用户名: 密码: 验证码:
聚间苯二胺的化学氧化合成及其除铬(Ⅵ)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着我国工业的快速发展,大量重金属废水排入江河水体中,污染环境。铬(Ⅵ)废水由于其毒性强、浓度高、形态复杂多变,仍然是水污染治理的重点与难题。吸附法是处理重金属污染物有效且环保的方法,开发新型高效铬(Ⅵ)吸附剂成为国内外的研究热点。本文提出聚间苯二胺吸附剂除铬(Ⅵ)新思路,创新了聚间苯二胺的化学氧化合成方法,揭示了聚间苯二胺的电位调控合成机理,开展了聚间苯二胺去除铬(Ⅵ)的性能和机理研究。主要研究内容及创造性成果如下:
     创新了聚间苯二胺化学氧化合成方法,实现了聚间苯二胺产率和性能的显著提高。确定了聚间苯二胺的最佳合成条件C032-浓度2molL-1,合成时间5h、温度25℃、初始pH值8。合成的聚间苯二胺无定形程度高、热稳定好、与传统合成法相比产率提高了15%。研究了聚间苯二胺在水处理过程中对水体总有机碳的影响,在不同酸碱程度的水体中总有机碳含量低于6.64mg g-1,低于污水综合排放标准20mg g-1。进一步证实了聚间苯二胺作为吸附剂不会对水体产生二次污染。
     揭示了间苯二胺电位调控聚合机理。碱(OH-、CO32-)可以显著降低间苯二胺聚合体系的开路电位,基于能斯特方程,溶液中氧化剂的电位和氧化能力下降,获得的聚间苯二胺产物氧化态降低。碱同时控制了聚合体系的矿浓度,促使反应向正向进行,提高聚合物产率。研究发现反应溶液的初始pH值在碳酸盐体系的缓冲pH范围之内,C032-可有效控制反应溶液pH值的剧烈波动,稳定氧化剂的氧化能力。
     研究了聚间苯二胺对铬(Ⅵ)的吸附行为。优化了除铬(Ⅵ)工艺条件:pH为2、反应时间5h。聚间苯二胺对铬(Ⅵ)的最大吸附量随温度上升而提高,30℃时为598.5mg g-1,45℃时为666.8mg g-1。探明了共存阴离子对铬(Ⅵ)脱除率的影响,SO42可占据接近35%的吸附位点,Cl-和N03-存在时,铬(Ⅵ)的脱除率仍在90%以上。聚间苯二胺吸附铬(Ⅵ)的过程符合准二级动力学模型,说明吸附反应是化学吸附。吸附过程焓变为正值表明吸附为吸热过程。吉布斯自由能为负值说明吸附反应在实验研究的温度范围内是自发的。筛选0.1mol L-1NaOH为解吸试剂,5次循环累计吸附量为1545mg L-1。
     阐明了聚间苯二胺去除铬(Ⅵ)的机制。X射线光电子能谱分析表明聚间苯二胺分子链上的醌型亚胺和苯型仲胺分别是参与静电吸附和还原铬(Ⅵ)的主要官能团;阐明了铬(Ⅲ)以CrCl3形式吸附于聚间苯二胺表面。构建了聚间苯二胺与铬(Ⅵ)之间的氧化还原反应方程式。揭示了聚间苯二胺与除铬(Ⅵ)效果之间的构效关系。通过ChemBioOffice的Minimize Energy模块计算得到低氧化态聚间苯二胺具有较低的能量状态,更容易被质子化,吸附铬(Ⅵ)的能力更强。根据吸附反应前后苯型仲胺和铬离子的摩尔变化量计算吸附在聚间苯二胺表面铬(Ⅵ)和铬(Ⅲ)的量,明确了低氧化态聚间苯二胺能够更有效的还原铬(Ⅵ)。
Abstract:Along with the rapid growth of intrustry, more heavy metal wastewater is diacharged to rivers, then the environment is polluted. The governance of chromium(Ⅵ) wastewater is one of the important and difficult problem, because of its toxicity, high concentration and complex state. Adsorption method is an effective way to remove pollutant, then the exploitation of new-type adsorbents became the research hotspot. The removal of chromium(Ⅵ) with poly(m-phenylenediamine) adsorbent was proposed as a new thought in this paper. The potential regulation polymerization mechanism of poly(m-phenylenediamine) was illuminate, and the chromium(Ⅵ) removal ability and mechanism by poly(m-pheylenediamine) was investigated. The main research contents and creative achievements are as follows:
     The innovative chemical oxidation synthesis flow of poly(m-phenylenediamne) was designed. The yield and performance of poly(m-phenylenediamine) was increased. The optimal polymerization conditions were decided:CO32-concentration2mol L1, polymerization time5h, polymerization temperature25℃, polymerization initial pH8. The poly(m-phenylenediamine) achieved in the optimal condition had higher amorphism degree and thermostability, the yield enhanced15%compared with traditional method. The effect on the total organic carbon (TOC) during water treatment with poly(m-phenylenediamne) was investigated. The TOC datum in different pH value were all lower than6.64mg g-1, which are less than20mg g-1in integrated wastewater discharge standard. The data illustrate that there is no secondary pollution when poly(m-phenylenediamine) was used as adsorbent.
     The potential regulation polymerization of poly(m-phenylenediamine) was revealed. Alkali (OH-、CO32-) could observably decrease the polymerization potential of m-phenylenediamine. Base on the nernst equation, the potential of oxidant in solution decreased, oxidation capacity decreased, the oxidation of poly(m-phenylenediamine) decreased. Alkali could control the H+concentration in solution, the reaction was prompted to proceed, the yield of polymer was increased. The polymerization initial pH is in the pH butter range of carbonate system. The study found that adding CO32-could control the sharp fluctuation of polymerization pH and stabilize the oxidizing ability of oxidant.
     The chromium(Ⅵ) adsorption behavior with poly(m-pheny-lenediamine) was investigated. The reasonable chromium(Ⅵ) adsorption condition were pH2and reaction time5h. The chromium(Ⅵ) maximum adsorbance was510.9mg g-1in15℃,598.5mg g-1in30℃,666.8mg g-1in45℃. The effect of coexisting ions on adsorptivity was proved. SO42-could grab35%adsorption site, however, when Cl-and NO3-exsited, the chromium(Ⅵ) adsorptivity still remained above90%. The chromium(Ⅵ) adsorption process can be better described by pseudo-second-model, which illustrates that the adsorption is chemisorption. The value of enthalpy is positive, which indicates the adsorption is endothermic process. The values of free energy are negative, which indicates the adsorption reactions are spontaneous at experiment temperature.0.1mol L-1NaOH was selected as the desorption reagent. The five times accumulated adsorbance was1545mg L-1.
     The removal mechanism of chromium(Ⅵ) with poly(m-phenylenediamine) was illuminated. X-ray photoelectron spectroscopy analysis indicates that quinoid imine and benzenoid amine are the main functional groups for electrostatic adsorption and chromium(Ⅵ) reduction, respectively; chromium(Ⅲ) was adsorbed to poly(m-phenylenediamine) surface as CrCl3. The redox reaction equation between chromium(Ⅵ) and poly(m-phenylenediamine) was builded. The structure-function relationship between poly(m-phenylenediamine) and chromium(Ⅵ) adsorption was builded. Poly(m-phenylenediamine) with lower oxidation state has lower energy state which was calculated by Minimize Energy in ChemBioOffice. It could be protonized easier, and has strongher chromium(Ⅵ) adsorption ability. The quality of chromium(Ⅵ) and chromium(Ⅲ) in the surface of poly(m-phenylenediamine) was calculated according to the molar cariation of benzenoid amine and chromium ions before and after adsorption. Poly(m-phenylenediamine) with lower oxidation state has stronger chromium(Ⅵ) reduction ability was confirmed.
引文
[1]Mohan D, Singh K P, Singh V K. Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth [J]. Industrial & Engineering Chemistry Research,2005,44(4):1027-1042.
    [2]Mohan D, Singh K P, Singh V K. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth [J]. Journal of Hazardous Materials,2006,135(1): 280-295.
    [3]Mohan D, Pittman Jr C U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water [J]. Journal of Hazardous Materials,2006,137(2):762-811.
    [4]Kimbrough D E, Cohen Y, Winer A M, et al. A critical assessment of chromium in the environment [J]. Critical Reviews in Environmental Science and Technology, 1999,29(1):1-46.
    [5]Huang M-R, Peng Q-Y, Li X-G. Rapid and Effective Adsorption of Lead Ions on Fine Poly(phenylenediamine) Microparticles [J]. Chemistry-A European Journal, 2006,12(16):4341-4350.
    [6]Olad A, Nabavi R. Application of polyaniline for the reduction of toxic Cr (VI) in water [J]. Journal of Hazardous Materials,2007,147(3):845-851.
    [7]Laschinsky N, Kottwitz K, Freund B, et al. Bioavailability of chromium (Ⅲ)-supplements in rats and humans [J]. BioMetals,2012,25(5):1051-1060.
    [8]Lay P A, Levina A. Chromium:biological relevance [J]. Encyclopedia of Inorganic and Bioinorganic Chemistry,2012.
    [9]Ansari R. Application of polyaniline and its composites for adsorption/recovery of chromium (VI) from aqueous solutions [J]. Acta Chimica Slovenica,2006,53(1): 88.
    [10]Zhu L, Liu Y, Chen J. Synthesis of N-methylimidazolium functionalized strongly basic anion exchange resins for adsorption of Cr (VI) [J]. Industrial & Engineering Chemistry Research,2009,48(7):3261-3267.
    [11]Costa M. Toxicity and carcinogenicity of Cr (VI) in animal models and humans [J]. CRC Critical Reviews in Toxicology,1997,27(5):431-442.
    [12]Zhitkovich A, Voitkun V, Costa M. Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro:importance of trivalent chromium and the phosphate group [J]. Biochemistry,1996,35(22):7275-7282.
    [13]戴宇,杨重法,郑袁明.土壤-植物系统中铬的环境行为及其毒性评价[J].环境科学,2009,30(11):3432-3439.
    [14]张晓薇,刘博.铬对农作物生长的影响[J].环境科学,2010,23(2):48-51.
    [15]Park D, Yun Y-S, Jo J H, et al. Biosorption process for treatment of electroplating wastewater containing Cr (VI):Laboratory-scale feasibility test [J]. Industrial & Engineering Chemistry Research,2006,45(14):5059-5065.
    [16]Deng S, Ting Y P. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr (VI) anions:sorption capacity and uptake mechanisms [J]. Environmental Science & Technology,2005,39(21):8490-8496.
    [17]Tiravanti G, Petruzzelli D, Passino R. Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery [J]. Water science and technology,1997,36(2):197-207.
    [18]Zhao D, SenGupta A K, Stewart L. Selective removal of Cr (VI) oxyanions with a new anion exchanger [J]. Industrial & Engineering Chemistry Research,1998, 37(11):4383-4387.
    [19]Rengaraj S, Joo C K, Kim Y, et al. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins:1200H,1500H and IRN97H [J]. Journal of Hazardous Materials,2003,102(2-3):257-275.
    [20]Cavaco S A, Fernandes S, Quina M M, et al. Removal of chromium from electroplating industry effluents by ion exchange resins [J]. Journal of Hazardous Materials,2007,144(3):634-638.
    [21]Kozlowski C A, Walkowiak W. Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes [J]. Water Research,2002,36(19): 4870-4876.
    [22]Shaalan H, Sorour M, Tewfik S. Simulation and optimization of a membrane system for chromium recovery from tanning wastes [J]. Desalination,2001, 141(3):315-324.
    [23]Almeida M, Boaventura R A. Chromium precipitation from tanning spent liquors using industrial alkaline residues:A comparative study [J]. Waste Management, 1998,17(4):201-209.
    [24]董红星,裴健,李凯峰等.铁盐共沉淀浮选法去除水中铬离子的宏观动力学 研究[J].哈尔滨工程大学学报,2005,26(264-268).
    [25]Chaudhary A J, Goswami N C, Grimes S M. Electrolytic removal of hexavalent chromium from aqueous solutions [J]. Journal of Chemical Technology and Biotechnology,2003,78(8):877-883.
    [26]Kakakhel L, Lutfullah G, Bhanger M I, et al. Electrolytic recovery of chromium salts from tannery wastewater [J]. Journal of Hazardous Materials,2007,148(3): 560-565.
    [27]Bhattacharyya D, Carlton J A, Grieves R B. Precipitate flotation of chromium [J]. AIChE Journal,1971,17(2):419-424.
    [28]董红星,孙兆申,裴建等.铁盐共沉淀泡沫分离法去除水中铬离子[J].化工学报,2006,9(2115.2122).
    [29]Leyva-Ramos R, Jacobo-Azuara A, Diaz-Flores P, et al. Adsorption of chromium (VI) from an aqueous solution on a surfactant-modified zeolite [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,330(1):35-41.
    [30]Shao T, Jiang C. Adsorption Study on Bentonites to Chromium Compounds of Different Valencies [J]. Research of Environmental Sciences,1999,6: 1013-1021.
    [31]Chantawong V, Harvey N, Bashkin V. Comparison of heavy metal adsorptions by Thai kaolin and ballclay [J]. Water, Air, and Soil Pollution,2003,148(1-4): 111-125.
    [32]De Castro Dantas T, Neto A, De A Moura M. Removal of chromium from aqueous solutions by diatomite treated with microemulsion [J]. Water Research, 2001,35(9):2219-2224.
    [33]Viraraghavan T, Rao G A. Adsorption op cadmium and chromium from wastewater by flyash [J]. Journal of Environmental Science & Health Part A, 1991,26(5):721-753.
    [34]Parvathi K, Nagendran R. Functional groups on waste beer yeast involved in chromium biosorption from electroplating effluent [J]. World Journal of Microbiology and Biotechnology,2008,24(12):2865-2870.
    [35]Demirbas A. Heavy metal adsorption onto agro-based waste materials:a review [J]. Journal of Hazardous Materials,2008,157(2):220-229.
    [36]Wan Ngah W, Hanafiah M A K M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review [J]. Bioresource Technology,2008,99(10):3935-3948.
    [37]李湘洲,肖建军.活性炭表面改性及其对Cr(Ⅵ)吸附性能的研究[J].化工进展,2004,23(3):295-296.
    [38]Babel S, Kurniawan T A. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan [J]. Chemosphere,2004,54(7):951-967.
    [39]Sun Y-P, Li X-q, Cao J, et al. Characterization of zero-valent iron nanoparticles [J]. Advances in Colloid and Interface Science,2006,120(1):47-56.
    [40]Shi L-n, Zhang X, Chen Z-l. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron [J]. Water Research,2011,45(2): 886-892.
    [41]Lv X, Xu J, Jiang G, et al. Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes [J]. Chemosphere,2011,85(7):1204-1209.
    [42]Di Z-C, Ding J, Peng X-J, et al. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles [J]. Chemosphere,2006,62(5): 861-865.
    [43]Sivakami M, Gomathi T, Venkatesan J, et al. Preparation and characterization of nano chitosan for treatment wastewaters [J]. International Journal of Biological Macromolecules,2013.
    [44]Jinhua W, Xiang Z, Bing Z, et al. Rapid adsorption of Cr (VI) on modified halloysite nanotubes [J]. Desalination,2010,259(1):22-28.
    [45]Sharma Y, Srivastava V, Mukherjee A. Synthesis and application of nano-Al2O3 powder for the reclamation of hexavalent chromium from aqueous solutions [J]. Journal of Chemical & Engineering Data,2010,55(7):2390-2398.
    [46]Bayat B. Comparative study of adsorption properties of Turkish fly ashes:Ⅱ. The case of chromium (Ⅵ) and cadmium (Ⅱ) [J]. Journal of Hazardous Materials, 2002,95(3):275-290.
    [47]Banerjee S, Joshi M, Jayaram R. Removal of Cr (Ⅵ) and Hg (Ⅱ) from aqueous solutions using fly ash and impregnated fly ash [J]. Separation Science and Technology,2005,39(7):1611-1629.
    [48]Li Y-s, Liu C-c, Chiou C-s. Adsorption of Cr (Ⅲ) from wastewater by wine processing waste sludge [J]. Journal of Colloid and Interface Science,2004, 273(1):95-101.
    [49]Agarwal G, Bhuptawat H K, Chaudhari S. Biosorption of aqueous chromium (VI) by Tamarindus indica seeds [J]. Bioresource Technology,2006,97(7):949-956.
    [50]Sarin V, Pant K. Removal of chromium from industrial waste by using eucalyptus bark [J]. Bioresource Technology,2006,97(1):15-20.
    [51]Oliveira E, Montanher S, Andrade A, et al. Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran [J]. Process Biochemistry,2005,40(11):3485-3490.
    [52]Nasernejad B, Zadeh T E, Pour B B, et al. Camparison for biosorption modeling of heavy metals (Cr (Ⅲ), Cu (Ⅱ), Zn (Ⅱ)) adsorption from wastewater by carrot residues [J]. Process Biochemistry,2005,40(3):1319-1322.
    [53]Wan Ngah W, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites:A review [J]. Carbohydrate Polymers,2011,83(4): 1446-1456.
    [54]Hu X-j, Wang J-s, Liu Y-g, et al. Adsorption of chromium (Ⅵ) by ethylenediamine-modified cross-linked magnetic chitosan resin:isotherms, kinetics and thermodynamics [J]. Journal of Hazardous Materials,2011,185(1): 306-314.
    [55]Yavuz A G, Dincturk-Atalay E, Uygun A, et al. A comparison study of adsorption of Cr (VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites [J]. Desalination,2011,279(1):325-331.
    [56]Farrell S T, Breslin C B. Reduction of Cr (Ⅵ) at a polyaniline film:Influence of film thickness and oxidation state [J]. Environmental Science & Technology, 2004,38(17):4671-4676.
    [57]Samani M R, Borghei S M, Olad A, et al. Removal of chromium from aqueous solution using polyaniline-poly ethylene glycol composite [J]. Journal of Hazardous Materials,2010,184(1):248-254.
    [58]Bhaumik M, Maity A, Srinivasu V, et al. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers [J]. Chemical Engineering Journal,2012,181:323-333.
    [59]D'Elia L F, Ortiz R L, Marquez O, et al. Electrochemical deposition of poly (o-phenylenediamine) films on type 304 stainless steel [J]. Journal of the Electrochemical Society,2001,148(4):C297-C300.
    [60]Zhou Q, Zhuang L, Lu J, et al. Electrochemical in situ electron spin resonance, conductance, and atomic force microscopy studies of poly-o-phenylenediamine [J]. The Journal of Physical Chemistry C,2009,113(26):11346-11350.
    [61]Gok A, San B, Talu M. Synthesis and characterization of conducting substituted polyanilines [J]. Synthetic Metals,2004,142(1):41-48.
    [62]Naoi K, Suematsu S, Manago A. Electrochemistry of Poly (1,5 diaminoanthraquinone) and Its Application in Electrochemical Capacitor Materials [J]. Journal of the Electrochemical Society,2000,147(2):420-426.
    [63]Li X-G, Huang M-R, Duan W, et al. Novel multifunctional polymers from aromatic diamines by oxidative polymerizations [J]. Chemical Reviews,2002, 102(9):2925-3030.
    [64]Sulimenko T, Stejskal J, Prokes J. Poly (phenylenediamine) dispersions [J]. Journal of Colloid and Interface Science,2001,236(2):328-334.
    [65]Ichinohe D, Muranaka T, Kise H. Oxidative polymerization of phenylenediamines by enzyme and magnetic properties of the products [J]. Journal of Applied Polymer Science,1998,70(4):717-721.
    [66]Ichinohe D, Muranaka T, Sasaki T, et al. Oxidative polymerization of phenylenediamines catalyzed by horseradish peroxidase [J]. Journal of Polymer Science Part A:Polymer Chemistry,1998,36(14):2593-2600.
    [67]Ichinohe D, Saitoh N, Kise H. Oxidative polymerization of phenylenediamines in reversed micelles [J]. Macromolecular Chemistry and Physics,1998,199(6): 1241-1245.
    [68]Teshima K, Yamada K, Kobayashi N, et al. Photopolymerization of aniline with a tris (2,2' -bipyridyl) ruthenium complex-methylviologen polymer bilayer electrode system [J]. Chemical Communications,1996(7):829-830.
    [69]Segawa H, Shimidzu T, Honda K. A novel photo-sensitized polymerization of pyrrole [J]. Journal of the Chemical Society, Chemical Communications, 1989(2):132-133.
    [70]Uemura S, Yoshie M, Kobayashi N, et al. Photopolymerization of Aniline Dimer by Photocatalytic Reaction of Ruthenium Trisbipyridyl in the Interlayer of Hectorite Clay [J]. Polymer Journal,2000,32(11):987-990.
    [71]Teshima K, Uemura S, Kobayashi N, et al. Effect of pH on Photopolymerization Reaction of Aniline Derivatives with the Tris (2,2'-bipyridyl) ruthenium Complex and the Methylviologen System [J]. Macromolecules,1998,31(20): 6783-6788.
    [72]Yang J, Zhao C, Cui D, et al. Polyaniline/polypropylene film composites with high electric conductivity and good mechanical properties [J]. Journal of Applied Polymer Science,1995,56(7):831-836.
    [73]Yang J, Yang Y, Hou J, et al. Polypyrrole-polypropylene composite films: preparation and properties [J]. Polymer,1996,37(5):793-798.
    [74]Wang Z, Zhang D, Zhang Y, et al. A novel poly (4-aminopyridine)-modified electrode for selective detection of uric acid in the presence of ascorbic acid [J]. Analytical Letters,2002,35(9):1453-1464.
    [75]Gajendran P, Saraswathi R. Enhanced electrochemical growth and redox characteristics of poly (o-phenylenediamine) on a carbon nanotube modified glassy carbon electrode and its application in the electrocatalytic reduction of oxygen [J]. The Journal of Physical Chemistry C,2007,111(30):11320-11328.
    [76]Pisarevskaya E Y, Ovsyannikova E, Alpatova N. Two-Layered Poly-o-phenylenediamine/ Polyaniline Composite:Electrosynthesis and Spectroelectrochemical Properties [J]. Russian Journal of Electrochemistry, 2004,40(9):969-976.
    [77]Hong S-Y, Park S-M. Electrochemical Preparation and Characterization of Poly (1,5-diaminonaphthalene) as a Functional Polymer [J]. Journal of the Electrochemical Society,2003,150(7):E360-E365.
    [78]Shamsipur M, Salimi A, Golabi S M, et al. Electrochemical properties of modified carbon paste electrodes containing some amino derivatives of 9, 10-anthraquinone [J]. Journal of Solid State Electrochemistry,2001,5(1):68-73.
    [79]Deshpande M, Amalnerkar D. Biosensors prepared from electrochemically-synthesized conducting polymers [J]. Progress in Polymer Science,1993,18(4):623-649.
    [80]Petitjean J, Aeiyach S, Ferreira C, et al. A New Oscillatory Electrochemical Phenomenon Observed in the Electropolymerization of Pyrrole in MeCN+ N (Bu) 4 PF 6 on an Iron Electrode Studied by the Ring-Disk-Electrode Technique [J]. Journal of the Electrochemical Society,1995,142(1):136-142.
    [81]Cataldo F. On the polymerization of phenylenediamine [J]. European Polymer Journal,1996,32(1):43-50.
    [82]Mansour M, Ossman M, Farag H. Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust [J]. Desalination,2011,272(1): 301-305.
    [83]Gupta R, Singh R, Dubey S. Removal of mercury ions from aqueous solutions by composite of polyaniline with polystyrene [J]. Separation and Purification Technology,2004,38(3):225-232.
    [84]Wang J, Deng B, Chen H, et al. Removal of aqueous Hg (Ⅱ) by polyaniline: Sorption characteristics and mechanisms [J]. Environmental Science & Technology,2009,43(14):5223-5228.
    [85]Lee J W, Park D S, Shim Y B, et al. Electrochemical Characterization of Poly (1, 8-diaminonaphthalene):A Functionalized Polymer [J]. Journal of the Electrochemical Society,1992,139(12):3507-3514.
    [86]Palys B, Skompska M, Jackowska K. Sensitivity of poly 1, 8-diaminonaphthalene to heavy metal ions-electrochemical and vibrational spectra studies [J]. Journal of Electroanalytical Chemistry,1997,433(1):41-48.
    [87]Yano J. Electrochemical and structural studies on soluble and conducting polymer from o-phenylenediamine [J]. Journal of Polymer Science Part A: Polymer Chemistry,1995,33(14):2435-2441.
    [88]Niwas R, Khan A, Varshney K. Synthesis and ion exchange behaviour of polyaniline Sn (IV) arsenophosphate:a polymeric inorganic ion exchanger [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999, 150(1):7-14.
    [89]Sun X, Hagner M. Mixing aqueous ferric chloride and O-phenylenediamine solutions at room temperature:a fast, economical route to ultralong microfibrils of assemblied O-phenylenediamine dimers [J]. Langmuir,2007,23(21): 10441-10444.
    [90]Li X-G, Ma X-L, Sun J, et al. Powerful reactive sorption of silver (Ⅰ) and mercury (II) onto poly (o-phenylenediamine) microparticles [J]. Langmuir,2009,25(3): 1675-1684.
    [91]Huang M R, Peng Q Y, Li X G. Rapid and effective adsorption of lead ions on fine poly (phenylenediamine) microparticles [J]. Chemistry-A European Journal, 2006,12(16):4341-4350.
    [92]Huang M-R, Lu H-J, Song W-D, et al. Dynamic reversible adsorption and desorption of lead ions through a packed column of poly (m-phenylenediamine) spheroids [J]. Soft Materials,2010,8(2):149-163.
    [93]Huang M-R, Lu H-J, Li X-G. Efficient multicyclic sorption and desorption of lead ions on facilely prepared poly ( m-phenylenediamine) particles with extremely strong chemoresistance [J]. Journal of Colloid and Interface Science,2007,313(1):72-79.
    [94]Li X-G, Huang M-R, Li S-X. Facile synthesis of poly (1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization [J]. Acta Materialia,2004,52(18):5363-5374.
    [95]Langmuir I. The constitution and fundamental proprtties of solids and liquids. Part I. Solids [J]. Journal of the American Chemical Society,1916,38(11): 2221-2295.
    [96]Flaig-Baumann R, Herrmann M, Boehm H. Uber die Chemie der Oberflache des Titandioxids. Ⅲ. Reaktionen der basischen Hydroxylgruppen auf der Oberflache [J]. Zeitschrift Fur Anorganische und Allgemeine Chemie,1970, 372(3):296-307.
    [97]Rudzinski W, Plazinski W. Kinetics of solute adsorption at solid/solution interfaces:a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport [J]. The Journal of Physical Chemistry B,2006, 110(33):16514-16525.
    [98]Ho Y S, McKay G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents [J]. Process Safety and Environmental Protection/Official Journal of the European Federation of Chemical Engineering: Part B,1998,76(B4):332-340.
    [99]Hu Z, Chen H, Ji F, et al. Removal of Congo Red from aqueous solution by cattail root [J]. Journal of Hazardous Materials,2010,173(1):292-297.
    [100]Anirudhan T, Radhakrishnan P. Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell [J]. The Journal of Chemical Thermodynamics,2008,40(4): 702-709.
    [101]Huang M-R, Rao X-W, Li X-G, et al. Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores [J]. Talanta,2011,85(3): 1575-1584.
    [102]Lu Q F, Huang M R, Li X G. Synthesis and Heavy-Metal-Ion Sorption of Pure Sulfophenylenediamine Copolymer Nanoparticles with Intrinsic Conductivity and Stability [J]. Chemistry-A European Journal,2007,13(21): 6009-6018.
    [103]Stejskal J, Kratochvil P, Jenkins A D. The formation of polyaniline and the nature of its structures [J]. Polymer,1996,37(2):367-369.
    [104]Kang E, Neoh K, Tan K. Polyaniline:A polymer with many interesting intrinsic redox states [J]. Progress in Polymer Science,1998,23(2):277-324.
    [105]Li X-G, Liu R, Huang M-R. Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers [J]. Chemistry of Materials,2005,17(22): 5411-5419.
    [106]Li X-G, Duan W, Huang M-R, et al. A soluble ladder copolymer from m-phenylenediamine and ethoxyaniline [J]. Polymer,2003,44(19): 5579-5595.
    [107]Li X-G, Duan W, Huang M-R, et al. Preparation and solubility of a partial ladder copolymer from p-phenylenediamine and o-phenetidine [J]. Polymer, 2003,44(20):6273-6285.
    [108]Ayad M, Salahuddin N, Sheneshin M. Optimum reaction conditions for in situ polyaniline films [J]. Synthetic Metals,2003,132(2):185-190.
    [109]Ayad M, Shenashin M. Polyaniline film deposition from the oxidative polymerization of aniline using K2Cr2O7 [J]. European Polymer Journal,2004, 40(1):197-202.
    [110]Yang S-W, Liao F. Characterization and morphology control of poly (p-phenylenediamine) microstructures in different pH [J]. Nano,2011,6(06): 597-601.
    [111]Han J, Song G, Guo R. Synthesis of polymer hollow spheres with holes in their surfaces [J]. Chemistry of Materials,2007,19(5):973-975.
    [112]Qu L, Shi G, Chen F e, et al. Electrochemical growth of polypyrrole microcontainers [J]. Macromolecules,2003,36(4):1063-1067.
    [113]Han J, Fang P, Dai J, et al. One-pot surfactantless route to polyaniline hollow nanospheres with incontinuous multicavities and application for the removal of lead ions from water [J]. Langmuir,2012,28(15):6468-6475.
    [114]Han J, Song G, Guo R. Synthesis of poly (o-phenylenediamine) hollow spheres and nanofibers using different oxidizing agents [J]. European Polymer Journal, 2007,43(10):4229-4235.
    [115]Han J, Dai J, Guo R. Highly efficient adsorbents of poly (o-phenylenediamine) solid and hollow sub-microspheres towards lead ions:A comparative study [J]. Journal of Colloid and Interface Science,2011,356(2):749-756.
    [116]Bajpai V, He P, Dai L. Conducting-Polymer Microcontainers:Controlled Syntheses and Potential Applications [J]. Advanced Functional Materials,2004, 14(2):145-151.
    [117]Huang M R, Li X G, Yang Y L, et al. Oxidative copolymers of aniline with o-toluidine:Their structure and thermal properties [J]. Journal of Applied Polymer Science,2001,81(8):1838-1847.
    [118]Sharma A L, Saxena V, Annapoorni S, et al. Synthesis and characterization of a copolymer:Poly (aniline-co-fluoroaniline) [J]. Journal of Applied Polymer Science,2001,81(6):1460-1466.
    [119]Ayad M, Zaki E. Synthesis and characterization of polyaniline films using Fenton reagent [J]. Journal of Applied Polymer Science,2008,110(6): 3410-3419.
    [120]Sapurina I Y, Stejskal J. The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products [J]. Russian Chemical Reviews,2010,79(12):1123.
    [121]Sapurina I, Stejskal J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures [J]. Polymer International,2008,57(12):1295-1325.
    [122]Li X-G, Duan W, Huang M-R, et al. Electrocopolymerization of< i> meta-phenylenediamine and ortho-phenetidine [J]. Reactive and Functional Polymers,2005,62(3):261-270.
    [123]Li X-G, Kang Y, Huang M-R. Optimization of Polymerization Conditions of Furan with Aniline for Variable Conducting Polymers [J]. Journal of Combinatorial Chemistry,2006,8(5):670-678.
    [124]Zhang L, Chai L, Liu J, et al. pH manipulation:A facile method for lowering oxidation state and keeping good yield of poly (m-phenylenediamine) and its powerful Ag+adsorption ability [J]. Langmuir,2011,27(22):13729-13738.
    [125]Zhang Y, Li H, Luo Y, et al. Poly (m-phenylenediamine) nanospheres and nanorods:selective synthesis and their application for multiplex nucleic acid detection [J]. PloS One,2011,6(6):e20569.
    [126]Zhang L, Chai L, Wang H, et al. Facile synthesis of one-dimensional self-assembly oligo (o-phenylenediamine) materials by ammonium persulfate in acidic solution [J]. Materials Letters,2010,64(10):1193-1196.
    [127]Chai L, Zhang L, Wang H, et al. An effective and scale-up self-assembly route to prepare the rigid and smooth oligo (o-phenylenediamine) microfibers in acidic solution by NaClO2 [J]. Materials Letters,2010,64(21):2302-2305.
    [128]Li X G, Duan W, Huang M R, et al. Preparation and characterization of soluble terpolymers from m-phenylenediamine, o-anisidine, and 2,3-xylidine [J]. Journal of Polymer Science Part A:Polymer Chemistry,2001,39(22): 3989-4000.
    [129]Li X-G, Wang L-X, Huang M-R, et al. Synthesis and characterization of pyrrole and anisidine copolymers [J]. Polymer,2001,42(14):6095-6103.
    [130]Tarver J, Yoo J E, Dennes T J, et al. Polymer acid doped polyaniline is electrochemically stable beyond pH 9 [J]. Chemistry of Materials,2008,21(2): 280-286.
    [131]Gospodinova N, Terlemezyan L. Conducting polymers prepared by oxidative polymerization:polyaniline [J]. Progress in Polymer Science,1998,23(8): 1443-1484.
    [132]Kang E, Neoh K, Woo Y, et al. X-ray photoelectron spectroscopic studies of H2SO4 protonated polyaniline [J]. Polymer,1992,33(13):2857-2859.
    [133]Chan H, Ng S, Hor T, et al. Poly (m-phenylenediamine):Synthesis and characterization by X-ray photoelectron spectroscopy [J]. European Polymer Journal,1991,27(11):1303-1308.
    [134]Izumi C, Brito H F, Ferreira A M D, et al. Spectroscopic investigation of the interactions between emeraldine base polyaniline and Eu (Ⅲ) ions [J]. Synthetic Metals,2009,159(5):377-384.
    [135]Gupta R, Dubey S. Removal of cesium ions from aqueous solution by polyaniline:a radiotracer study [J]. Journal of Polymer Research,2005,12(1): 31-35.
    [136]Neoh K, Young T, Looi N, et al. Oxidation-reduction interactions between electroactive polymer thin films and Au (Ⅲ) ions in acid solutions [J]. Chemistry of Materials,1997,9(12):2906-2912.
    [137]Mahanta D, Madras G, Radhakrishnan S, et al. Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics [J]. The Journal of Physical Chemistry B,2008,112(33):10153-10157.
    [138]Dimitriev O. Doping of polyaniline by transition-metal salts [J]. Macromolecules,2004,37(9):3388-3395.
    [139]Chen S-A, Lin L-C. Polyaniline doped by the new class of dopant, ionic salt: Structure and properties [J]. Macromolecules,1995,28(4):1239-1245.
    [140]Huang M-R, Huang S-J, Li X-G. Facile synthesis of polysulfoamino anthraquinone nanosorbents for rapid removal and ultrasensitive fluorescent detection of heavy metal ions [J]. The Journal of Physical Chemistry C,2011, 115(13):5301-5315.
    [141]Stejskal J, Gilbert R. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) [J]. Pure and Applied Chemistry,2002,74(5):857-867.
    [142]Omastova M, Trchova M, Kovarova J, et al. Synthesis and structural study of polypyrroles prepared in the presence of surfactants [J]. Synthetic Metals,2003, 138(3):447-455.
    [143]Trchova M, Sedenkova I, Konyushenko E N, et al. Evolution of polyaniline nanotubes:the oxidation of aniline in water [J]. The Journal of Physical Chemistry B,2006,110(19):9461-9468.
    [144]陈绍炎.水化学[M].北京:水利电力出版社,1989.
    [145]Park H-J, Tavlarides L L. Adsorption of chromium (Ⅵ) from aqueous solutions using an imidazole functionalized adsorbent [J]. Industrial & Engineering Chemistry Research,2008,47(10):3401-3409.
    [146]Deng S, Yu G, Xie S, et al. Enhanced adsorption of arsenate on the aminated fibers:sorption behavior and uptake mechanism [J]. Langmuir,2008,24(19): 10961-10967.
    [147]Park D, Yun Y-S, Park J M. Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass [J]. Environmental Science & Technology,2004, 38(18):4860-4864.
    [148]Hena S. Removal of chromium hexavalent ion from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer [J]. Journal of Hazardous Materials,2010,181(1):474-479.
    [149]Neoh K, Kang E, Tan K. Protonation and deprotonation behaviour of amine units in polyaniline [J]. Polymer,1993,34(8):1630-1636.
    [150]Neoh K, Pun M, Kang E, et al. Polyaniline treated with organic acids:doping characteristics and stability [J]. Synthetic Metals,1995,73(3):209-215.
    [151]Neoh K, Kang E, Tan K. Protonation of polyaniline films:effects of anion size and film structure [J]. Polymer,1994,35(13):2899-2901.
    [152]Suksabye P, Thiravetyan P, Nakbanpote W, et al. Chromium removal from electroplating wastewater by coir pith [J]. Journal of Hazardous Materials, 2007,141(3):637-644.
    [153]Reddad Z, Gerente C, Andres Y, et al. Mechanisms of Cr (Ⅲ) and Cr (VI) removal from aqueous solutions by sugar beet pulp [J]. Environmental Technology,2003,24(2):257-264.
    [154]Chowdhury S, Mishra R, Saha P, et al. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk [J]. Desalination,2011,265(1):159-168.
    [155]Dogan M, Abak H, Alkan M. Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters [J]. Journal of Hazardous Materials,2009,164(1):172.
    [156]Al-Othman Z, Ali R, Naushad M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell:adsorption kinetics, equilibrium and thermodynamic studies [J]. Chemical Engineering Journal, 2012,184:238-247.
    [157]Liu Y, Wang Y, Zhou S, et al. Synthesis of High Saturation Magnetization Superparamagnetic Fe3O4 Hollow Microspheres for Swift Chromium Removal [J]. ACS Applied Materials & Interfaces,2012,4(9):4913-4920.
    [158]Suksabye P, Thiravetyan P. Cr (VI) adsorption from electroplating plating wastewater by chemically modified coir pith [J]. Journal of Environmental Management,2012,102:1-8.
    [159]Owlad M, Aroua M K, Wan Daud W M A. Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine [J]. Bioresource Technology,2010,101(14):5098-5103.
    [160]Albadarin A B, Mangwandi C, Al-Muhtaseb A a H, et al. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent [J]. Chemical Engineering Journal,2012,179:193-202.
    [161]Anandkumar J, Mandal B. Removal of Cr (VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent [J]. Journal of Hazardous Materials,2009,168(2):633-640.
    [162]Unnithan M R, Vinod V, Anirudhan T. Synthesis, characterization, and application as a chromium (VI) adsorbent of amine-modified polyacrylamide-grafted coconut coir pith [J]. Industrial & Engineering Chemistry Research,2004,43(9):2247-2255.
    [163]Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste [J]. Water Research,2001,35(5):1125-1134.
    [164]Chand R, Watari T, Inoue K, et al. Evaluation of wheat straw and barley straw carbon for Cr (VI) adsorption [J]. Separation and Purification Technology, 2009,65(3):331-336.
    [165]Boddu V M, Abburi K, Talbott J L, et al. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent [J]. Environmental Science & Technology,2003,37(19):4449-4456.
    [166]Zimmermann A C, Mecabo A, Fagundes T, et al. Adsorption of Cr (VI) using Fe-crosslinked chitosan complex (Ch-Fe) [J]. Journal of Hazardous Materials, 2010,179(1):192-196.
    [167]Liu Y, Liu Y-J. Biosorption isotherms, kinetics and thermodynamics [J]. Separation and Purification Technology,2008,61(3):229-242.
    [168]Anirudhan T, Radhakrishnan P. Kinetics, thermodynamics and surface heterogeneity assessment of uranium (VI) adsorption onto cation exchange resin derived from a lignocellulosic residue [J]. Applied Surface Science,2009, 255(9):4983-4991.
    [169]Boursiquot S, Mullet M, Ehrhardt J J. XPS study of the reaction of chromium (VI) with mackinawite (FeS) [J]. Surface and Interface Analysis,2002,34(1): 293-297.
    [170]Li X-q, Cao J, Zhang W-x. Stoichiometry of Cr (VI) immobilization using nanoscale zerovalent iron (nZVI):A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS) [J]. Industrial & Engineering Chemistry Research,2008,47(7):2131-2139.
    [171]Dambies L, Guimon C, Yiacoumi S, et al. Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,177(2): 203-214.
    [172]Newnham R, De Haan Y. Refinement of the a A12O3, Ti2O3, V2O3 and Cr2O3 structures [J]. Zeitschrift fur Kristallographie,1962,117(2-3):235-237.
    [173]Neoh K, Kang E, Tan K. Limitations of the X-ray photoelectron spectroscopy technique in the study of electroactive polymers [J]. The Journal of Physical Chemistry B,1997,101(5):726-731.
    [174]Kang E, Ting Y, Neoh K, et al. Electroless recovery of precious metals from acid solutions by N-containing electroactive polymers [J]. Synthetic Metals, 1995,69(1):477-478.
    [175]Stejskal J, Trchova M, Kovarova J, et al. Polyaniline-coated cellulose fibers decorated with silver nanoparticles [J]. Chemical Papers,2008,62(2):181-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700