用户名: 密码: 验证码:
异质金属体系扩散行为和界面反应的强磁场控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强磁场作为一种极端条件,以其独特的非接触性、方向性、显著的磁化能量和磁化力效果,对金属材料制备的各种过程,如固态相变、晶界迁移、再结晶、凝固、化学反应等都有明显的影响。这些过程又都与原子的扩散行为息息相关。扩散是物质传输的重要方式,是控制材料的微观组织和性能的重要因素,在金属或合金的各种物理化学处理中起到基本作用。因此研究强磁场对扩散的影响机制是阐明其对材料组织作用机理的前提和基础。
     本文在12T超导强磁场装置中实验研究了固态Cu/固态Ni、液态Bi/固态Bi0.4Sb0.6(互溶扩散)、液态Al (Zn)/固态Cu(反应扩散)、气态A1/固态Cu等扩散偶中的互扩散行为和界面反应,较系统地考察了强磁场的强度、方向、梯度等参数对扩散层组织的演化过程的影响。通过考察界面迁移距离、扩散层厚度等从动力学角度计算强磁场下有效扩散系数,并且从热力学角度获得强磁场条件下的扩散常数和扩散激活能。从磁自由能和磁场力学效果出发对实验现象进行理论分析,初步探讨了强磁场对异质界面扩散行为的影响规律和作用机制。得到以下主要结果:
     (1)磁场方向与扩散方向平行时,随着磁场强度的增加,固态Cu/固态Ni界面处扩散层厚度和柯肯达尔标记间的距离都显著增加。但当磁场强度超过某一值后,磁场强度的进一步增大对惰性标记间的距离的影响变小,表明磁场强度的影响趋于饱和。不同磁场强度下,利用俣野平面法结合Darken方程计算的互扩散系数结果表明,强磁场促进了Cu、Ni之间的互扩散。但是,垂直于扩散方向的磁场对固态Cu/固态Ni扩散偶中的柯肯达尔效应几乎没有影响;“负向”梯度强磁场显著抑制了Cu、Ni之间的互扩散。
     (2)无论有无强磁场作用,液态Bi/固态Bi0.4Sb0.6中界面迁移距离和扩散时间之间都存在抛物线规律,但是随着磁场强度的增大界面迁移距离显著减小,11.5T磁场下的界面迁移距离比无磁场作用时甚至减小了1200μm,表明强磁场强烈的抑制了液态金属与固态合金之间的扩散迁移行为。磁场下有效扩散系数显著减小应归功于强磁场使液相黏度增加,增大了原子的扩散激活能。梯度磁场条件下的实验结果表明,无论磁场梯度的方向是正或负,其扩散阻碍作用都比均恒磁场的作用效果更显著。
     (3)实验研究了强磁场对液态Al(Zn)/固态Cu中发生的界面反应扩散的影响,发现施加强磁场不会改变界面扩散层的形貌和相组成,但是随着磁场强度在0-12T范围内改变,扩散层厚度呈现先减小后增大再减小的非线性变化规律,Al元素和Zn元素的物性差异导致扩散层厚度极大值分别对应于磁场强度8.8T和8T。另外,平行磁场方向的扩散层总是厚于垂直磁场方向的扩散层。分析表明强磁场抑制自然对流和诱发热电磁对流两方面作用产生了上述实验结果。理论推导的强磁场条件下的扩散定律结果表明,有效扩散系数随磁场强度非线性变化,与实验结果吻合的很好。对扩散层生长过程的热力学分析表明,11.5T强磁场增大了原子扩散激活能,导致扩散系数较无磁场作用时显著降低。与液态Bi/固态Bi0.4Sb0.6中的实验结果相似,梯度强磁场显著抑制了液态Al (Zn)/固态Cu系统中的反应扩散行为。
     (4)在1173K保温4.5小时的纯铜表面气相渗铝实验中施加强磁场,发现强磁场诱导基体Cu表面最终产物的形貌、结构、相组成发生了显著变化。磁场强度从0T到8.8T范围内,表面渗层由α+γ2和α两层结构组成,但是当磁场强度(≥10T)时,渗层仅由含有大量kirkendall空穴的α层组成。随着磁场强度的增大,渗层厚度显著增加并在磁场强度6.6T时达到最大值,但是随着磁场强度的进一步增大,渗层厚度显著减小。强磁场对化学反应和扩散行为的矛盾作用产生了以上实验结果。
     本论文工作对于探索强磁场对金属材料学中各种与扩散有关的金属学现象的影响机理以及强磁场下异质界面的扩散反应行为控制具有积极意义。
Due to its unique properties of non-contact, directionality, marked magnetizability and magnetic force, a high magnetic field as one kind of extreme conditions can exert an obvious influence on the processing of many metallic materials, such as solid-state phase transformation, grain boundary migration, recrystallization, solidification, and chemical reaction. These processes mentioned above have a closely relationship with the diffusion behavior of atoms. Diffusion is an important way for mass transport process, being a key factor for the control of the microstructure and properties of materials, and playing a basic role during the process of metallurgical physical chemistry. Therefore, a detailed discussion of the effects of high magnetic field on the diffusion behavior is the precondition and foundation for the control of microstructures using a high magnetic field.
     The interdiffusion behaviors and interfacial reaction in solid Cu/solid Ni, liquid Bi/solid Bi0.4Sb0.6, liquid Al(Zn)/solid Cu, and gas Al/solid Cu diffusion couples have been experimentally studied under high magnetic field of up to 12T. The effects of magnetic flux density(B), direction and gradient on the structural evolution of diffusion layers have been examined systematically. Based on the distance of interfacial migration and the thickness of diffusion layers, we have obtained the effective diffusion coefficient, the diffusion constant and the diffusion activation energy under various high magnetic field conditions as viewed from the kinetics and thermodynamics of atom diffusion, respectively. Theoretical analyses in terms of the magnetic free energy and external force induced by the magnetic field have been made to explain the experimental results. Moreover, the influence regularity and mechanism of high magnetic fields on the diffusion behaviors at heterogeneous interface have been discussed primarily. Following are the main results:
     (1) The shift distance of Kirkendall marker and the thickness of diffusion layers in the solid Cu/solid Ni diffusion couples increased with increasing magnetic flux density in case of the direction of diffusion parallel to B. But the effects of high magnetic field on the shift distance intended to get saturation when B was over a critical threshold. An analysis of the diffusion coefficients by means of the Matano plane and Darken equations indicated that the interdiffusion between Cu and Ni was accelerated by the high magnetic fields. On the other hand, in case of the direction of diffusion perpendicular to B, the shift distance of Kirkendall marker almost kept invariant under the application of varying magnetic fields. In addition, the interdiffusion behavior was retarded markedly by a "negative" magnetic field gradient.
     (2) The kinetic of interface migration in the liquid Bi/solid Bio.4Sbo.6 diffusion couple appeared to follow a parabolic relationship whether with or without a high magnetic field. It was found that the migration of the interface due to interdiffusion decreased markedly with the increasing strength of magnetic-field, even becoming 1200μm smaller at 11.5T than without a magnetic field. From the above result, we concluded that the interdiffusion behavior between the liquid metal and the solid alloy was strongly retarded by the application of high magnetic fields. This was relevant to the increasing of the viscosity in the liquid metal under a high magnetic field, as in turn caused the diffusion activation energy to increase. Moreover, the retarding effect of magnetic field gradient on diffusion was found to be more significant than that of a uniform magnetic field.
     (3) Reactive diffusion experiments at the liquid Al(Zn)/solid Cu interface were experimentally investigated under a high magnetic field. Although there was no noticeable influence of the magnetic field on the microstructure and phase composition of diffusion layers, the thickness of diffusion layers exhibited a decrease with a superposed peak centred on a field of 8.8T(Al/Cu) and 8T (Zn/Cu). The difference of the position of peak value might be induced by the different physical propertied between Al and Zn. In addition, the mean thickness of the diffusion layers (parallel to B) was found to be always greater than that of the diffusion layers (perpendicular to B) under the applied magnetic fields. These phenomena should be attributed to the effects of magnetic fields suppressing natural convection and inducing thermo-electromagnetic convection at the liquid/solid interface. The theoretical derivation of diffusion equation under high magnetic fields indicated that the effective diffusion coefficient went through a non-monotonic variation with magnetic flux densities, as agreed well with the experimental results. Thermodynamic analysis for the growth of diffusion layers shown that a high magnetic field of 11.5T enhanced the activation energy for atom diffusion, which resulted in the decrease of diffusion coefficient comparing with that without a magnetic field. A negative or positive field gradient could retard the diffusion of liquid Al(Zn) in solid Cu, as was similar with the experimental result obtained in the liquid Bi/solid Bi0.4Sb0.6 diffusion couple.
     (4) The application of a high magnetic field during pack aluminization process at a temperature of 1173K for 4.5h induced a significant change in the final products at the surface of substrate Cu. Experimental studies demonstrated that the coatings consisted of two layers namelyα+γ2 and a with B ranging from 0 to 8.8T, whereas only theαlayer with Kirkendall voids was observed in case of B≥10T. With the magnetic flux density increasing, the total thickness of coating first increased to a maximum at a field of 6.6T, and then decreased with further increasing magnetic flux density. These results may be attributed to the contradictory effects of high magnetic fields on chemical reaction and on diffusion。
     The studies in this paper might be helpful to understand the metallurgical phenomena related to diffusion in high magnetic fields, and provide foundation for the control of diffusion and reaction behaviors at a heterogeneous interface using high magnetic fields.
引文
[1]夏立芳;张振信,金属中的扩散[M],哈尔滨工业大学出版社,1989.
    [2]H. Hayashi, Chemical reactions and magnetic fields, IEEE Translation Journal on Magnetics in Japan [J],1992,7(7):586-590.
    [3]H. Ohtsuka. Effects of strong magnetic fields on bainitic transformation [J], Current Opinion in Solid State and Materials Science.2004,8(3-4):279-284.
    [4]A.D. Sheikh-Ali, D.A. Molodov, H. Garmestani. Boundary migration in Zn bicrystal induced by a high magnetic field [J], Applied Physics Letters,2003, 82(18):3005-3007.
    [5]D.A. Molodov, S. Bhaumik, X. Molodova, G. Gottstein. Annealing behaviour of cold rolled aluminum alloy in a high magnetic field [J], Scripta Materialia,2006, 54(12):2161-2164.
    [6]A. Xu, Y. Ma, X. Zhang, X. Li, G. Nishijima, S. Awaji, K. Watanabe. Superconducting properties of MgB2 bulks processed in high magnetic fields [J], Physica C,2006,445-448(1-2):811-813.
    [7]W.V. Youdelis, D.R. Colton, J. Cahoon. On the theory of diffusion in a magnetic field [J], Canadian Journal of Physics,1964,42:2217-2237.
    [8]A.V. Pokoev, D.I. Stepanov, I.S. Trofimov, V.F. Mazanko. The constant magnetic field influence on diffusion of 63Ni in α-Fe [J], Physica Status Solidi A,1993, 137(1):K 1-3.
    [9]S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida, A. Chiba. Diffusion of carbon and titanium in γ-iron in a magnetic field and a magnetic field gradient [J], Journal of Materials Science,2005,40:3191-3198.
    [10]J. Zhao, P. Yang, F. Zhu, C. Cheng. The effect of high magnetic field on the growth behavior of Sn-3Ag-0.5Cu/Cu IMC layer [J], Scripta Materialia,2006, 54(6):1077-1080.
    [11]A.V. Pokoev, D.I. Stepanov. Anisotropy of 63Ni diffusion in single-crystal silicon iron in a static magnetic field [J], Technical Physics Letters,1997,23 (3):184-185.
    [12]H. Nakajima, S. Maekawa, Y. Aoki, M. Koiwa. Diffusion of nickel in titanium in a magnetic field [J], Transactions of the Japan Institute of Metals,1985, 26(1):1-6.
    [13]M. Glicksman. Diffusion in Solids [M], NY:John Wiley Sons Inc,2000.
    [14]S.E. Blum, M.B. Small, D. Gupta. Shallow zinc diffusion in liquid phase epitaxial GaAs and (GaAl)As at 600℃ [J], Applied Physics Letters,1983,42(1):108-110.
    [15]L.S. Darken. Diffusion, mobility and their interrelation through free energy in binary metallic systems [J], Trans AIME,1948,175:184-194.
    [16]孙振岩,刘春明.合金中的扩散与相变[M],东北大学出版社,2002
    [17]A.D. Smigelskas, E.O. Kirkendall. Zinc diffusion in alpha brass [J], Trans AIME, 1947,171:130-142.
    [18]A. Paul, M.J.H.van Dal, A.A.Kodentsov, F.J.J. van Loo. The Kirkendall effect in multiphase diffusion [J], Acta Materialia.2004,52:623-630.
    [19]S. Nakahara, R.J. McCoy. Kirkendall void formation in thin-film diffusion couples [J], Applied Physics Letters,1980,37(1):42-44.
    [20]Y.Y Chang, C.C. Tsaur, J.C.Rock. Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation, Surface & Coatings Technology[J],2006,200(22-23):6588-6593
    [21]K Zeng, R. Stierman, T.-C Chiu, D. Edwards, K. Ano, K.N. Tu. Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability [J], Journal of Applied Physics.2005,97:024508 (1-8).
    [22]曹立礼.材料表面科学[M],清华大学出版社,2007.
    [23]C.A. Handwerker. In:D. Gupta, P.S. Ho, editors. Diffusion Phenomena in Thin Films and Microelectronic Materials [M]. Park Ridge (NJ):Noyes; 1988, p.245.
    [24]W. Jost. Diffusion in Solids,Liquids,Gases[M], NY:Academic Press Inc,1960.
    [25]A.P. Sutton, R.W. Balluffi. Interfaces in Crystalline Materials [M]. Clarendon: Oxford,1995, p.51.
    [26]A.P. Sutton, R.W. Balluffi. Rules for combining structural units of grain boundaries [J], Philosophical Magazine Letters,1990,61(3):91-94.
    [27]F.N. Rhines, R.F. Mehl. Rates of diffusion in the alpha solid solutions of copper [J], Trans. AIME Inst. Met. Div.1938,128:185.
    [28]D. Liu, W. A. Miller, K.T. Aust. Diffusion induced grain boundary migration and recrystallization during oxidation of a Ni-48.5 Pct Cu alloy [J], Metallurgical Transactions A,1988,19(7):1667-1675.
    [29]F. Hartung, G. Schmitz. Interdiffusion and reaction of metals:The influence and relaxation of mismatch-induced stress [J], Physical Review B,2001, 64(24):245418/1-13.
    [30]S.M. Schwarz, B.W. Kempshall, L.A. Giannuzzi. Effects of diffusion induced recrystallization on volume diffusion in the copper-nickel system [J], Acta Materialia,2003,51 (10):2765~2776.
    [31]Y. Yamanoto, S.Uemura, K. Yoshida, M. Kajihara. Kinetic features of diffusion induced recrystallization in the Cu(Ni) system at 873 K [J], Materials Science and Engineering,2002, A333 (1-2):262-269.
    [32]S. Hofmann, J. Erlewein. A model of the kinetics and equilibria of surface segregation in the monolayer regime [J], Surface Science,1978,77(3):591-602.
    [33]T.T. Lay, M. Yoshitake, S. Bera. Surface segregation of Al substrate metal on Zr film surface [J], Applied Surface Science,2003,220 (1-4):113-116.
    [34]A. Brokman, A.H.King, A.J. Vilenkin. Role of segregation in diffusion-induced grain boundary migration [J], Acta Materialia,2001,49(1):1-11.
    [35]孙希泰,付建设,徐英,庄光山,孙毅.机械能助渗铝的研究[J],金属热处理,2000,7:21-23.
    [36]X.Liu, J. Cui, Y. Guo, X.Wu, J. Zhang. Phase growth in diffusion couples under an low frequency alternating magnetic field [J], Scripta Materialia,2005, 52:79-82.
    [37]X.Liu, J. Cui, Y. Guo, X.Wu, J. Zhang. Effect of alternative magnetic field on the diffusion layer growth in Al/Zn couple [J], Rare Metals,2004,23(3):246-249.
    [38]W. Liu, J. Cui. The Kirkendall effect of the Al-Cu couple with an electric field [J], Journal of Materials Science Letters,1997,16 (1):930-932.
    [39]Y. Li, Y. Yang, X. Feng. Influence of electric current on Kirkendall diffusion of Zn/Cu couples [J], Materials Science and Technology,2008,24 (3):410-414.
    [40]李忠厚,刘小平,苏永,徐重.离子渗金属中渗入原子在基体金属中的扩散[J],中国腐蚀与防护学报,1998,18(1):77-80.
    [41]S. Asai. Recent development and prospect of electromagnetic processing of materials [J], Science and Technology of Advanced Materials,2000, 1(4):191-200.
    [42]张伟强,金属电磁凝固原理与技术[M],冶金工业出版社,2004,p170.
    [43]B. Ganapathysubramanian, N. Zabaras, M.E.Glicksman. Using magnetic field gradients to control the directional solidification of alloys and the growth of single crystals [J], Journal of Crystal Growth,2004,270(1-2):255-272.
    [44]Y.Y. Khine, R.M. Banish, J.I.D. Alexander. Convective contamination in self-diffusivity experiments with an applied magnetic field [J], Journal of Crystal Growth,2003,250(1-2):274-278.
    [45]康俊勇,户泽慎一郎.强磁场中晶体生长研究[J],物理学报,1996,45(2):324-329.
    [46]S. Motakef. Interference of buoyancy-induced convection with segregation during directional solidification:scaling laws [J], Journal of Crystal Growth,1990, 102(1-2):197-213.
    [47]安田秀幸,大中逸雄,时枝健太郎.Cu-Pb偏晶合金の凝固组织にぉける磁场の影响[J]. CAMP-ISIJ,2000,13:147-149.
    [48]C. Wang, Q. Wang, Z. Wang, H. Li, K.Nakajima, J. He. Phase alignment and crystal orientation of Al3Ni in Al-Ni alloy by imposition of a uniform high magnetic field [J], Journal of Crystal Growth,2008,310:1256-1263.
    [49]H. Yasuda, I. Ohnaka, O. Kawakami, K.Ueno, K, Kishio. Effect of magnetic field on solidification in Cu-Pb monotectic alloys [J], ISIJ International. 2003,43(6):942-949.
    [50]J. Kang, Y. Okano, K. Hoshikawa, T. Fukuda. Influence of a high vertical magnetic field on Te dopant segregation in InSb grown by the vertical gradient freeze method [J], Journal of Crystal Growth,1994,140(3):435-438.
    [51]G.M. Oreper, J. Szekely. The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity [J], Journal of Crystal Growth,1983, 64(3):505-515.
    [52]L. Schwab, U. Hildebrandt, K. Stierstadt. Magnetic Benard convection [J], Journal of Magnetism and Magnetic Materials,1983,39 (1-2):113-114.
    [53]J. Qi, N.I. Wakayama. The combined effects of magnetic field and magnetic field gradients on convection in crystal growth [J], Physics of Fluids,2004, 16(9):3450-3459.
    [54]H. Uetake, N. Hirota, J. Nakagawa, Y. Ikezoe, K. Kitazawa. Thermal convection control by gradient magnetic field [J], Journal of Applied Physics,2000, 87(9):6310-6312.
    [55]Y.Y. Khine, J.S. Walker. Thermoelectric magnetohydrodynamic effects during Bridgman semiconductor crystal growth with a uniform axial magnetic field [J], Journal of Crystal Growth,1998,183 (1-2):150-158.
    [56]X. Li, Y. Fautrelle, Z. Ren. Influence of a high magnetic field on columnar dendrite growth during directional solidification [J], Acta Materialia,2007,55 (16):5333-5347.
    [57]S.Yesilyurt, L. Vujisic, S. Motakef, F.R. Szofran, M.P. Volz. A numerical investigation of the effect of thermoelectromagnetic convection (TEMC) on the Bridgman growth of Ge1-xSix [J], Journal of Crystal growth,1999, 207(4):278-291.
    [58]M. Shimotomai, K. Maruta, K. Mine, M. Matsui, Formation of aligned two-phase microstructures by applying a magnetic field during the austenite to ferrite transformation in steels [J], Acta Materialia,2003,51(10):2921-2932.
    [59]李腾,陈敏勤,金瑞湘,李卫.热处理对高矫顽力型FeCrCo合金性能的影响[J],稀有金属,2003,27(5):558-560.
    [60]冯光宏,周少雄,杨钢等,稳恒磁场对低碳锰铌钢晶粒细化的影响[J],钢铁研究学报,2000,12(4):27-30.
    [61]李喜,任忠鸣,王立龙,余建波,邓康,徐匡迪.强磁场对Bi-6%Mn合金中MnBi相形态和相变的影响[J],金属学报,2006,42(1):77-82.
    [62]H.D. Joo, S.U.Kim, N.S. Shin, Y.M. Koo. An effect of high magnetic field on phase transformation in Fe-C system [J], Materials Letters,2000,43(1):225-229.
    [63]H. Ohsuka, Xu. Ya, H. Wada. Alignment of ferrite grains during austenite to ferrite transformation in a high magnetic field [J], Transactions JIM,2000,41(8): 907-910.
    [64]Y. Zhang, N.Gey, C. He, X.Zhao, L.Zuo, C. Esling, High temperature tempering behaviors in a structural steel under high magnetic field [J], Acta Materialia,2004, 52(12):3467-3474.
    [65]H.O. Martikalnen, V. K. Lindroos. Observations on the effect of magnetic field on the recrystallization in ferrite [J], Scadinavian Journal of Metallurgy,1981, 10(1):3-9.
    [66]Y. Xu, Y. Ohtsuka, K. Anak. Effects of high magnetic field on recrystallization texture in Fe - 3%Si steel [J], Transactions of the Materials Research Society of Japan,2000,25(1):501-508.
    [67]D.A. Molodov; S. Bhaumik, X. Molodova, X. Gottstein, Annealing behaviour of cold rolled aluminum alloy in a high magnetic field [J], Scripta Materialia,2006, 54(12):2161-2164.
    [68]Y. Wu, X. Zhao, C.S. He, Y.D. Zhang, L. Zuo, C. Esling. Effect of high magnetic field annealing on microstructure and texture at the initial stage of recrystallization in a cold-rolled interstitial-free steel [J], Materials Transactions, 2007,48(11):2809-2815.
    [69]C. He, Y. Zhang, X. Zhao, L. Zuo, C.Esling. Characteristics of recrystallization texture evolution in high magnetic field for interstitial free (IF) steel sheet [J], Materials Science Forum,2005,495-497(1):465-70.
    [70]A.D. Sheikh-Al, D.A. Molodov, H. Garmestani, Migration and reorientation of grain boundaries in Zn bicrystals during annealing in a high magnetic field [J], Scripta Materialia,2003,48(5):483-488.
    [71]D.A. Molodov. Grain boundary dynamics in high magnetic fields. Fundamentals and implications for materials processing [J], Materials Science Forum,2004, 467-470(Ⅱ):697-706.
    [72]K.M. Kim, P. Smetana. Oxygen segregation in CZ silicon crystal growth on applying a high axial magnetic field [J], Journal of the Electrochemical Society, 1986,133(8):1682-1686.
    [73]Z. Ren, X. Li, H. Wang, K. Deng, Y. Zhuang. The segregated structure of MnBi in Bi-Mn alloy solidified under a high magnetic field [J], Materials Letters,2004, 58(27-28):3405-3409.
    [74]J. Kang, Y. Okano, K. Hoshikawa, T. Fukuda. Influence of a high vertical magnetic field on Te dopant segregation in InSb grown by the vertical gradient freeze method [J], Journal of Crystal Growth,1994,140(3-4):435-438.
    [75]X. Li, Z. Ren, Y. Fautrelle. Effect of an axial high magnetic field on the microstructure in directionally solidified Pb-Sn eutectic alloy [J], Journal of Crystal Growth,2008,310(15):3584-3589.
    [76]S. Tsurekawa, K. Okamoto, K. Kawahara, T. Watanabe. The control of grain boundary segregation and segregation-induced brittleness in iron by the application of a magnetic field [J], Journal of Materials Science,2005, 40(4):895-901.
    [77]M. Yamaguchi, I. Yamamoto, S. Mizusaki, K. Ishikawa. Magnetic field effect on the heat of reaction in metal-hydrogen systems [J], Journal of Alloys and Compounds,2002,330-332:48-51.
    [78]V.S. Agarwala, J.J. DeLuccia. Effects of a Magnetic Field on Hydrogen Evolution Reaction and its Diffusion in Iron and Steel, Report:NADC-81029-60,1981,20p.
    [79]I. Yamamoto, M. Yamaguchi, M. Fujino, F. Ishikawa, T. Goto, S. Miura. Magnetic field effects on the chemical equilibrium between metals and hydrogen [J], Physica B:Condensed Matter,1996,216(3-4):399-402.
    [80]A.S. Shigarev, L. P. Dmitrieva. Nitriding in magnetic field [J], Metal Science and Heat Treatment,1978,20(3-4):213-217.
    [81]Y. Kinouchi, S. Tanimoto, T. Ushita, K. Sato, H.Yamaguchi, H. Miyamoto. Effects of static magnetic fields on diffusion in solutions, Bioelectromagnetics, 1988,9(2):159-166.
    [82]G. Mathiak, G. Frohberg, Interdiffusion and convection in high magnetic fields [J], Crystal Research and Technology,1999,34(2):181-188.
    [83]韩逸,班春燕,巴启先,王书晗,崔建忠.磁场对液态铝和固态铁界面微观组织的影响[J],物理学报,2005,54(6):2955-2960.
    [84]赵杰,朱凤,尹德国,王来.强磁场下Sn-3Ag-0.5Cu/Cu界面金属间化合物生长行为[J],大连理工大学学报,2006,46(2):202-206.
    [85]任晓,周文龙,陈国清,黄朝晖,张俊善.稳恒强磁场对Al-Cu扩散偶界面中间相形成和生长的影[J],材料工程,2007,8:41-44.
    [86]任福东,许伯钧,彭会芬,谷南驹.9SiCr钢磁场等温淬火新工艺的研究[J],金属热处理,1993,5:23-27.
    [87]T. Kakeshita, Y. Sato, T. Saburi, Effect of magnetic field on athermal and isothermal martensitie transformations in Fe-Ni-Cr alloys [J], Materials Transactions JIM,1999,40(2):100-106.
    [88]崔立英,李晓娜,齐民Al-4%Cu过饱和合金在强磁场中时效行为[J],中国有色金属学报,2007,17(12):1967-1972.
    [89]Z. Li, J. Dong, X. Zeng, C. Lu, W. Ding, Z. Ren. Influence of strong static magnetic field on intermediate phase growth in Mg-Al diffusion couple, Journal of Alloys and Compounds,2007,440(1-2):132-136.
    [90]M. Kasuga, T. Takano, S. Akiyama, K. Hiroshima, K.Yano, K. Kishio. Growth of ZnO films by MOCVD in high magnetic field [J], Journal of Crystal Growth,2005, 275(l-2):e1545-1550.
    [91]H. Ohtsuka. Solid state materials processing in a high magnetic field, Conference: Materials Processing under the Influence of External Fields,2007,15-18, Orlando, USA.
    [1]A.D. Smigelskas, E.O. Kirkendall. Zinc diffusion in alpha brass [J], Trans AIME, 1947,171:130-142.
    [2]S. Nakahara, R.J. McCoy. Kirkendall void formation in thin-film diffusion couples [J], Applied Physics Letters,1980,37:42-44.
    [3]W.V. Youdelis, D.R. Colton, J. Cahoon. On the theory of diffusion in a magnetic field [J], Canadian Journal of Physics,1964,42:2217-2237.
    [4]J.Yang, J.I. Goldstein. Magnetic contribution to the interdiffusion coefficients in bcc (α) and fee (γ) Fe-Ni alloys [J], Metallurgical and Materials Transactions A, 2004,35:1681-1690.
    [5]T. Takenaka, M. Kajihara. Fast penetration of Sn into Ag by diffusion induced recrystallization [J], Materials Transactions,2006,47:822-828.
    [6]S. Divinski, M. Lohmann, C. Herzig. Grain boundary diffusion and segregation of Bi in Cu:radiotracer measurements in B and C diffusion regimes [J], Acta Materialia,2004,52:3973-3982.
    [7]R. Nakamura, K. Fujita, Y. Iijima, M. Okada. Diffusion mechanisms in B2 NiAl phase studied by experiments on Kirkendall effect and interdiffusion under high pressures [J], Acta Materialia,2003,51:3861-3870.
    [8]L.S. Darken. Diffusion, mobility and their interrelation through free energy in binary metallic systems [J], Trans AIME,1948,175:184-194.
    [9]D.A. Porter, K.E. Easterling. Phase Transformation in Metals and Alloys [M], Van Nostrand Reinhold Co.1981.
    [1]张启运,庄鸿寿.钎焊手册[M].机械工业出版社,北京,1999.
    [2]G.R. Purdy, D.V. Malakhov, A. Guha. Homogenization of multicomponent alloys via partial melting [J], Journal of Phase Equilibria,2001,22:439-450.
    [3]A. Mortensen, I. Jin. Solidification processing of metal matrix composites [J], International Materials Reviews,1992,37:101-128.
    [4]R.N. Lumley, G.B. Shaffer. The effect of solubility and particle size on liquid phase sintering [J], Scripta Materialia,1996,35:589-595.
    [5]W. Jost, Diffusion in Solids, Liquids, Gases,3rd printing, Academic Press Inc. Publishers, New York,1960.
    [6]X. Liu, J. Cui, X. Wu, Y. Guo, J. Zhang. Phase growth in diffusion couples under a low frequency alternating magnetic field [J], Scripta Materialia,2005,52:79-82.
    [7]G. Mathiak, G. Frohberg, Interdiffusion and convection in high magnetic fields [J], Crystal Research and Technology,1999,34:181-188.
    [8]Y.Y. Khine, R.M. Banish, J.I.D. Alexander. Convective contamination in self-diffusivity experiments with an applied magnetic field [J], Journal of Crystal Growth,2003,250(1-2):274-278.
    [9]Y. Limoge, in:R.W. Cahn, P. Hassen(eds), Physical Metallurgy. North-Holland Physics Publishing,1983.
    [10]C. Sun, H. Geng, N. Zhang, X. Teng, L. Ji. Viscous feature of Sb-Bi alloy under magnetic field [J], Materials Letters,2008,62:73-76.
    [11]H. Yasuda; I. Ohnaka; O. Kawakami; K.Ueno; K, Kishio, Effect of magnetic field on solidification in Cu-Pb monotectic alloys [J], ISIJ International.2003, 43(6):942-949.
    [12]N. Armour, S. Dost. The effect of a static magnetic field on buoyancy-aided silicon dissolution into germanium melt [J], Journal of Crystal Growth,2007, 306:200-207.
    [13]T. Miyake,Y. Inatomi, K. Kuribayashi. Measurement of diffusion coefficient in liquid metal under static magnetic field [J], Japanese Journal of Applied Physics, 2002,41:L811-813.
    [1]D.A. Molodov, S. Bhaumik, X. Molodova, G. Gottstein, Annealing behaviour of cold rolled aluminum alloy in a high magnetic field [J], Scripta Materialia,2006, 54:2161-2164.
    [2]A.D. Sheikh-Ali, D.A. Molodov, H. Garmestani, Boundary migration in Zn bicrystal induced by a high magnetic field [J], Applied Physics Letters,2003,82: 3005-3007.
    [3]H. Ohtsuka, Effects of strong magnetic fields on bainitic transformation [J], Current Opinion in Solid State and Materials Science,2004,8:279-284.
    [4]S. Nagasaki, M. Hirabayashi, Binary Alloy Phase-diagrams, AGNE Gijutsu Center, Tokyo,2002.
    [5]曾晓雁,吴懿平.表面工程学[M],机械工业出版社,北京,2001.
    [6]张伟强,金属电磁凝固原理与技术,冶金工业出版社,北京,2004.
    [7]R. Moreau. Magnetohydrodynamics in Process Metallurgy [M], AIME Warrendale, PA,1991, pp.15.
    [8]Y.Y. Khine, R.M. Banish, J.I.D. Alexander, Convective contamination in self-diffusivity experiments with an applied magnetic field [J], Journal of Crystal Growth,2003,250(1-2):274-278.
    [9]Y. Kishida, K. Takeda, I. Miyoshino, E. Takeuchi, Anisotropic effect of magnetohydrodynamics on metal solidification [J], ISIJ.International,1990, 30(1):34-40.
    [10]R. Moreau, O.Laskar, M. Tanaka, D. Camel, Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime [J], Materials Science and Engineering A,1993, A173:93-100.
    [11]S.Yesilyurt, L. Vjusic, S. Motakef, F.R. Szofran, A. Croell. Influence of thermoelectromagnetic convection (TEMC) on the Bridgman growth of semiconductors [J], Journal of Crystal Growth,2000,211:360-364.
    [12]A. Croll, F.R Szofran, P. Dold, K.W. Benz, S.L. Lehoczky, Floating-zone growth of silicon in magnetic fields. Ⅱ. Strong static axial fields [J], Journal of Crystal Growth,1998,183:554-563.
    [13]J. Zhao, P. Yang, F. Zhu, C. Cheng. The effect of high magnetic field on the growth behavior of Sn-3Ag-0.5Cu/Cu IMC layer [J], Scripta Materialia,2006, 54(6):1077-1080.
    [14]D.A. Molodov. Grain boundary dynamics in high magnetic fields. Fundamentals and implications for materials processing [J], Materials Science Forum,2004, 467-470(11):697-706.
    [15]S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida, A. Chiba. Diffusion of carbon and titanium in γ-iron in a magnetic field and a magnetic field gradient [J], Journal of Materials Science,2005,40:3191-3198.
    [16]孙振岩,刘春明,合金中的扩散与相变[M],东北大学出版社,沈阳,2002.
    [1]T.S. Sudarshan. Surface Modification Technologies an Engineer's Guide, Marcel Dekker, New York,1989.
    [2]G.F. Protasevich, L.G. Voroshnin. Inventive work in the field of chemical heat treatment for metals [J]. Metal Science and Heat Treatment,1988,30:351-355.
    [3]Yu.D. Yagodkin, K.M. Pastuhov, G. Vandenrisschi, J.-M. De Monicault, J.-M. Dewulf. Surface modification of superalloys and heat resistant steels by irradiation of low and high energy ion beams [J]. Surface and Coatings Technology,1997, 89:52-57.
    [4]S. Ettaqi, V. Hays, J.J. Hantzperque, G. Saindrenan, J.C. Remy. Mechanical, structural and tribological properties of titanium nitrided by a pulsed laser [J], Surface and Coatings Technology,1998,100-101:428-432.
    [5]N. Hirota, T. Takayama, E. Beaugnon, et al. Control of structures of feeble magnetic particles by utilizing induced magnetic dipoles [J]. Journal of Magnetism and Magnetic Materials,2005,293(1):87-92.
    [6]P. Gillon. Uses of intense d.c. magnetic fields in materials processing [J]. Materials Science & Engineering A,2000,287(2):146-152.
    [7]A.V. Pokoev, D.I. Stepanov, I.S. Trofimov, V.F. Mazanko. The constant magnetic field influence on diffusion of 63Ni in a-Fe [J], Physica Status Solidi A,1993, 137(1):K1-3.
    [8]Q. Wang, D. Li, K. Wang, Z. Wang, J. He. Effects of high uniform magnetic fields on diffusion behavior at the Cu/Al solid/liquid interface [J], Scripta Materialia,2007, 56 (6):485-488.
    [9]D. Li, Q. Wang, G. Li, X. Lv, K. Nakajima, J. He. Diffusion layer growth at Zn/Cu interface under uniform and gradient high magnetic fields [J], Materials Science & Engineering A,2008,495:244-248.
    [10]M.Yamaguchi, I. Yamamoto, F. Ishikawa, T. Goto, S. Miura. Thermodynamic theory of magnetic field effects on chemical equilibria and applications to metal-hydrogen systems [J], Journal of Alloys and Compounds,1997,253-254 (1-2):191-194.
    [11]A.S. Shigarev, L. P. Dmitrieva. Nitriding in magnetic field [J], Metal Science and Heat Treatment,1978,20(3-4):213-217.
    [12]O.V. Kibal'nikova, A.M. Mikhajlova, Yu.V. Seryanov, et al. [J], Source:Fizika i Khimiya Obrabotki Materialov,2002,3:86-89.
    [13]Y.Y. Chang, C.C. Tsaur, J.C. Rock. Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation [J]. Surface and Coatings Technology,2006,200:6588-6593.
    [14]W.Q. Peng, E. Monlevade, M.E. Marques. Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu [J], Microelectron Reliab,2007, 47:2161-2168.
    [15]S. Nagasaki, M. Hirabayashi. Binary Alloy Phase-diagrams [M], AGNE Gijutsu Center, Tokyo,2002.
    [16]G. Eggeler, Th. Theuerkauf, W. Auer. Studies of pack aluminizing of low-alloy steel (13 CrMo 44) [J], Material Technology Testing,1985,16(10):359-365.
    [17]I. Barin, O. Knacke, O. Kubaschewski. Thermochemical Properties of Inorganic Substances [M], Springer-Verlag Berlin Heidelberg, New York,1977, pp14-16.
    [18]N. Voudouris, Ch. Christoglou, G.N. Angelopoulos. Formation of aluminide coatings on nickel by a fluidised bed CVD process [J], Surface and Coatings Technology.2001,141(2-3):275-282.
    [19]W.V. Youdelis, D.R. Colton, J. Cahoon. On the theory of diffusion in a magnetic field [J], Canadian Journal of Physics,1964,42:2217-2237.
    [20]M. Kasuga, T. Takano, S. Akiyama, K. Hiroshima, K.Yano, K. Kishio. Growth of ZnO films by MOCVD in high magnetic field [J], Journal of Crystal Growth,2005, 275(1-2):e1545-1550.
    [21]S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida, A. Chiba. Diffusion of carbon and titanium in γ-iron in a magnetic field and a magnetic field gradient [J], Journal of Materials Science,2005,40:3191-3198.
    [22]C. Chambers, A.K. Holliday. Modern Inorganic Chemistry [M]. Butterworths, London,1975.
    [23]W. Liu, J. Cui. The Kirkendall effect of the Al-Cu couple with an electric field [J], Journal of Materials Science,1997,16:930-932.
    [1]W.V. Youdelis, D.R. Colton, J. Cahoon. On the theory of diffusion in a magnetic field [J], Canadian Journal of Physics,1964,42:2217-2237.
    [2]A.P. Savitskii. Diffusion interaction between two metals, one of which is in liquid state [J], Materials Science Forum,2008,575-578:1477-1482.
    [3]W. Jost, Diffusion in Solids,Liquids,Gases[M], NY:Academic Press Inc,1960.
    [4]M. Kasuga, T. Takano, S. Akiyama, K. Hiroshima, K.Yano, K. Kishio. Growth of ZnO films by MOCVD in high magnetic field [J], Journal of Crystal Growth,2005, 275(1-2):e1545-1550.
    [5]R. Lehmann, R.Moreau, D.Camel, R.Bolcato. Modification of interdendritic convection in directional solidification by a uniform magnetic field [J], Acta Materialia,1998,46:4067-4079.
    [6]Y.Y. Khine, R.M. Banish, J.I.D. Alexander, Convective contamination in self-diffusivity experiments with an applied magnetic field [J], Journal of Crystal Growth,2003,250(1-2):274-278.
    [7]夏立芳,张振信,金属中的扩散[M],哈尔滨工业大学出版社,1989.
    [8]孙振岩,刘春明,合金中的扩散与相变[M],东北大学出版社,2002.
    [9]D.A. Porter, K.E. Easterling. Phase Transformation in Metals and Alloys [M], Van Nostrand Reinhold Co.1981.
    [10]J.H. Huang:Diffusion of Metals and Alloys [M]. Metallurgy Industry. Press, Peking, China,2001, pp.26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700