用户名: 密码: 验证码:
利用纳米铁还原固定土壤中铼的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为严重的环境危害,但是采用常用的吸附等方法却很难将其固定,因此本工作的目的是研究零价纳米铁还原固定锝的方法及其机理。鉴于非放射性元素铼与锝的物理化学性质相似,故本文实验选用元素铼替代锝,在利用纳米铁还原固定铼的实验基础上对其反应结果和机理进行分析和探讨,为进一步深入了解整个反应的本质提供了理论和实践依据。
     本文首先介绍了纳米铁粉的发展历史和典型的制备方法,同时研究了实验室液相还原法制备零价纳米铁微粒过程及在反应体系中添加表面活性剂所产生的影响,并利用激光粒度仪(LS)、X射线粉末衍射仪(XRD)、扫描电镜(SEM)等分析手段进行了全面表征,得到了具有实用性的稳定纳米铁粉。之后,在土壤介质中,利用所制得的稳定纳米铁粉还原高铼酸钾。以批实验和柱实验的形式,通过分光光度法进行测量和分析,定量计算出在不同反应时间和不同ReO_4~-离子初始浓度条件下纳米铁粉对ReO_4~-离子的去除率。在实验的基础上进行拟一级反应动力学拟合,并研究淀粉投加量、纳米铁微粒的投加量、ReO_4~-离子的初始浓度、表面活性剂溶液的初始pH值以及温度对反应的影响。
     通过本研究工作可得到结论,实验室自制的稳化高效纳米铁粉对土壤中ReO_4~-离子的还原固定效果十分理想,经计算拟合可知该反应符合准一级反应动力学。
As a radioactive element, Technetium is of a long half-life period and complicated chemical behavior, whose oxide-the TcO_4~- ion- endangers the environment horribly by easy transference. However, it is hard to fix the TcO4- ion through regular absorption methods. Hence, this assignment focuses on the methods of reduction that nanometer iron acts on the technetium,as well as the mechanism for the utter destination. Since the physiochemical properties of both Rhenium, which is a non radioactive element and Technetium are the same nearly, it is reasonable to displace technetium with rhenium for text object. Besides, on the base of the reduction, its results and mechanism will be analyzed and argued in this thesis. All the work above helps master the reacting essence theoretically and practically.
     This thesis firstly introduces the development history and classical preparing methods of nanometer iron powder, furthermore studies the influences from adding surfactants into the reacting system during which, named liquid phase reduction in the laboratory, prepares the zero valence nanometer iron particles, and concurrently finishes the corresponding characterization by apparatus, such as LS, XRD, SEM and etc. Finally, the stabile nanometer iron powder of application is attained. Then within the soil as media, stabile nanometer iron powder prepared already is used to restore the potassium per-rhenium. The removal rate of the ReO_4~- ion is calculated quantitatively in the way of batch text and pillar text under different reacting time and different initial concentrations of the ReO_4~- ion, after being measured and analyzed through spectrophotometry. In the last, it is needed to fit the hypothetical first grade reaction kinetics on the foundation of experiment, and observe the reacting influence of starch quantity added, nanometer iron particles quantity added, initial concentration of ReO_4~- ion, initial pH value of surfactant solution and the temperature.
     Therefore, the conclusion from this study is drawn up, which is that the relatively sound effect of both restore and reduction comes from the experiment carried out on the ReO_4~- ion in soil, using the stabile effective nanometer iron powder prepared myself in laboratory, in addition, this reaction is accordant with the standard first grade reaction kinetics.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    [2] Matteazzi P,Basset D, Miani F,et al . Mechanosynthesis of nanophase materials [J]. Nanostructured Materials, 1993,2(3):217.
    [3] Del Bianco L,Herando A, Navrro E,et al. Structural configuration and magnetic effects in as-milled and annealed nanocrystalline iron [J]. Journal De Physique, 1998,8(2):107-110.
    [4] Malow T R, Koch C C, Miraglia P Q,et al . Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique [J]. Materials Science &Engineering A:Structural Materials : Properties ,Microstructure and Processing, 1998,A252(1):36-43.
    [5] Shingu P H. Metastability of amorphous phases and its application to the consolidation of rapidly quenched powders [J]. Materials Science and Engineering,1988,29:137-141.
    [6]陈洪,徐祖耀,翟少岩等.机械球磨制备Fe纳米晶及其M?sbauer效应[J].金属学报,1995,31(2):73-76.
    [7]江万权,朱春玲,陈祖耀等.超细Fe粒子对磁性粒子浓悬浮液体系磁流变性能的增强[J].化学物理学报, 2001,14(5):629-632.
    [8] Islamgaliev R K,Chmelik F,Gibadulin I F et al . Nanocrystalline structure formation in germanium subjected to severe plastic deformation [J]. Nanostructured Materials, 1994,4(4):387-395.
    [9] Rempel A A, Nazarova S Z. Magnetic properties of iron nanoparticles in submicrocrystalline copper [J]. Materials Science Forum, 1999,307:217-222.
    [10]魏智强,温贤伦,吴现成等.直流电弧等离子体制备镍纳米粉[J].兰州大学学报, 2003,39(5):38-40.
    [11] Cui Zuolin,Zhang Zhikun. Ce-Ni nanoparticles with shell structure for hydrogen storage [J]. Nanostructured Materials, 1996,7:355-361.
    [12]郝春成,催作林,张志琨.纳米铁氧化过程中的尺寸和压力效应[J].功能材料, 1997,28(5):471-473.
    [13]陈克正,张志琨等.氢电弧等离子体制备的纳米镍铈粒子的催化特性[J].功能材料,1996,27(6):562-564.
    [14]张现平,张志琨,催作林.氢电弧等离子体制备碳包铁纳米粒子[J].功能材料,1996,27(6):562~564.
    [15]潘成福,候登录,张民.纳米Fe微粒的溅射制备及粒度计算[J].磁记录材料, 1999,(2):8-9.
    [16]Gleiter H. Nanocrystalline materials [J].Progress in Materials Science, 1989,33(4):223.
    [17]李发伸,杨文平,薛德胜.纳米Fe微粒的制备及研究[J].兰州大学学报,1994,30(1):144-146.
    [18] Sanchez-lopez J C,Fernandez A. Role of oxide passivation layers in nanocrystalline metal powders and consolidated materials[J].Materials Science Forum, 1997,269(2):827-832.
    [19] Quintela M A L,Liz L,Blanco J. Phase stability and structure of non-toxic microemulsions [J]. Progress in Colloid & Polymer Science, 1993,93:294.
    [20]张朝平
    [21]柳学全,徐教仁等.纳米级金属铁颗粒的制取[J].粉末冶金技术,1996,14(1):26-29.
    [22]赵新清,梁勇,胡壮麟.纳米铁微粒表面氧化物的结构及磁性[J].金属学报,2001,37(6):633-636.
    [23]刘思林,滕荣厚,徐教仁等.用热分解法制备纳米级铁粉[J].粉末冶金技术,1999,9(2):28-30.
    [24]曹茂盛,邓启刚,鞠刚等.α-Fe纳米粉末制备及其表征[J].化学通报,2000(2):42-43.
    [25]曾京辉,郑化桂,曾恒兴.纳米α-Fe金属粉合成[J].磁记录材料,1998,4:14-17.
    [26] Santos A,Macedo W A A,Ardisson J D,et al . Fe-Al2O3 nanocomposite: synthesis and magnetic properties [J]. Materials Research Society Symposium– Proceedings, 2000,581:333-338.
    [27] Chuan-Bao Wang,Wei-Xian Zhang. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environment Science Technology ,1997,31(7):2154-2156.
    [28]程起林,赵斌,古宏晨.液相还原法制备Fe-Cr纳米粉[J].华东理工大学学报,1999,25(5):499-502.
    [29]李国栋,熊翔,黄伯云.纳米粉体大气环境团聚机理及无团聚纳米粉体的制备[J].中南大学学报, 2004,35(4):527-531.
    [30] Israelachivili J N. Intermolecular and Surface Forces [M]. 2ndEd,London:Academic Press,1991.
    [31]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003.
    [32]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社,1999.
    [33]付铁岩,孙晋良,陈来等.纳米催化剂FeS的制备及其在气相生长炭纤维中的应用[J].材料科学与工程学报, 2005,23(5):549-551.
    [34]田庆华,黄凯,郭学益.纳米铁酸锌的制备研究[J].矿冶工程,2005,25(2):46~48.
    [35]陈郁,全燮.零价铁处理污水的机理及应用[J].环境科学研究,2000,13(5),24-26.
    [36]钱慧静,CMC对纳米零价铁去除污染水体中六价铬的影响[D].浙江:浙江大学,2008
    [37]董梦元,张旭红.核能的环境安全路径[J].中国石油企业,2008(6):108-110.
    [38] World Nuclear Association.
    [39]张睿,袁玉俊,汪永平,在我国节能、环保的电力调度中应优先考虑核电[J],中国核工业,2007,(2),13-15.
    [40]马俊彪,韩买良,核电站废料处理技术[J],华电技术,Vol31,No.12,Dec.2009
    [41]叶奇蓁,中国核电发展战略研究[J].科技导报,1674-3814(2010)01-0003-06, Vol. 26,No.1,Jan.2010.
    [42] K.TAGAMI, S.UCHIDA.Analysis of Technetium-99 in soil and Deposition Samples by Inductively Coupled Plasma Mass Spectrometry [J]. Pergamon, S0969 -8043 (96)00106-6.
    [43]杨尚磊,陈艳.薛小怀等.铼的性质及应用研究现状[J].上海金属.2005.27(1).
    [44]周令志.邹家炎.稀散金属手册[M].长沙:中南工业大学出版社.1993.
    [45]刘茉娥,陈欢林.新型分离技术基础[M] .浙江大学出版社,1998.
    [46]张锦柱.分析化学[M].重庆大学出版社,1992. 5.
    [47]游建南.萃淋树脂分离技术的发展及其在湿法冶金中的应用[J].湿法冶金,2000, 3.
    [48]李华昌,等.铂族金属分离中的萃淋树脂技术[J].贵金属,2001,(4).
    [49]М.В.ИСТРАЦИКНА等.提取铼的工艺过程采用的膜分离技术[J].湿法冶金,1994,6.
    [50]Π.Б.ЖУКОВСИЙ等.从含钼硫酸溶液中萃取铼[J].湿法冶金1994,6.
    [51]许生杰,关淑娴.铼的碱性染料显色剂的比较研究[J].化学试剂,1982,4(3):1146- 1147.
    [52]陈亚森,严恒太.显色剂及其在冶金分析中的应用[M].上海:上海科技出版社,1981
    [53]金珊,吕娟,谢莉.分光光度法测定铂-铼催化剂中铼含量[J].分析试验室, 1999, 18(6):42-45.
    [54]王献科,李玉萍,李莉芬.液膜分离富集测定铼[J].中国钼业,2000 ,24 (4) :38.
    [55]王荣,田丹华.ICP - ASE法测定DD2单晶合金中的铼和铪[J].光谱实验室, 1998, 15(1):61-65.
    [56]许莹,王娟.纳米级零价铁的湿化学法制备及性能表征[J].化学研究与应用,1004. 1656(2009)05-0665-05.
    [57]杨玉颖,谢庆红,赵红,张学文,LS230激光粒度仪及其应用[J],现代科学仪器,2002.3.
    [58]毛宏志,印志磊,许效红,X射线粉末衍射仪在实验教学中的应用[J],实验技术与管理,1002-4956(2006)11-0030-03.
    [59]刘剑,曹瑞军,郗英欣.表面活性剂在纳米粉体制备中的应用[J].化工新型材料, 2003,31(7):37-39.
    [60]郑忠,胡纪华.表面活性剂的物理化学原理[M].广州:华南理工大学出版社,1995
    [61]张天胜.表面活性剂应用技术[M].北京:化学工业出版社,2001.
    [62]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2004.
    [63]王玉静,窦艳梅,张娜,陈庆阳,徐强.稀有元素铼的广度分析[J].沈阳师范大学学报(自然科学版),1008-374X(2004)01-0042-04.
    [64] Alowitz,M.J.,Scherer,M.M.Kinetics of nitrate,nitrite, and Cr(Ⅵ)reduction by iron metal.Environ.Sci.Technol.2002,36(3):299-306.
    [65] Ponder,S.M.,Drarab,J.G,Mallouk,T.E.Remediation of Cr(Ⅵ)and Pb(Ⅱ) aqueous solution using supported, nanoscale zero-valent iron. Environ.Sci.Technol.2000,34(12):2564-2569. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700