用户名: 密码: 验证码:
铁碳材料的制备及其处理典型重金属配合物和含氧酸根废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:工业生产过程产生的大量含重金属废水严重污染环境,是国内外研究的热点。含重金属配合物及含氧酸根废水由于具有形态复杂多变、稳定等特征,且大多以配合物或阴离子存在,仍然是水污染治理的重点与难题。本论文分别选取工业废水中典型的重金属配合物Cu-EDTA与重金属含氧酸根Cr2O72-两种污染物为研究对象,开展了活性炭、碳纳米管载铁新材料的制备及其处理污染物的研究,旨在探索复杂重金属废水处理的新途径。主要研究内容及创新性成果如下:
     基于脉冲电镀的特点,研发了翻转电镀法制备铁碳材料Fe/AC的新装置,实现了活性炭表面零价铁的均匀负载。确定了Fe/AC的最佳合成条件为电镀时间30min,电流强度2.5A,电解液离子浓度150mg/L。最佳合成条件下制备的Fe/AC表面富含羟基、羧基、碳氧双键和零价铁碳基团,铁碳材料表面的基团使得铁碳材料Fe/AC有利于Cu-EDTA污染物的去除。
     提出并研发了制备磁性纳米铁碳材料Fe3O4/CNTs的原位还原再氧化新方法。所制备的铁碳材料具有152emu/g的高磁性,克服了普通吸附材料处理废水后难以回收的局限性;形成的羟基、羧基、基团能够有效的与废水中重金属配合物结合,使其在处理重金属含氧酸根废水方面潜力巨大。
     基于含Cu-EDTA配合物水化学形态的基础研究,探明了Cu-EDTA铁碳材料Fe/AC处理的影响因素与Cu-EDTA破坏机理。确定了合理的Cu-EDTA处理条件为pH=4和反应温度为298K,废水中铜离子含量由处理前的60mg/L降低至1.718mg/L。明确了羟基自由基与Cu-EDTA配合物降解的关系,提出了羟基自由基产生的必要条件为水溶液中pH<7且含有溶解氧,和羟基自由基的含量表达式为lg [O H]=36.69-lg[Fe3+]+lgP0-3pH,为铁碳材料处理重金属配合物废水提供了重要理论依据。
     研究揭示了常温下浓度为0.5mol/L的重铬酸钾水溶液离子分布规律:当pH<5.8时,铬的含氧酸根离子形态为Cr2O72-, KCr2O7和HCrO4存在;当pH>8.3时,铬的含氧酸根的离子存在形态为Cr042-和KCrO4-;在5.8     研究阐明了Fe3O4/CNTs处理重铬酸根废水的机制,发现Fe3O4/CNTs吸附重铬酸根过程符合Langmuir模型、D-R模型和伪二级动力学模型,表明Fe3O4/CNTs对重铬酸根的吸附过程为单分子层吸附、离子交换型吸附过程,而且化学吸附过程是重铬酸根吸附的速率控制步骤。Fe3O4/CNTs的磁性全部为Fe3O4产生,且重铬酸根吸附后铬的最终状态为Cr(OH)3和Cr2O3,揭示了重铬酸根离子首先通过离子交换吸附于Fe3O4/CNTs表面,再还原为低价态的过程。
     计算了该类材料基团与重金属的稳定构型和轨道能量。利用Materials Studio5.5的DMol3模块对铁碳材料基团的基本结构进行了量子力学计算。从前线轨道理论和密度泛函理论的视角对铁碳材料处理重金属前后的稳定化能进行了模拟和分析比较,明确了铁碳材料表面各官能团的吸附功能,并获得了铁碳材料Fe3O4/CNTs处理重铬酸根前后能量与能隙的变化,揭示了羧基与重铬酸根杂化形成的配合物稳定化能最高、羟基次之,碳氧双键最弱的吸附机制,为铁碳材料应用于重金属复杂废水的深度处理奠定了基础。
Abstract:Large amount of heavy metals and oxacid root pollutants were discharged into the environment, which may results in serious environmental pollution and human health risk. Heavy metals and oxacid root contaminated wastewater with the characteristics of bioaccumulation, high residue and semi-volatile were focused by wastewater researcher. In this study, the typical heavy metal complexes Cu-EDTA and dichromate oxacid root were chosen as the object. Two novel methods were developed for synthesis of iron carbon materials Fe3O4/CNTs and Fe/AC, and the new materials were explorerd for removal of Cu-EDTA and dichromate from aqueous solution effectively. The main research contents and creative achievements are as follows:
     Based on the characteristics of the pulse plating, a novel flip plating iron-carbon material production device was designed, which was used to load zero-valent iron on the carbon surface. Optimum conditions to prepare the iron-carbon materials were investigated, plating time is30min, current intensity is2.5A, ion concentration of electrolyte is150mg/L. Under the above conditions, the Fe/AC materials prepared was rich in hydroxyl group, carboxyl group, carbon-oxygen double bond, and zero-valent iron-carbon complex structure on its surface, which enable the iron-carbon material Fe/AC conducive to the removal of the Cu-EDTA pollutants.
     A novel method for synthesis of high ferromagnetism nanoparticles (Fe3O4/CNTs) were proposed to efficiently remove Cr(VI) from aqueous solution. The Fe3O4/CNTs were prepared via an in-situ reduction with post-oxidation (RPO) method by using cheap and environmental friendly precursor under the mild condition. Magnetic hysteresis loops revealed that Fe3O4/CNTs had superior saturation magnetization (152emu/g) enabling the high-efficient recovery of Fe3O4/CNTs from aqueous solution by magnetic separation at low magnetic field gradients. The hydroxyl and carboxyl groups generated during preparation process can conjunct effectively with heavy metals in wastewater. Fe3O4/CNTs is an effective and environmental friendly adsorbent to remove heavy metals from wastewater attribute to the efficient removal ability and separation property.
     Batch experiments were performed to explore the optimium conditions of Cu-EDTA wastewater treatment by Fe/AC material. The removal efficiency is optimal at pH value of4.0, temperature of298K. Under the above conditions, the residual concentration of Cu(Ⅱ) decreased from60mg/L to1.718mg/L. Based on the Cu-EDTA treatment results, the reasonable organic compounds degradation mechanism were proposed firstly. The mechanism identified the relationship between organic heavy metal complexes destruction and hydroxyl radicals. Futhermore, the necessary hydroxyl radical generating conditions were authenticated by electrochemical theory, which is pH<7, dissolved oxygen, and electron transfer on Fe/AC surface. The hydroxyl radical generating chemical equation was derived. The concentration of hydroxyl radical can be calculated by equation of lg[·OH]=36.69-lg[Fe3+]+lgPo-3pH and the Gibbs free energy of the equation is-64.73KJ/mol, which reasonably revealed the degradation mechanism of heavy metal-organic complexes.
     Cr(VI) ionic forms in wastewater were analyzed. The effect of Fe3O4/CNTs on dichromate containing wastewater was investgated via batch experiments. Visual MINTEQ3.0modeling program was adopt to determine aqueous speciation of chromium ions at different pH values. Illustrated that the different forms of chromium ions such as Cr2O72-, KCr2O7-and HCrO4-coexist with predominant KCr2O7-in the pH range of1.0-6.0, these forms transformed to CrO42-and KCrO4-with pH increasing.The optimal conditions of Cr(VI) treatment experiments is as follows:pH value is6, temperature is313K and contact time is30min, Under the above conditions, the maximum Fe3O4/CNTs adsorption capacity reached to57.49mg/g, which is higher than the common adsorbents Kinetics, thermodynamics and the Cr(VI) removal mechanism indicated that Cr(VI) adsorption process in accordance with Langmuir model, D-R model and pseudo-second-order kinetic model. Thereinto, the adsorption energy is11.61KJ/mol, Langmuir constants are0.103-0.386. which revealed Cr(VI) adsorption process on Fe3O4/CNTs is monolayer adsorption, ion-exchange adsorption, and chemical adsorption process is rate determining step. Futhermore, Raman analytical results clarified the magnetic of Fe3O4/CNTs were all generated by Fe3O4, and the final state of Cr(VI) adsorpt on the Fe3O4/CNTs are Cr(OH)3and Cr2O3crystal structure. The change of surface properties of Fe3O4/CNTs provided the reliable evidence for the adsorption mechanism.
     According to the on surface groups and metal valence analysis, stable configurations and orbital energies of Fe/AC and Fe3O4/CNTs were calculated. The steady relationship between pollutants and various group on Fe/AC and Fe3O4/CNTs surface was deduced. Dmol3module of Materials Studio5.5program was used to construct the stable structures of complexes formed between a variety of functional groups present and the different heavy metal ions. Moreover, In order to guide the modification of AC and CNTs the energies of the frontier molecular orbital for the complexes were calculated. This research reveals the highest stabilization energy is carboxyl and dichromate complexes, and followed by hydroxyl and dichromate groups, carbon-oxygen double and dichromate bond is the weakest. Fe/AC and Fe3O4/CNTs developed in this study have great potential for the advanced treatment of wastewater containing heavy metal complexs and heavy metal oxacid roots. Figures86, Tables22, References209.
引文
[1]张杰,熊必永.创建城市水系统健康循环促进水资源可持续利用[J].沈阳建筑工程学院学报(自然科学版),2004,20:204-206.
    [2]张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2009,18:(2)23-24.
    [3]戴铁军,程会强.我国工业用水量分析与节水措施[J].工业水处理,2008,28:9-12.
    [4]曹新向,郭志永,雒海潮.区域土地资源持续利用的生态安全研究[J].水土保持学报,2004,18:192-195.
    [5]陈庆秋,陈晓宏.基于社会水循环概念的水资源管理理论探讨[J].地域研究与开发,2004,23:109-113.
    [6]侯万荣,李体刚,赵淑华.我国矿产资源综合利用现状及对策[J].采矿技术,2006,6:63-66.
    [7]王菲.离子交换树脂改性及在起爆药废水中应用研究[D].南京理工大学,2010,3:56-58.
    [8]郜国英.聚合物强化超滤处理重金属废水[D].中南大学,2011,2-4.
    [9]宫克.世界八大公害事件与绿色GDP[J].沈阳大学学报,2005,17:3-11.
    [10]黄裕侃.海洋污染与健康[J].健康博览,2000,4:31-34.
    [11]郝少英.跨国河流突发性污染防治的法律对策与启示[J].环境保护,2012,9:11-14.
    [12]朱贤英.论有毒重金属污染对人体健康的危害及饮水安全[J].湖北教育学院学报,2006,23:12-18.
    [13]陈承利,廖敏.重金属污染土壤修复技术研究进展[J].广东微量元素科学,2004,5-6.
    [14]李学鹏,段青源,励建荣.我国贝类产品中重金属镉的危害及污染分析[J].食品科学,2010,31:457-461.
    [15]徐凤兰,叶丹,曹德福.浅谈地下水污染及其防治[J].地下水,2005,27:50-52.
    [16]张永锋,许振良.重金属废水处理最新进展[J].工业水处理,2003,23:1-5.
    [17]梅光泉.重金属废水的危害及治理[J].微量元素与健康研究,2004,21:54-56.
    [18]薛婧.电镀废水处理技术的研究进展[J].机械管理开发,2010,25:32-33.
    [19]姜喜文.液膜法处理含氰选矿废水[J].甘肃有色金属,1992,41-44.
    [20]余宗学,安立超.高氨氮高盐度有机颜料废水处理工艺研究[J].环境科学与技术,2004,27:80-81.
    [21]U.Area,E.P.Abroad,W. Xinfang.Protection Industry[J].中国环保产业, 2007:67-69.
    [22]J.Li,H.Lu,J.Guo.Recycle technology for recovering resources and products from waste printed circuit boards[J].Environmental Science & Technology, 2007,41:1995-2000.
    [23]孙慧玲,吴秉勤.我国电子信息产业产业结构分析与评价[J].情报科学,2004,22:250-253.
    [24]丁春生,袁冬生.线路板工业废水处理工程实践[J].环境污染与防治,2005,9:34-36.
    [25]梁定民.超声/化学综合处理线路板有机废水的研究与应用[J],中南大学,2011,34-36.
    [26]李常绿,李刚,蔡升云.电子工业园PCB和五金电镀综合废水水质分类及其处理[J].电镀与涂饰,2010,29:45-47.
    [27]郭斌,郭静.含铬污水对地下水土壤污染的研究[J].城市环境与城市生态,1998,11:11-13.
    [28]徐衍忠,秦绪娜,刘祥红.铬污染及其生态效应[J].环境科学与技术,2002,25:8-10.
    [29]杨顺利.铬污染与防治[J].环境保护科学,1980,4:003-005.
    [30]李晓丽,刘景华,于晓斌.铬的环境行为与人体健康[J].中国微量元素科学研究会学术研讨会论文集,2004,34-36.
    [31]陈津,王社斌,林万明.21世纪中国铬业资源现状与发展[J].铁合金,2005,36:39-41.
    [32]黄顺红.铬渣堆场铬污染特征及其铬污染土壤微生物修复研究[D].中南大学,2009,102-104.
    [33]陈兴兰,杨成波.土壤重金属污染生态效应及植物修复技术[J].农业环境与发展,2010,3:59-78.
    [34]郑向群,郑顺安,李晓辰.叶菜类蔬菜土壤铬污染阈值研究[J].环境科学学报,2012,32-34.
    [35]贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,20:39-42.
    [36]韩润平,石杰,李建军.生物材料对重金属离子的吸附富集作用[J].化学通报,2000,7:25-30.
    [37]王济,王世杰.土壤中重金属环境污染元素的来源及作物效应[J].贵州师范 大学学报(自然科学版),2005,23:113-120.
    [38]张钟宪.环境与绿色化学[M].清华大学出版社有限公司,2005,23-25.
    [39]王银秋,张迎梅,赵东芹.重金属镉铅锌对鲫鱼和泥鳅的毒性[J].甘肃科学学报,2003,15:35-38.
    [40]孟晓红,贾瑛,付超然.重金属稀土元素污染在水生物体内的生物富集[J].农业环境保护,2000,19:50-52.
    [41]朱玉芳,崔勇华,戈志强.重金属元素在克氏原螯虾体内的生物富集作用[J].水利渔业,2003,23:11-12.
    [42]陈建军,张乃明,秦丽.昆明地区土壤重金属与农药残留分析[J].农村生态环境,2004,20:37-40.
    [43]方涛,刘剑彤,张晓华.河湖沉积物中酸挥发性硫释放的影响[J].环境科学学报,2002,22-26.
    [44]张映映,冯流,刘征涛.长江口区域水体半挥发性有机污染物健康风险评价[J].环境科学研究,2007,1-5.
    [45]Z. Chai, Y. Zhang, R. Zhang. Electrooxidation of Metal Complexes on ATO/SiO2 Macroporous Electrodes[J].2012,13-14.
    [46]C. Kim, S Ong. Recycling of lead-contaminated EDTA wastewater[J]. Journal of Hazardous Materials,1999,69:273-286.
    [47]L. Di Palma, P. Ferrantelli, C. Merli. Recovery of EDTA and metal precipitation from soil flushing solutions[J]. Journal of Hazardous Materials,2003,103: 153-168.
    [48]L Chang. A waste minimization study of a chelated copper complex in wastewater—treatability and process analysis[J]. Waste Management,1995,15: 209-220.
    [49]W. Bo, F. Suzheng, Z. Ping. Research on Copper Extraction from Printed Circuit Board Leaching Solution[J]. China Resources Comprehensive Utilization,2006, 9:8-9.
    [50]P. Wu, J. Zhou, X. Wang. Adsorption of Cu-EDTA complexes from aqueous solutions by polymeric Fe/Zr pillared montmorillonite:Behaviors and Mechanisms[J]. Desalination,2011,277:288-295.
    [51]B. Sengupta, A. Kumar, M. Hashim. Nickel and chromium in wastewater [J]. The Malaysian Experience.1998,2:290-291.
    [52]C. Namasivayam, K. Ranganathan. Removal of Cd (Ⅱ) from wastewater by adsorption on "waste" Fe (Ⅲ) Cr (Ⅲ) hydroxide[J]. Water Research,1995,29: 1737-1744.
    [53]H. Miliou, G. Verriopoulos, D. Maroulis. Influence of Life-History Adaptations on the Fidelity of Laboratory Bioassays for the Impact of Heavy Metals (Co2+and Cr6+) on Tolerance and Population Dynamics of Tisbe holothuriae[J]. Marine Pollution Bulletin,2000,40:352-359.
    [54]J. Khattar, T. Sarma, A. Sharma. Effect of Cr6+ stress on photosynthetic pigments and certain physiological processes in the cyanobacterium Anacystis nidulans and its chromium resistant strain[J]. Journal of Microbiol Biotechnol,2004,14: 1211-1216.
    [55]王海慧,郇恒福,罗瑛.土壤重金属污染及植物修复技术[J].中国农学通报,2009,25:210-214.
    [56]M. Henze, P. Harremoes, J. la Cour Jansen. Microbial diversity and function in soil:from genes to ecosystems [J]. Current Opinion in Microbiology,2002, 240-245.
    [57]T.E. Schultz. Biological wastewater treatment[J]. Chemical Engineering,2005,1: 42-44.
    [58]T. Melin, B. Jefferson, D. Bixio. Membrane bioreactor technology for wastewater treatment and reuse[J]. Desalination,2006,187:271-282.
    [59]张占梅.聚合氯化铝铁絮凝剂的制备及絮凝性能研究[D].重庆大学,2006,1-23.
    [60]A.G. Livingston. Extractive membrane bioreactors:a new process technology for detoxifying chemical industry wastewaters[J]. Journal of Chemical Technology and Biotechnology,1994,60:117-124.
    [61]S.H. Lin, C.R. Yang. Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication[J]. Journal of Hazardous Materials,2004,108:103-109.
    [62]J.W. Patterson. Industrial wastewater treatment technology[J] Industrial Wastewater Treatment Technology.1985,127-129.
    [63]赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮[J].环境科学,1999,2:20-24.
    [64]张继华.化学沉淀法处理磷化废水[J].工业水处理,2000,20:43-44.
    [65]刘小澜,王继徽,黄稳水.化学沉淀法去除焦化废水中的氨氮[J].化工环保,2004,24:46-48.
    [66]胡海祥.重金属废水治理技术概况及发展方向[J].China Resources Comprehensive Utilization,2008,26:2-4.
    [67]A.E. Hagerman, L.G. Butler. Protein precipitation method for the quantitative determination of tannins[J]. Journal of Agricultural and Food Chemistry,1978, 26:809-812.
    [68]T. Cho, S. Park, M. Yoshio. Effect of synthesis condition on the structural and electrochemical properties of LiO2 prepared by carbonate co-precipitation method[J]. Journal of Power Sources,2005,142:306-312.
    [69]K.C. Song, Y. Kang. Preparation of high surface area tin oxide powders by a homogeneous precipitation method[J]. Materials Letters,2000,42:283-289.
    [70]王绍文,齐龙武.硫化物沉淀法处理重金属废水的实践与发展[J].城市环境与城市生态,1993,6:41-44.
    [71]D. Bhattacharyya, A. Jumawan Jr, R. Grieves. Separation of toxic heavy metals by sulfide precipitation[J]. Separation Science and Technology,1979,14: 441-452.
    [72]J.S. Whang, D. Young, M. Pressman. Soluble-Sulfide precipitation for heavy metals removal from wastewaters. Engineering details of a treatment plant scheduled to be operational in September,1981 [J]. Environmental Progress, 1982,1:110-113.
    [73]张志扬,李江华,贾丽云.UASB-生物接触氧化-絮凝沉淀法处理皂素废水[J].城市环境与城市生态,2003,100-104.
    [74]L. Guibai, J. Gregory. Flocculation and sedimentation of high-turbidity waters[J]. Water Research,1991,25:1137-1143.
    [75]V. Golob, Vinder, M. Simonic. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents[J]. Dyes and Pigments,2005,67:93-97.
    [76]郑兴灿,张悦,陈立.化学-生物联合絮凝的污水强化一级处理工艺[J].中国给水排水,2000,16:29-32.
    [77]李忠国,李金惠,段华波.钡盐共沉法处理酸性含铅废水[J].Chinese Journal of Environmental Engineering,2007,11-14.
    [78]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,32:36-39.
    [79]王亚东,张林生.电镀废水处理技术的研究进展[J].安全与环境工程,2008(3)34-36.
    [80]魏振枢.铁氧体法处理含铬废水工艺条件探讨[J].化工环保,1998,18:33-36.
    [81]V. Hencl, P. Mucha, A. Orlikova. Utilization of ferrites for water treatment[J]. Water Research,1995,29:383-385.
    [82]B. Baruwati, M.N. Nadagouda, R.S. Varma. Bulk synthesis of monodisperse ferrite nanoparticles at water-organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization[J]. The Journal of Physical Chemistry C,2008,112:18399-18404.
    [83]刘春芳.臭氧高级氧化技术在废水处理中的研究进展[J].石化技术与应用,2002,20:278-280.
    [84]冯玉杰,崔玉虹,孙丽欣.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,12-14.
    [85]雷乐成,汪大翚.环境科学[M].化学工业出版社,2001,219-222.
    [86]尹玉玲,肖羽堂,朱莹佳.电Fenton法处理难降解废水的研究进展[J].水处理技术,2009,35:15-19.
    [87]柴立元,尤翔宇,舒余德.三维电极电化学反应器降解有机废水中的EDTA[J].中南大学学报:自然科学版,2010,41:1240-1245.
    [88]谢银德,陈锋,何建军.Photo-Fenton反应研究进展[J].感光科学与光化学,2000,18:357-365.
    [89]王斌,管玉江,杨卫身.电氧化还原法处理染料废水的研究进展[J].印染科学,2005,31:45-48.
    [90]任百祥,杨春维,滕洪辉.超声氧化降解糠醛废水的研究[J].环境工程学报,2007,1:68-70.
    [91]弓晓峰,樊华,孔新红.紫外光氧化法深度处理垃圾渗滤液的研究[J].环境保护,2003,3:15-17.
    [92]谭亚军,蒋展鹏,祝万鹏.有机污染物湿式氧化降解中Cu系列催化剂的稳定性[J].环境科学,2000,21:82-85.
    [93]高洁,徐桂芹,姜安玺.光化学氧化技术去除水中有机污染物的试验研究[J].环境污染与防治,2002,24:272-275.
    [94]武书彬.高级化学氧化工艺在制浆废水处理的应用[J].中国造纸,1999,18:43-49.
    [95]向波涛,王涛,刘军.超临界水氧化法处理含硫废水研究[J].化工环保,1999,19:75-79.
    [96]王翠,史佩红,杨春林.电化学氧化法在废水处理中的应用[J].河北工业科技,2004,21:49-53.
    [97]J. Zhang, H. Zou, Q. Qing. Effect of chemical oxidation on the structure of single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B,2003, 107:3712-3718.
    [98]S.-F. Kang, C.-H. Liao, S.-T. Po. Decolorization of textile wastewater by photo-Fenton oxidation technology[J]. Chemosphere,2000,41:1287-1294.
    [99]V.D. Neff. Electrochemical oxidation and reduction of thin films of Prussian Blue[J]. Journal of the Electrochemical Society,1978,125:886-887.
    [100]Y. Deng, J.D. Englehardt. Electrochemical oxidation for landfill leachate treatment[J]. Waste Management,2007,27:380-388.
    [101]P.R. Gogate, A.B. Pandit. A review of imperative technologies for wastewater treatment I:oxidation technologies at ambient conditions[J]. Advances in Environmental Research,2004,8:501-551.
    [102]R. de Lima Leite, P. Cognet, A.-M. Wilhelm, et al. Anodic oxidation of 2, 4-dihydroxybenzoic acid for wastewater treatment:study of ultrasound activation[J]. Chemical Engineering Science,2002,57:767-778.
    [103]J.W. Tester, H.R. Holgate, F.J. Armellini. Supercritical water oxidation technology, in:ACS Symposium Series, ACS Publications,1993,35-75.
    [104]H. Barner, C. Huang, T. Johnson. Supercritical water oxidation:an emerging technology[J]. Journal of Hazardous Materials,1992,31:1-17.
    [105]F. Al Momani. Impact of photo-oxidation technology on the aqueous solutions of nitrobenzene:Degradation efficiency and biodegradability enhancement[J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,179: 184-192.
    [106]L. Lei, X. Hu, H. Chu. Catalytic wet air oxidation of dyeing and printing wastewater [J]. Water Science and Technology,1997,35:311-319.
    [107]A. Dabrowski, Z. Hubicki, P. Podkoscielny. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method [J]. Chemosphere,2004,56:91-106.
    [108]K. Kimura, S. Sakida, Y. Benino. Fabrication and characterization of Er3+-doped tellurite glass waveguide by Ag+-Na+ion-exchange method, IOP Conference Series:Materials Science and Engineering, IOP Publishing,2011,112-118.
    [109]O. Turgay, G. Ersoz, S. Atalay. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation [J]. Separation and Purification Technology,2011,79:26-33.
    [110]P. Hunt, T. Matheny, K. Ro. Denitrification in anaerobic lagoons used to treat swine wastewater[J]. Journal of environmental quality,2010,39:1821-1828.
    [111]R. Rajakumar, T. Meenambal, J.R. Banu. Treatment of poultry slaughterhouse wastewater in upflow anaerobic filter under low upflow velocity[J]. International Journal of Environmental Science and Technology,2011,8: 49-158.
    [112]W.E. Platten III, D. Bailey, M.T. Suidan. Biological transformation pathways of 2,4-dinitro anisole and N-methyl paranitro aniline in anaerobic fluidized-bed bioreactors[J]. Chemosphere,2010,81:1131-1136.
    [113]X.-g. Chen, P. Zheng, J. Cai. Bed expansion behavior and sensitivity analysis for super-high-rate anaerobic bioreactor[J]. Journal of Zhejiang University sciences,2010,11:79-86.
    [114]Y. Lv, L. Wang, X. Wang. Macroscale and microscale analysis of Anammox in anaerobic rotating biological contactor[J]. Journal of Environmental Sciences, 2011,23:1679-1683.
    [115]Z. Li, X. Zhang, J. Lin. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system[J]. Bioresource Technology,2010,101:4440-4445.
    [116]N. Mahmoud, J.B. van Lier. Enhancement of a UASB-septic tank performance for decentralised treatment of strong domestic sewage[J]. Water Science and Technology,2011,64:923-929.
    [117]V.N. Nkemka, M. Murto. Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals[J]. Journal of Environmental Management,2010,91:1573-1579.
    [118]G. Ji, T. Sun, J. Ni. Anaerobic baffled reactor (ABR) for treating heavy oil produced water with high concentrations of salt and poor nutrient [J]. Bioresource Technology,2009,100:1108-1114.
    [119]W.M. Bandara, H. Satoh, M. Sasakawa. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane [J]. Water Research, 2011,45:3533-3540.
    [120]K. Chon, S.J. Kim, J. Moon. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation:An autopsy study of a pilot plant[J]. Water Research,2012,46: 1803-1816.
    [121]G. Durai, M. Rajasimman. Biological Treatment of Tannery Wastewater-A Review[J]. Journal of Environmental Science and Technology,2011,4:1-17.
    [122]G Mascolo, L. Balest, D. Cassano. Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment[J]. Bioresource Technology,2010,101: 2585-2591.
    [123]Z. Liang, A. Das, Z. Hu. Bacterial response to a shock load of nanosilver in an activated sludge treatment system[J]. Water Research,2010,44:5432-5438.
    [124]L. Zhou, G. Li, T. Li. Research progresson mass transfer in biofilms for wastewater treatment[J]. Acta Scientiae Circumstantiae,2011,31:1580-1586.
    [125]R. Huang, X. Liu, D. Lin. Combined Process of HABR, Coagulation and Biological Contact Oxidation for Treatment of Printing and Dyeing Wastewater[J]. China Water & Wastewater,2011,27:87-89.
    [126]L.M. Nevatalo, A.E. Makinen, A.H. Kaksonen. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor[J]. Bioresource Technology,2010,101:276-284.
    [127]G. Bortone. Integrated anaerobic/aerobic biological treatment for intensive swine production[J]. Bioresource Technology,2009,100:5424-5430.
    [128]B. Zhang, M. Ji, Z. Qiu. Microbial population dynamics during sludge granulation in an anaerobic-aerobic biological phosphorus removal system [J]. Bioresource Technology,2011,102:2474-2480.
    [129]Y.J. Chan, M.F. Chong, C.L. Law. A review on anaerobic-aerobic treatment of industrial and municipal wastewater [J]. Chemical Engineering Journal,2009, 155:1-18.
    [130]K. Stamatelatou, A. Kopsahelis, P. Blika. Anaerobic digestion of olive mill wastewater in a periodic anaerobic baffled reactor (PABR) followed by further effluent purification via membrane separation technologies [J]. Journal of Chemical Technology and Biotechnology,2009,84:909-917.
    [131]Z. Hongbin, Y. Lili. Discussion on Application of Membrane Technology in Water and Wastewater Treatment in China[J]. Urban Roads Bridges & Flood Control,2011,11:028-030.
    [132]Y. Zhang, K. Ghyselbrecht, B. Meesschaert. Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation[J]. Journal of Membrane Science,2011,378:101-110.
    [133]L. Malaeb, GM. Ayoub. Reverse osmosis technology for water treatment:State of the art review[J]. Desalination,2011,267:1-8.
    [134]P. Xu, C. Bellona, J.E. Drewes. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation:membrane autopsy results from pilot-scale investigations[J]. Journal of Membrane Science,2010, 353:111-121.
    [135]S.L. Gayatri, M. Ahmaruzzaman. Adsorption technique for the removal of phenolic compounds from wastewater using low-cost natural adsorbents [J]. Assam University Journal of Science and Technology,2010,5:156-166.
    [136]J.-M. Duan, H.-D. Fang, J.-M. Lin. Nutrient Removal from Swine Wastewater by Struvite Precipitation with Ammonia Adsorption on Zeolite[J]. Environmental Science & Technology,2011,12:037-040.
    [137]Y. Chen, H. Qian, F. Wu. Clearance and recovery of Cd (Ⅱ) from aqueous solution by magnetic separation technology [J]. Chemosphere,2011,83: 1214-1219.
    [138]R. Oder. High gradient magnetic separation theory and applications[J]. Magnetics, IEEE Transactions on,1976,12:428-435.
    [139]Y. Kakihara, T. Fukunishi, S. Takeda. Superconducting high gradient magnetic separation for purification of wastewater from paper factory [J]. Applied Superconductivity, IEEE Transactions on,2004,14:1565-1567.
    [140]H. Shent, R. Pugh, E. Forssberg. A review of plastics waste recycling and the flotation of plastics[J]. Resources, conservation and recycling,1999,25: 85-109.
    [141]H.-J. Huang, S. Ramaswamy, U. Tschirner. A review of separation technologies in current and future biorefineries[J]. Separation and Purification Technology, 2008,62:1-21.
    [142]F. Fu, Q. Wang. Removal of heavy metal ions from wastewaters:A review[J]. Journal of Environmental Management,2011,92:407-418.
    [143]D. Sud, G. Mahajan, M. Kaur. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review[J]. Bioresource Technology,2008,99:6017-6027.
    [144]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2:18-24.
    [145]欧阳玉祝,王继徽,沈扬.铁屑微电解法预处理酿酒废水的研究[J].工业 水处理,2001,21:16-18.
    [146]喻旗,沈杨,张光辉.铁/炭微电解床处理电解锰生产钝化废水[J].中国锰业,2002,20:25-27.
    [147]Y.J.-x.C. Qing-li. A Review on the Treatment Technology of Dyeing Wastewater[J]. Dyestuffs and Coloration,2007,2:10-18.
    [148]X. Yang. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology[J]. Journal of Hazardous Materials,2009,169:480-485.
    [149]Z. Qiang, J.-H. Chang, C.-P. Huang. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions[J]..Water Research,2002, 36:85-94.
    [150]Z.P.F. Dafang. Application and development for microelectrolysis technology [J]. Technigues and Equipment For Environmental Pollution Control,2001,4: 32-43.
    [151]H. Cheng, W. Xu, J. Liu. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis[J]. Journal of Hazardous Materials,2007,146:385-392.
    [152]X. Yang, Y. Xue, W. Wang. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis[J]. Bioresource Technology,2009,100:649-653.
    [153]李秉成.中国城市生态环境问题及可持续发展[J].干旱区资源与环境,2006,2:4-6.
    [154]J.T. Sawian, F.G. Lyndem,S. Jeeva. Water Pollution in Relation to Human Health[J]. Environmental Studies. Atlantic Publishers New Delhi,2008, 108-124.
    [155]A.C. Alder, H. Siegrist, W. Gujer. Behaviour of NTA and EDTA in biological wastewater treatment [J]. Water Research,1990,24:733-742.
    [156]A.L. Rowbotham, L.S. Levy, L.K. Shuker. Chromium in the environment:an evaluation of exposure of the UK general population and possible adverse health effects[J]. Journal of Toxicology and Environmental Health Part B: Critical Reviews,2000,3:145-178.
    [157]R.J. Lazarus. Pursuing Environment Justice:The Distributional Effects of Environmental Protection [J]. Nw. UL Rev.,1992,87:787-789.
    [158]A. Peigney, C. Laurent, E. Flahaut. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon,2001,39:507-514.
    [159]P. Khalili Amiri, Z. Zeng, J. Langer. Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions[J]. Applied Physics Letters,2011,98:112507-112503.
    [160]R. Xiao, X. Chen, F. Wang. The physicochemical properties of different biomass ashes at different ashing temperature [J]. Renewable Energy,2011,36: 244-249.
    [161]M.I. Chollet, R.C. Belin, J.-C. Richaud. High-Temperature X-ray Diffraction Study of Uranium-Neptunium Mixed Oxides[J]. Inorganic Chemistry,2013(6): 456-458.
    [162]R. Oliveira, M. Vieira, M. Ueda. Growth of ZnO nanostructures on Si by means of Plasma Immersion Ion Implantation and Deposition [J]. Vacuum,2012(2): 44-48.
    [163]H.D. Pratt III, J.C. Leonard, L.A.M. Steele. Copper ionic liquids:examining the role of the anion in determining physical and electrochemical properties[J]. Inorganica Chimica Acta,2012(2):23-28.
    [164]H. Yu, L. Zeng, C. Lu. Synthesis of nanocrystalline yttrium iron garnet by low temperature solid state reaction[J]. Materials Characterization,2011,62: 378-381.
    [165]S. Lee, Z. Zhang, X. Wang. Characterization of multi-walled carbon nanotubes catalyst supports by point of zero charge[J]. Catalysis Today,2011,164:68-73.
    [166]J. Lin, L. Wang. Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon[J]. Frontiers of Environmental Science & Engineering in China,2009,3:320-324.
    [167]N. Nasuha, B. Hameed, A.T. Mohd Din. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue[J]. Journal of Hazardous Materials, 2010,175:126-132.
    [168]F. Wu, R. Tseng, S. Huang. Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption:A mini-review[J]. Chemical Engineering Journal,2009,151:1-9.
    [169]Y. Miyake, H. Ishida, S. Tanaka. Theoretical analysis of the pseudo-second order kinetic model of adsorption. Application to the adsorption of Ag (I) to mesoporous silica microspheres functionalized with thiol groups[J]. Chemical Engineering Journal,2012,34-37.
    [170]S. Chowdhury, P. Saha. Pseudo-second-order kinetic model for sorption of malachite green onto sea shell:Comparison of linear and non-linear methods[J]. The Iioab Journal,2010,1:3-7.
    [171]M. Sze, G. McKay. An adsorption diffusion model for removal of para-chlorophenol by activated carbon derived from bituminous coal[J]. Environmental Pollution,2010,158:1669-1674.
    [172]F.-C. Wu, R.-L. Tseng, R.-S. Juang. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems[J]. Chemical Engineering Journal,2009,150:366-373.
    [173]K. Foo, B. Hameed. Insights into the modeling of adsorption isotherm systems[J]. Chemical Engineering Journal,2010,156:2-10.
    [174]D.J. Owens, A.D. Ebner, J.A. Ritter. Equilibrium Theory Analysis of a Pressure Swing Adsorption Cycle Utilizing a Favorable Langmuir Isotherm:Approach to Periodic Behavior[J]. Industrial & Engineering Chemistry Research,2012, 51:13454-13462.
    [175]K.V. Kumar, M.M. de Castro, M. Martinez-Escandell. A Continuous Binding Site Affinity Distribution Function from the Freundlich Isotherm for the Supercritical Adsorption of Hydrogen on Activated Carbon[J]. The Journal of Physical Chemistry C,2010,114:13759-13765.
    [176]G.P. Jeppu, T.P. Clement. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects[J]. Journal of Contaminant Hydrology,2012,129:46-53.
    [177]M.s.L. Pinto, A.S. Mestre, A.P. Carvalho. Comparison of Methods to Obtain Micropore Size Distributions of Carbonaceous Materials from CO2 Adsorption Based on the Dubinin- Radushkevich Isotherm[J]. Industrial & Engineering Chemistry Research,2010,49:4726-4730.
    [178]P. Joseph, S. Tretsiakova-McNally. Sustainable non-metallic building materials[J]. Sustainability,2010,2:400-427.
    [179]戴瑞,郑水林,贾建丽.非金属矿物环境材料的研究进展[J].中国非金属矿工业导刊.2009,6:3-9.
    [180]L Wu, J Zhao, Y Xie. Progress of electroplating and electroless plating on magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2010, 20:630-637.
    [181]A. Esbaugh, K. Brix, E. Mager. Multi-linear regression analysis, preliminary biotic ligand modeling, and cross species comparison of the effects of water chemistry on chronic lead toxicity in invertebrates[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2012 (155): 423-431.
    [182]K. Cirik, N. Dursun, E. Sahinkaya. Effect of electron donor source on the treatment of Cr (Ⅵ)-containing textile wastewater using sulfate-reducing fluidized bed reactors (FBRs)[J]. Bioresource Technology,2013,189-191.
    [183]A. Bhattacharya, A. Gupta. Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater [J]. Environmental Science and Pollution Research,2013,1-10.
    [184]R. Singh, A. Kumar, A. Kirrolia. Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study [J]. Bioresource Technology,2011,102: 677-682.
    [185]S. Aber, A. Amani-Ghadim, V. Mirzajani. Removal of Cr (VI) from polluted solutions by electrocoagulation:modeling of experimental results using artificial neural network[J]. Journal of Hazardous Materials,2009,171: 484-490.
    [186]L.A. Rodrigues, L.J. Maschio, R.E. da Silva. Adsorption of Cr (VI) from aqueous solution by hydrous zirconium oxide[J]. Journal of Hazardous Materials,2010,173:630-636.
    [187]P. Miretzky, A.F. Cirelli. Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials:A review[J]. Journal of Hazardous Materials,2010,180:1-19.
    [188]V. Gupta, P. Carrott, M. Ribeiro Carrott. Low-cost adsorbents:growing approach to wastewater treatment—a review[J]. Critical Reviews in Environmental Science and Technology,2009,39:783-842.
    [189]M. Ahmaruzzaman, V.K. Gupta. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment[J]. Industrial & Engineering Chemistry Research,2011,50:13589-13613.
    [190]C.-H. Weng, Y. Sharma, S.-H. Chu. Adsorption of Cr (Ⅵ) from aqueous solutions by spent activated clay[J]. Journal of Hazardous Materials,2008,155: 65-75.
    [191]H. Tel, Y. Altas, M. Taner. Adsorption characteristics and separation of Cr (Ⅲ) and Cr (Ⅵ) on hydrous titanium (Ⅳ) oxide[J]. Journal of Hazardous Materials, 2004,112:225-231.
    [192]H. Parab, S. Joshi, N. Shenoy. Determination of kinetic and equilibrium parameters of the batch adsorption of Co (Ⅱ), Cr (Ⅲ) and Ni (Ⅱ) onto coir pith[J]. Process Biochemistry,2006,41:609-615.
    [193]W. Liu, J. Zhang, C. Zhang. Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk[J]. Chemical Engineering Journal,2010,162:677-684.
    [194]X.S. Wang, L.F. Chen, F.Y. Li. Removal of Cr (Ⅵ) with wheat-residue derived black carbon:Reaction mechanism and adsorption performance[J]. Journal of Hazardous Materials,2010,175:816-822.
    [195]Z. Jia, Q. Wang, D. Ren. Fabrication of one-dimensional mesoporous a-Fe2O3 nanostructure via self-sacrificial template and its enhanced Cr (Ⅵ) adsorption capacity[J]. Applied Surface Science,2012,(2) 23-28.
    [196]W. Li, Y. Tang, Y. Zeng. Adsorption behavior of Cr (Ⅵ) ions on tannin-immobilized activated clay[J]. Chemical Engineering Journal,2012, 167-170.
    [197]Y. Wen, Z. Tang, Y. Chen. Adsorption of Cr (Ⅵ) from aqueous solutions using chitosan-coated fly ash composite as biosorbent[J]. Chemical Engineering Journal,2011,175:110-116.
    [198]V. Gupta, S. Agarwal, T.A. Saleh. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes[J]. Water Research,2011,45:2207-2212.
    [199]M. Kebir, M. Chabani, N. Nasrallah. Coupling adsorption with photocatalysis process for the Cr (Ⅵ) removal[J]. Desalination,2011,270:166-173.
    [200]Y. Abou El-Reash, M. Otto, I. Kenawy. Adsorption of Cr (Ⅵ) and As (Ⅴ) ions by modified magnetic chitosan chelating resin[J]. International Journal of Biological Macromolecules,2011,49:513-522.
    [201]Z. Yong-Gang, S. Hao-Yu, P. Sheng-Dong. Synthesis, characterization and properties of ethylenediamine-functionalized Fe3O4 magnetic polymers for removal of Cr (Ⅵ) in wastewater[J]. Journal of Hazardous Materials,2010, 182:295-302.
    [202]J. Qiu, Z. Wang, H. Li. Adsorption of Cr (Ⅵ) using silica-based adsorbent prepared by radiation-induced grafting[J]. Journal of Hazardous Materials, 2009,166:270-276.
    [203]E. Alvarez-Ayuso, A. Garcia-Sanchez, X. Querol. Adsorption of Cr (Ⅵ) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide[J]. Journal of Hazardous Materials,2007,142:191-198.
    [204]L.T. Arenas, E.C. Lima. Use of statistical design of experiments to evaluate the sorption capacity of 1,4-diazoniabicycle [2.2.2] octane/silica chloride for Cr (VI) adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,297:240-248.
    [205]D.-W. Cho, C.-M. Chon, Y. Kim. Adsorption of nitrate and Cr (Ⅵ) by cationic polymer-modified granular activated carbon[J]. Chemical Engineering Journal, 2011,175:298-305.
    [206]A.P. Scott, L. Radom. Harmonic vibrational frequencies:an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors [J]. The Journal of Physical Chemistry,1996,100:16502-16513.
    [207]R.M. Dreizler, E. Engel. Density functional theory[J]. Density Functional Theory:An Advanced Course, Theoretical and Mathematical Physics, ISBN 978-3-642-14089-1. Springer-Verlag Berlin Heidelberg,2011,12-15.
    [208]M.L. Tang, A.D. Reichardt, P. Wei. Correlating carrier type with frontier molecular orbital energy levels in organic thin film transistors of functionalized acene derivatives[J]. Journal of the American Chemical Society,2009,131: 5264-5273.
    [209]H.C. Zhang, E.Q. Guo, Y.L. Zhang. Donor acceptor-substituted anthracene centered cruciforms:synthesis, enhanced two-photon absorptions, and spatially separated frontier molecular orbitals[J]. Chemistry of Materials,2009,21: 5125-5135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700