用户名: 密码: 验证码:
阻氚涂层用氧化物纳米粉体的湿化学方法制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氚是热核武器和可控热核反应堆的主要燃料,其在大多数金属材料中具有强的渗透性和扩散性,氚渗透会引起一系列问题。经过多年研究,目前世界上普遍认为在不锈钢表面建立阻氚渗透涂层是解决氚渗透比较可行的方法。氧化物涂层一直是阻氚渗透涂层中研究热点,而纳米技术可以明显改善涂层各方面性能,因此本论文拟针对阻氚渗透涂层用氧化物纳米材料的制备展开研究,重点研究制备工艺条件对纳米粉体的形貌、结构的影响,最终利用纳米粉体制备涂层并验证其阻氚渗透效果。
     本文采用水热法、溶胶-凝胶法这俩种简单湿化学工艺制备YSZ纳米粉体。对水热法的矿化剂浓度、水热温度、水热时间做了研究,结果表明,在矿化剂浓度为10mol/L、水热温度、时间分别为250℃、48h时,得到的YSZ粉体结晶最好。对溶胶-凝胶法的热处理温度做了研究,结果表明500℃时为最佳处理温度,可得到粒径为50nm左右的颗粒,该YSZ纳米粉体适合用于制备涂层。
     本论文采用水热法、均相沉淀法俩种简单湿化学工艺制备了Er2O3纳米粉体。在水热法中,对水热温度、水热时间、以及焙烧对粉体的影响作了研究。结果表明,在水热温度为140℃,水热时间为16h时,可以得到长径比15:1~20:1分散均匀的氧化铒粉体。水热产物在700℃下焙烧之后,可得到结晶良好的纯净氧化铒。均相沉淀法可以成功制备分散均匀、形貌规整的纳米Er2O3粉体,在700℃焙烧温度下所得的氧化铒粉体,结晶最好,粒径在100~200nm之间,该Er2O3纳米粉体适合用于制备涂层。
     在得到适合制备涂层的YSZ和Er2O3两种纳米粉体的基础上,用简单工艺在金属基底上制备涂层,并测试其阻氚渗透性能,验证两种氧化物的阻氚渗透效果。结果表明,YSZ涂层阻氚渗透效果非常微弱,而Er2O3涂层的阻氚渗透效果明显,但性能仍低于国际先进水平。
Tritium is the main fuel of controllable thermal nuclear reactors and thermonuclear weapons with a strong penetration and diffusion in most of the metal materials. Tritium penetration will cause a range of issues. After years of research, it has been widely recognized that the tritium barrier on the stainless steel surface is the most feasible way to solve the problem of tritium permeation. The oxide coating is currently one of the most important functional coatings, and attracts a wide attention. Nanotechnology can improve many aspects of coating performance. Therefore, in this paper we studied oxide nano-materials which could be used in tritium barrier. We focused on the influence of preparation processing on morphology, crystal structure of nanoparticles. Finally we prepared tritium barrier coatings using the nanoparticles we manufactured, and tested their performance.
     YSZ nano-powders were prepared by sol-gel and sol-hydrothermal methods, which were both of simple wet chemical methods. Detailed investigations were focused on the influence of the hydrothermal conditions and the concentration of the mineralizer on the YSZ nano-particle size, morphology and coating microstructure. The results showed that the YSZ nano-particles were the best when heated at 250oC for 48h with 10 mol/L concentration of the mineralizer. Study was also done on the sintering temperature about sol-gel. The best YSZ nano-particles were prepared when sintered at 500oC. The particle size was around 50 nm and suitable for the preparation of coating.
     The Er2O3 nano-powders were prepared by sol-hydrothermal and chemical precipitation methods, which were also both of simple wet chemical methods. The impact of hydrothermal temperature, hydrothermal time and sintering on powder were investigated in hydrothermal method. The results showed that Er2O3 powders with the aspect ratio at 12:1-15:1 could be obtained when it was heated at 140oC for 16h. Well crystallized Er2O3 were obtained after the hydrothermal products baked at 700oC. With chemical precipitation methods, the particle size of Er2O3 nano-powders was around hundreds of nanometers with good crystallization and shape. The optimum sintering temperature for Er2O3 crystallization was 700oC.
     High-quality YSZ and Er2O3 tritium barriers were prepared successfully on non-planar substrates by simple two-step methods using the nano-particle manufactured. We tested both of them to verify their performance against tritium penetration. The results showed that YSZ coating was weak to prevent the tritium permeation, while Er2O3 coating exhibited good tritium resistance property but the performance was still lower than advanced international level.
引文
[1] Helen Tregidga, Markus J.Milne, Sustainable development: mapping different approaches. Sustainable Development,2005,13: 38~52.
    [2] Basiago A D. Economic Social and Environmental Sustainability in development, The Environmentalist, 1999, 19: 145~161.
    [3]谢满廷.核能是安全清洁的能源.太原科技, 2009,02: 23-25.
    [4] Smith D L, Konys J, Muroga T, et al. Development of coatings for fusion power applications. J Nuclear Materials, 2002,307: 1314-1316.
    [5] Paatsch W, Long-delay Hydrogen Embrittlement Phenomena in Plating high-strength steel components, Plating and Surface finish,1996,83: 70~72.
    [6]杨柯,宋莉,吕曼祺.贮氢材料在氚技术中的应用.原子能科学技术, 2004, 38: 328-332.
    [7]李申主编.材料科学技术百科全书.北京:中国百科全书出版社,1995: 216~220.
    [8] Aiello A, Ciampichetti A, Benamati G. An overview on tritium permeation barrier development for WCLL blanket concept, Nuclear aterials, 2004,329: 139~148.
    [9] Takayuki T, Toshiaki Y, Hirohisa T, et al. Tritium permeation through austenitic stainless steel with chemically densified coating as a tritium permeation barrier. Journal of Nuclear Materials, 1994: 212/215: 976~980.
    [10]刘兴钊,黄秋荣,杜家驹,等. HR-1型奥氏体不锈钢镀Cr2O3及TiN膜复合材料的气相氢渗透研究.核科学与工程,1997,17(3): 281.
    [11] Levchuk D, Levchuk S, Maier H, et al. Erbium oxide as a new promising tritium permeation barrier. Journal of Nuclear Materials, 2007, 367/370: 1033~1037.
    [12] Serra E, Kelly P J, Ross D K, et al. Alumina sputtered on MANET as an active deuterium permeation barrier. J Nuclear Materials,1998,257: 194.
    [13] Serra E, Glasbrenner H, Perujo A. Hot-dip aluminium deposit as a permeation barrier for MANET steel. Fusion Engineering and Design,1998,41: 149.
    [14]郝嘉琨,山常起,金柱京,等. 316L不锈钢表面Al2O3镀层中氚的扩散渗透行为.核聚变与等离子体物理,1996,16(2):62?
    [15]李凌峰,张玉娟,等.不锈钢表面包埋渗铝—热氧化处理制备氧化铝膜及其对氢渗透的影响.原子能科学技术,2005,39:73
    [16]山常起,陈庆望,戴少侠,等.碳化钛及其复合涂层材料抗氚渗透层的稳定性.核聚变与等离子体物理, 1999, 19: 59~61.
    [17]姚振宇,郝嘉琨,周长善,等.复合膜对316L不锈钢氚渗透性能的影响,原子能科学技术, 2000,01: 65~70.
    [18]姚振宇,严辉,谭利文,等.用SiC薄膜作防氚渗透阻挡层的研究.核聚变与等离子体物理, 2002, 22: 35~37.
    [19]刘国杰.纳米材料与改性涂料.北京:化学工业出版社. 2008: 17.
    [20] Percym J, Armes S P. Surfactant~free synthesis of colloidal poly(meth methacrylate)/silica nanocomposites in the absence of auxiliary comonomers. Langmuir,2002,18(12): 4562~4565.
    [21] Amalvy J I, Percym J, Armes S P, et al Characterization of the anoco morphology of polymer of polyer-silica colloidal nano-composites using electron spectroscopy imaging. Langmuir, 2005,21(4):1175~1179.
    [22] Agarwal G K, Tiiman J J, Percym J, et al Characterization of vinyl polymer-silica colloidal nano-composites using solid state NMR spectroscopy. Probing the interaction between the inorganic and organic phases on the molecular level. Journal of physical Chemistry B. 2003, 107(45):12497~12502.
    [23] Zhou S X, Wu L M, Sun J, et al. The Changes of the properties of acrylic based polyurethane via addition of nano-silica, Progress in Organic coatings, 2002, 45(1): 33~42.
    [24] Bauer F, Glasel H J, Decker U, et al. Trialk oxysilane grafting on to nano-particles for the preparation of clear coat poly crylate systems with excellent scratch performance. Progress in Organic Coatings, 2003. 47(2): 147~153.
    [25]徐滨士,梁秀兵,等.实用纳米表面技术.中国表面工程, 2001, 3: 13~17.
    [26]徐龙堂,徐滨士,等.电刷镀镍包纳米Al2O3复合镀层微动磨损性能研究.摩擦学学报, 2001, 1: 124.
    [27] Sangermanom. Roppolo I, Shan GB, et al. Nanocomposite epoxy coatings containing rare earth ion-doped LaF3 nano-particles film preparation and characterization. Progress in organic Coatings, 2009, 65(4). 431~434.
    [28] K. Wittmann, F. Blein, J. F. Coudert, et al. Control of the injection of an alumina suspension containing nano-grains in a DC plasma, Proceedings of ITSC. Singapore, 2001, 3752382.
    [29] Seger L, Vernin P, Brussels B, et al. Nano-structured ceramic coatings obtained by thermal spraying. International Thermal Spray Conference. Essen, German: German Welding Society, 2002.127129.
    [30] Lugscheider E, Fischer A, Parco M, et al. High energy ball milling prepared Al2O3-NiCr dispersion powers for thermal spray coatings . International thermal spray conference. Essen, German: German Welding Society, 2002. 122126.
    [31] Gell M, Jordan E H, Sohn Y H, et al. Development and implementation of plasma sprayed nano-structured ceramic coatings. Surface and Coatings Technology, 2001, 146: 4854.
    [32] He Jianhong, Enrique J Lavernia. Precipitation phenomenon in nano-structured Cr3C2-NiCr coatings. Materials Science and Engineer A, 2001 ,301: 6979.
    [33]王铀,纳米结构涂层与纳米改性材料,金属热处理. 2010, 35: 35.
    [34]李想,纳米防护涂层在“鸟巢”中的应用,机械工程师, 2009, 4: 25~27.
    [35]郑仕远、陈健、潘伟.湿化学方法合成及应用.材料导报, 2000, 09: 25-27
    [36] Yun Chan Kang, Hyun Sook Roh, Seung Bin Park, Hee Dong Park.. High luminescence Eu- phosphor particles prepared by modified spray pyrolysis. Journal of Materials Science Letters, 2002,21(13): 1027~1029.
    [37]施尔畏,夏长泰,王步国,仲维卓.水热法的应用与发展.无机材料学报,1996,11: 2.
    [38] Wang Y, Wu C, Wei J. Hydrothermal synthesis and luminescent properties of LnPO4:Tb, Bi(Ln=La, Gd) phosphors under UV/VUV excitation, Journal of luminescence, 2007, 126: 503.
    [39] R.Pazik,D. Hreniak,W. Microwave driven hydrothermal synthesis of Ba1-xSrxTiO3 nanoparticles, Materials Research Bulletin. 2007, 42: 1188.
    [40] Zhu H, Yang D, Yu G, Zhang H, Jin D. Hydrothermal Synthesis of Zn2SnO4 Nanorods in the Diameter Regime of Sub-5nm and Their Properties. Journal of Physical Chemistry B 2006, 110: 7631.
    [41]施尔畏,陈之战,元如林,郑燕青.水热结晶学.北京:科学出版社,2004: 37.
    [42] Qadri S B, Skelton E F, Hsu D, Dinsmore A D, Yang J, Size-induced transition-temperature reduction in nanoparticles of ZnS. Physical Review B, 1999, 60: 9191.
    [43] Laudise R A, Ballman A A, Hydrothermal Synthesis of Zinc Oxide and Zinc sulfide. Physical Chemistry, 1960, 64: 688.
    [44] Tok A I Y, Boey F Y C, Dong Z, Sun X L, Hydrothermal synthesis of CeO2 nano-particles, Journal of Materials Processing Technology, 2007, 190: 217.
    [45] Roy D M, Roy R, et al. Thermal conductivity of MgO, Al2O3, MgAl2O4 and Fe3O4 crystals from 3k to 300k. Physical Review 1962, 126:427~441.
    [46]洪新华,李保国.溶胶-凝胶(Sol-Gel)方法的原理与应用.天津师范大学学报, 2001,(01) .
    [47] Brinker C J. Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing.San Diego: Academic Press,1980.
    [48] Hoar T P and Schulan J H, Transparent water-in-oil dispersions: the Oleopathichydro-Micelle, Nature,1993,152: 102~103.
    [49]崔正刚,殷福珊.微乳化技术与应用.北京:中国轻工业出版社, 1999.
    [50] Prince L M, Microemulsions. Theory and practice, Academic press, NewYork.1977.
    [51]郭荣.微乳液特性与应用.江苏化工,1989,4: 14~17.
    [52]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.124~148.
    [53]程晚霞,邱德仁.均匀溶液沉淀法制取光谱载体用氯化银晶体.化学世界, 1990,(04).
    [54]顾翼东.金属离子的液相萃取分离法.化学世界,1955,10(9):404~410.
    [55]蔡淑莲.在均匀溶液中用碘酸盐作沉淀剂以测定铈.化学学报, 1953,04: 12.
    [56] Murray G T. Hand Book of Materials Selection for Engineering Applications. New York: Marcel Dekker, 1997: 89-101.
    [57]王成训编著. ZrO2复合耐火材料.冶金工业出版社,1997.1~40.
    [58] Heuer A, Chaim R. et al. Phase transformations and microstructure characterization of alloys in the Y2O3-ZrO2 system. Advances in Ceramixs,1988, 24:3~20.
    [59] Feng M, Gough J B. Improving stabilized zireonia with strontium gallate. Journal of the American Ceramie Society, 1994,77(7): 1954~1956.
    [60]赵青,杨阳,孙永欣,等.低温微波水热发制备氧化钇稳定氧化锆.微纳电子技术.2007, 7(8): 76~80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700