用户名: 密码: 验证码:
废杂铜冶炼过程温度及压力测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在经济快速发展的今天,铜的需求日益增长,但是地球上的铜矿资源十分有限,因此废杂铜冶炼技术的发展显得尤为重要。在废杂铜冶炼过程中,炉膛温度场及炉膛压力对环保精炼炉的寿命以及铜品质影响极大,只有知道炉膛的确切温度分布,才能很好的控制铜品质,然而到目前为止,在实际生活中对炉膛温度场进行实时在线检测技术还很不成熟。本文针对这一急需解决的实际问题,尝试利用计算机仿真技术,以二重数值仿真方法解决离线数值仿真结果向在线动态仿真过程的移植问题,实现对炉内温度场的实时动态显示,有效地实现了炉内工况的监测与诊断。通过建立炉膛压力测量回路的信号处理模型,分析和研究了炉膛压力测量信号采集处理时减少系统波动的办法,并用仿真方法验证了该处理模型的优点和合理性。
     本文的主要工作如下:
     1)本文对废杂铜冶炼过程中的温度场、压力场、速度场等多场耦合数值方法进行了阐述,应用k-ε双方程气相湍流模型、热通量法辐射换热模型等多种模型建立计算的数学模型以及多块非均匀结构化网格划分技术对环保精炼炉建立物理模型。
     2)本文对炉膛温度场的二重数值仿真计算方法进行了详细论述与推导,应用二重仿真方法对炉膛内的温度场进行了计算。在运行工况变化不是很大的情况下,通过将炉内温度场分布直接与操作参数相关联,通过将操作参数对炉内温度场的影响进行线性化处理,从而得到温度场与操作参数的线性关系式,实现对炉内温度场的实时动态显示。
     3)本文提出了炉膛压力测量回路的信号处理模型,对如何进行压力测量信号的采集处理以减少系统波动的方法进行了详细的分析。从仿真结果来看,此模型完全可以满足环保精炼炉炉膛压力控制的工艺要求。
     本文的研究表明,采用合适的数学模型和计算方法,进行环保精炼炉炉内过程的数值模拟是可行的,对炉膛内温度场、压力场、速度场的分布特性的模拟是合理的,反应了实际的炉内流动、传热过程,本文的研究结果,对优化生产过程操作参数,使环保精炼炉实现高效安全、稳定运行具有重要的理论与实践意义。
The demand of copper will increase as the rapid development of economy, but the copper resources of world are very limited, the development of scrap copper smelting technology is especially important. In the process of scrap copper smelting, the furnace temperature field and pressure have great effects on environmental refining furnace, only know the exact temperature distribution in the furnace in order to better control the quality of copper, however, at present the technology for real-time detection on-line to furnace temperature field isn't rip yet. According to the practical problem to be urgently solved, we manage to solve the problem that the results of off-line numerical simulation transplant into on-line dynamic simulation with the two-stage numerical simulation method by using computer simulation technology, and realized the dynamic real-time display of temperature field, achieved to monitor and diagnose to furnace condition effectively. Through establish the signal processing model for measurement loop of furnace pressure, analysis and research the method for reducing the system fluctuation when data acquisition and signal processing of furnace pressure and use the simulation method to verify the advantages and rationality of the processing model.
     The main work is as follows:
     1) This paper described coupling numerical simulation method of multi-field, including temperature field, pressure field, velocity field, and calculated the mathematical model with applying theκ-εmodel of two-way gas turbulence, the model of radiant heat transfer using heat flux and other models and made multi-block non-uniform structured meshing technology to build physical model for environmental refining furnace.
     2) The paper discussed in detail and deduced the two-stage numerical simulation calculation method of furnace field, and calculated the furnace field with applying two-stage simulation method. When the operating conditions have changed little, put the furnace temperature field distribution to be concerned with operating parameters and to linearize the influence that operating parameters on furnace temperature field, resulting in linear relationship between temperature field and operating parameters to realize the real-time dynamic display to temperature field
     3) This paper introduce the signal processing model for measurement loop of furnace pressure, the method of acquiring and treating pressure measurement signal to reduce the fluctuation of the system was studied and analyzed in detail. This model can meet the technology requirements of furnace pressure control of environmental refining furnace from the simulation results.
     This thesis shows that numerical simulation of furnace process in environmental refining furnace with proper mathematical models and calculation method is viable. The numerical simulation of distribution of temperature field, pressure field and velocity field in furnace are reasonable and they can reveal the actual, heat transfer in furnace. The above results are of important theoretical and practical meaning for optimizing operation parameters, making environmental refining furnace running steady and safely with high-efficiency.
引文
[1]郑忠,何腊梅.红外测温技术及在钢铁生产中的应用[J].工业加热,2005,34(3):25-29.
    [2]庄剑杰.测温装置在顶燃热风炉炉顶的应用[J].自动化博览,2001,(4):27-28.
    [3]程维泉.红外测温仪在热风炉拱顶测温中的应用[J].河南冶金,2003,11(1):46.
    [4]黄振泰.炉顶红外摄像装置在新钢6号高炉上的安装及应用[J].江西冶金,2003,23(5):15-16.
    [5]李得平,王亚林,马晓红.远红外摄像仪在莱钢炼铁生产中的应用[J].山东冶金,2002,24(增刊):57-58.
    [6]D.Manca, M.Rovaglio. Infrared Thermographic Image Processing for the Operation and Control of Heterogenerous Combustion Chambers[J]. Combustion and Flame,2002,130(4):277-297.
    [7]G.Sutter, L.Faure, A.Molinari, N.Ranc, V.Pina. An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining[J]. International Journal of Machine Tools and Manufacture,2003,43(7): 671-678.
    [8]李汉舟,潘泉,张洪才,赵春晖,冯旻.基于数字图像处理的温度检测算法研究[J].中国电机工程学报,2003,23(6):195-199.
    [9]李汉舟,潘泉,张洪才,等.基于面阵CCD图像的温度场测量研究[J].仪器仪表学报,2003,4(6):653-656.
    [10]赵春晖,潘泉,张洪才,冯旻.数字图像温度测量系统的建立[J].计算机应用,2004,24(6):414-416.
    [11]徐柯夫.数字图像处理技术在电厂锅炉检测中的应用[J].电力系统自动化,1995,15(3):57-61.
    [12]李安,张莉.基于DSP的炉窑高温检测及图像处理技术[J].单片机与嵌入式系统应用,2006,(9):61-64.
    [13]张玉杰,侯撑选.高温陶瓷炉窑温度场测量系统的研制[J].陶瓷,2005,(4):26-28.
    [14]方千山.高温炉窑温度场的自动检测[J].华侨大学学报(自然科学版),2002,23(4):346-349.
    [15]沈国清,安连锁,姜根山.炉膛烟气温度声学测量方法的研究与进展[J].仪器仪表学报,2003,24(4):555-558.
    [16]Kleppe J A. High-Temp gas measurement using acoustic pyrometry[J]. Sensors Journal,1996,13(1):17-22.
    [17]Kleppe J A. Adapt acoustic pyrometer to measure flue-gas flow [J]. Power, 1995,139(8):46-47.
    [18]田丰,邵富群,王福利.声学法工业炉温度场检测的现状和关键技术[J].煤炭科学技术,2002,30(6):50-52.
    [19]田丰,邵富群,王福利.基于声波的工业炉温度场测量技术[J].沈阳航空工业学院学报,2001,18(3):10-11.
    [20]宋志强,李铁华,李海涛.声学法锅炉温度场检测技术的应用[J].广东电力,2004,17(6):10-14.
    [21]周怀春.炉内火焰可视化检测原理与技术[M].北京:科学出版社,2005.
    [22]安连锁,沈国清,张波,等.电站锅炉中声学测温的试验研究[J].电站系统工程,2007,23(2):23-25.
    [23]袁辅平.环保精炼炉熔铜工艺的实践[J].工业炉,2008,30(3):22-25.
    [24]施金良,贾碧,余群威,等.人工智能高炉冶炼过程专家系统[J].重庆大学学报(自然科学版),2005,28(5):63-67.
    [25]吴重光主编.仿真技术[M].北京:化学工业出版社,2000.
    [26]李伯虎,柴旭东,杨民等.现代建模与仿真技术的新发展.中国科学技术前沿(第6卷)[M].北京:高等教育出版社,2003:141-162.
    [27]王正中.现代计算机仿真技术及应用[M].北京:国防工业出版社,1991.
    [28]鄂加强.铜精炼炉操作优化与智能控制应用研究[D].中南大学,2004.
    [29]邹小平.反应塔炉壁三维温度场及内壁挂渣数模仿真研究[D].江西理工大学,2007.
    [30]梅炽,等.有色冶金炉窑仿真与优化[M].冶金工业出版社,2001.
    [31]李欣峰,梅炽,张卫华.铜闪速炉数值仿真[J].中南工业大学学报,2001,32(3):262-263.
    [32]宁志宇.高炉温度场与料面分布模型及其应用研究[D].中南大学,2005.
    [33]陈卓.铜闪速炉系统数值熔炼模型及反应塔炉膛内形在线仿真监测研究[D].中南大学,2002.
    [34]周乃君.基于风粉监测的煤粉锅炉燃烧工况动态仿真与操作优化专家系统研究[D].湖南,长沙:中南大学,2003.
    [35]J.P.H.SANDERS, A.P.G.G.LAMERS. Modeling and calculation of turbulent lifted diffusion flames [J]. Combustion and Flame,1994,96:22-23.
    [36]周向阳,郑楚光,马毓义.四角切圆炉膛等温流场的数值模拟[J].燃烧科学与技术,1995,1(2):135-139.
    [37]倪浩清.工程湍流模式理论综述及展望[J].力学进展,1996,26(2):145-165.
    [38]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1992:319-328.
    [39]钱力庚,樊建人,孙平.600MW锅炉炉内流动与燃烧过程的数值模拟[J].动力工程,2001,21(1):1032-1037.
    [40]Jianren Fan, Ligeng Qian, Yinliang Ma, etal. Computational modeling of pulverized coal combustion processes in tangentially fired furnaces [J]. Chemical Engineering Journal,2001,81:261-269.
    [41]由长福,祁海鹰,徐旭常.采用不同湍流模型及差分格式对四角切向燃烧煤粉锅炉内冷态流场的数值模拟[J].动力工程,2001,2:1128-1131.
    [42]任安禄,谢定国.切圆燃烧锅炉内煤粉燃烧过程的数值模拟一等密度模型和等直径模型[J].力学学报,1994,26(3):356-367.
    [43]王春刚,朱益群,吴少华,等.四角切圆燃烧炉内颗粒湍流扩散数值模拟[J].热能动力工程,2000,15(88):402-404.
    [44]L.X.Zhou, L.Li,R.X.Li, etal. Simulation of 3-D gas-particle flow sand coal combustion in a tangentially fired furnace using a two-fluid-trajectory model [J]. Powder Technology,2002,125:226-233.
    [45]Patankar S V.传热与流体流动的数值计算[M].张政译.北京:科学出版社,1984:115-126.
    [46]刘向军,徐旭常.ALE算法模拟四角切向燃烧锅炉炉膛内的流场[J].中国电机工程学报,1999,19(2):2-4.
    [47]朱彤等.切向燃烧炉膛中网格划分方法对数值模拟的影响[J].哈尔滨工业大学学报,1997,29(5):59-61.
    [48]张泽,吴少华,秦裕馄.近流线计算方法在四角切圆燃烧炉膛中的应用[J].热能动力工程,2000,15(85):47-491.
    [49]Leschziner M A, Rodi W. Calculation of annular and twin parallel jets using various discretization schemes and turbulence model variation [J]. ASME J Fluds Engrg,1981:103-352.
    [50]陶文全.数值传热学[M].西安:西安交通大学出版社,1988:56-78.
    [51]任安禄,等.复杂回旋流场的数值模拟和实验研究[J].空气动力学学报,1994,12(2):178-184.
    [52]F.C.CHRISTO, A.R.MASRL, E.M.NEBOT. Artificial neural network implementation of chemistry with PDF simulation of H2/CO2 flames[J]. Combustion and Flame,1996,106:406-427.
    [53]WILLIAMM.CHAN, OUETER G.BUNING. Surface grid generation methods for overset grids [J]. Computers&Fluids,1995,24(5):509-522.
    [54]Thompson Joe F. General structured grid generation systems [J]. AGARD-CP-464,1989.
    [55]A.Tam, D.Ait-Ali-Yahia, M.P.Robichaud, etal. Anisotropic mesh adaptation for 3D flows on structured and unstructured grids [J]. Computer methods in applied mechanics and engineering,2000,189:1205-1230.
    [56]周天孝,白文.CFD多块网格生成新进展[J].力学进展,1999,29(3):344-368.
    [57]Amit Shirsat, Sandeep Gupta, Gopal R Shevare. Generation of multi-block topology for discretisation of three-dimensional domains [J]. Computer&Graphics, 1999,23:45-57.
    [58]Lausterer, Gerhard K. Improved maneuverability of power plants for better grid stability [J]. Control Engineering Practice,1998,6(12):1549-1557.
    [59]Bhasker.C. Numerical simulation of turbulent flow in complex geometries used in power plants [J]. Advances in Engineering Software,2002,33(2):71-83.
    [60]Sharma.M.P., Sharma.J.D. Bagasse based co-generation system for Indian sugar mills [J]. Renewable Energy,1999,16(1):1011-1014.
    [61]何泓,樊建人,岑可法.四角切圆锅炉三维贴体坐标的生成及流场的模拟[J].动力工程,2000,10(3):685-688.
    [62]Zhou Hao, Cen Kefa, Sun Ping. Prediction of ash deposition in ash hopper when tilting burners are used [J]. Fuel Processing Technology,2002,79:181-195.
    [63]王雅勤,李文彦,孙昭星,等.四角切圆燃烧炉膛三维温度场数值预报及试验研究[J].中国电力,1994,12:33-36.
    [64]李文艳,王雅琴,孙昭星.锅炉燃烧室湍流流动、燃烧和传热过程的三维全模拟[J].中国电机工程学报,1994,14(20):1-6.
    [65]周萍,黄忠良,周乃君,等.切圆锅炉煤粉燃烧过程的数值研究与工业测试[J].能源工程,2001,5:25-28.
    [66]Hasegawa T, Tanaka R, Niioka T. High temperature air combustion contributing to energy saving and pollutant reduction in industrial furnace [J]. The Federation of Engineering Societies of China Association for Science and Technology,1999,35(2):102-114.
    [67]王应时,范维澄,周力行,徐旭常.燃烧过程数值计算[M].北京:科学出版社,1986.
    [68]范维澄,陈义良.计算燃烧学[M].合肥:安徽科学技术出版社,1987:106-127.
    [69]欧小辉.国产300MW火电机组炉膛压力测量系统存在的问题及改进措施[J].中国电力,2009,42(5):77-80.
    [70]Ding Keke. Automatic Measurement Technology [M]. China Electric Power Press,2007.
    [71]虞江洲.BFC-系列补偿风压测量吹扫防堵取样装置[J].中国仪器仪表, 2006(8):85-87.
    [72]赵景峰,忻建华,边曙光.一种炉膛压力测量信号的处理方法[J].热力发电,2005(2):46-47,57.
    [73]Song Qi. Design and Installation of Positive and Negative Pressure Safety System for Furnace [J]. North China Electric Power Technology,1999(5):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700