer C. Surface-enhanced resonance Raman spectroscopy as an identification tool in column liquid chromatography, Anal.Chem,2000,72(22):5718-5724
    [19]Ren B, Lin XF, Jiang YX, Cao PG, Xie Y, Huang QJ, Tian ZQ. Optimizing detection sensitivity on surface-enhanced Raman scattering of transition-metal electrodes with confocal Raman microscopy, Appl.Spectrosc,2003, 57:419-427
    [20]Nirode WF, Devault GL, Sepaniak MJ. On-column surfaceenhanced Raman spectroscopy detection in capillary electrophoresis using running buffers cofltaining silver conoidal solutions, Anal.Chem,2000,72(8).1866-1871
    [21]Tian ZQ, Ren B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy, Annu.Rev. Phys. Chem,2004,55:197-229
    [22]Ren B, Lin XF, Yan JW, Mao BW, Tian ZQ. Electrochemically roughened rhodium electrode as asubstrate for surface-enhanced Raman spectroscopy, J.Phys. Chem. B,2003,107:899-902
    [23]Cao PG, Gu RA, Ren B, Tian ZQ. Surface-enhanced Raman scattering of pyridine on platinum and nickel electrodes in nonaqueous solutions, Chem.Phys. Lett,2002,366:440-446
    [24]Bruckbauer A, Otto A. Raman spectroscopy of pyridine adsorbed on single crystal copper electrodes.J Raman Spectrosc,1998,29(8):665-672
    [25]Tian ZQ, Ren B. Wu DY Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures, J.Phys. Chem. B,2002,106:9463-9483
    [26]Fleischmann M, Tian, ZQ, Li LJ. Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates, J.Electroanal. Chem,1987,217:397-410
    [27]Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed ata silver electrode, Chem.Phys, Lett,1974,26:163-166
    [28]Vladimir M. Shalaev. Optical negative-index metamaterials[J]. Nature Photonics,2007,1:41-48
    [29]M. Lapine, S. Tretyakov. Contemporary notes on metamaterials[J]. IET Microw. Antennas Propag.,2007,1(1):3-11
    [30]V. G. Veselago. The electrodynamics of substances with simultaneously negative values of "ε" and "μ"[J]. Sov. Phys. Usp.,1968,10(4):509-514
    [31]J. B. Pendry, A. J. Holden,D. J. Robbins et al.. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Trans. Microwave Theo. and Tech.,1999,47(11):2075-2084
    [32]J. B. Pendry. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett.,2000,85(18):3966-3969

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700