用户名: 密码: 验证码:
基于光纤光栅的桥梁多参数传感技术及系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光纤Bragg光栅(FBG)在光纤传感和光纤通信中的应用研究引起了人们极大关注。FBG传感器由于具有不受电磁干扰、信号带宽大、灵敏度高、易于复用、重量轻、结构紧凑,易于光纤连接,实现波长绝对编码及可以把多个传感器利用各种复用技术连接成传感网络,埋入材料和结构内部或贴装在其表面,实现对其特性的多点监测等优点,所以FBG传感器在大型建筑和油井等特殊场合的安全监测方面具有极为广泛的应用前景。本文主要对基于FBG的桥梁多参数传感技术及系统设计进行了理论和实验研究,具体内容包括:
     从FBG的模式耦合理论出发,分别推证了其温度和应变传感模型,并详细分析了相关参数对反射谱的影响;针对应变和温度交叉敏感问题,提出了温度补偿原理和方法;为了解决FBG的长期稳定性问题,通过理论分析和实验研究得出其最佳退火参数。
     从土木工程应用的实际情况出发,基于FBG传感特性设计了工程化FBG光纤传感器,对其传感特性进行了实验研究。研究了FBG传感器的布设工艺,并将其在桥梁结构中进行了实际应用。结果表明所设计的工程化FBG传感器在灵敏度和稳定性方面均能满足工程长期监测的需要。
     FBG解调系统的研究是本课题研究的重要部分之一,在比较分析各种分布式光纤光栅传感系统的解调方案的基础上,提出了基于连续波调频技术的波长扫描解调方法,从实用的角度出发,采用宽带光源与光纤F-P腔可调谐滤波器组合的方法,设计了可调窄带光源,不仅保证了系统所需的调谐范围,又获得了较高信噪比。在FBG传感网络复用方面,提出了将光频域反射复用(OFDR)技术与波分复用(WDM)技术相结合的方法,实现分布式FBG传感网络的寻址,提高了FBG的复用容量。实验表明所设计的解调系统具有解调速度快,稳定性好的优点。
     在上述研究的基础上,设计了基于FBG传感器的多参数桥梁测量系统,编制了数据采集和处理软件,并将所设计的FBG传感系统成功用于斜拉桥施工阶段及成桥的监测,现场监测效果证明所设计的工程化FBG传感器可以长期有效监测钢筋混凝土结构的应变与温度变化,且性能稳定,是一种有效的结构监测敏感元件。所设计的FBG传感系统不仅准确监测结构重要部位的内部应变及车流量等参数,为桥梁结构的静、动载测试提供了准确的数据,同时也为桥梁的工作状态评估和健康诊断提供依据。从桥梁施工、竣工、运营的两年多时间里FBG桥梁监测系统表现出良好的稳定性和耐久性,能够满足钢筋混凝土桥梁结构长期监测要求,具有为健康诊断提供连续、准确信息的能力。
In recent years, the applications of fiber Bragg grating (FBG) has been attracted great attention in the field of optical sensing and communication. FBG sensor has the advantages of resistance to electromagnetic interference, big signal bandwidth, high sensitivity, easy multiplexing, light weight, compact conformation, easy for fiber connection, realizing wavelength absolute coding, linking many sensors into sensing network using various multiplexing technology, realizing multi-point monitoring to achieve its properties through embedding in the internal structure of materials, or adhibiting on the surface mount, etc. These sensors have extensive prospect in the security monitoring area of the special occasions, such as the large buildings and oil wells. In this paper, the theoretical and experimental studies on multi-parameters sensing technology and system using FBG were carried on, which specifically includes:
     The establishment of FBG’s temperature sensing model and strain sensing model were introduced based on coupled mold theory. The effect of correlation parameter on the reflected spectrum was analyzed. Because of the coupling problem, the principle and technique for the temperature compensation of FBG sensors were given when using as strain sensor. The best annealing parameters were given by theoretical analysis and experiments.
     Considering the need of long-term monitoring for civil engineering, several practical FBG sensors were developed and their sensing characteristics were investigated experimentally. Such as FBG strain sensor, FBG temperature sensor and FBG accelerometer. The research indicated that the sensitivity and stability of practical FBG sensors can satisfy the needs for civil engineering long-term monitoring.
     Study on the characteristic of FBG demodulation system is one of the most important parts of the subject study. On the basis of analyzing several familiar demodulation techniques of distributed FBG system, a wavelength scanning demodulation system based on continuous wave tunable frequency is designed. At the same time, tunable narrow-band light source, which is composed of wide-band light source and tunable optical filter, is adopted to demodulate multiplex signals. This method not only supply wider tunable range but also afford higher signal to noise ratio. A mixture multiplexing method that combines optical frequency domain reflectometry (OFDR) and wavelength division multiplexing (WDM) is proposed to address FBG sensing array. The proposed system scheme is testified to have faster demodulation and higher stability by analyzing theoretically and researching experimentally.
     Based on above research, multi-parameters monitoring system based on FBG has been designed. The software of data acquisition, signal processing and analysis system have been established. The practical FBG sensors have been successfully used in monitoring during construction stage and service time. The experimental results indicate that FBG sensors can monitor the temperature and strain effectively for a long time, as well as have higher stability. So, it’s a practical structure monitoring sensor. The FBG strain sensor can monitor the strain and vehicle flux of important position accurately. FBG sensors can not only supply precision data for bridge’s static and dynamic testing but also supply gist for bridge’s working state assessment and health diagnosis. The FBG bridge monitoring system shows the outstanding stability and endurance throughout the whole process of bridge’s construction, accomplishment and service time in two years. It can satisfy the needs for long term monitoring of armored concrete structural bridge, as well as provide continuous and accurate information.
引文
1李宏男,李东升.土木工程结构安全性评估、健康监测及诊断评述.地震工程与工程振动,2002,22(3):82-90
    2欧进萍,周智.光纤光栅传感器及其在大型结构工程健康监测领域的应用.光纤传感器的发展与产业化国际论坛,平湖,2005
    3 Bang-Fuh Chen. Dynamic responses of coastal structures during earthquakes Including sediment sea structure interaction. Soil dynamics and earthquake engineering, 2000, 20:445-467
    4 Stephanie A., Virginia G. Computational study on plate damage identification. NDE for health monitoring and diagnostics, San Diego, 2002,4702-17
    5 Ernesto Monaco, Mauro Fontana, Luca De Rosa et al. Non-destructive technique based on vibration measurement and piezoelectric patches for monitoring corrosion phenomena. NDE for health monitoring and diagnostics, San Diego, 2002, 4701-10
    6 A.D Kersey, M.A. Davis. Progress towards the development of practical fiber Bragg grating instrumentation systems. Proc. Of SPIE, 1996,2839:40-63
    7周智.土木工程结构光纤光栅智能传感元件及其监测系统.(博士学位论文)哈尔滨:哈尔滨工业大学,2002.
    8梁磊.光纤光栅智能材料与结构理论和应用研究. (博士学位论文)武汉:武汉理工大学, 2005
    9吴新漩.混凝土无损检测技术手册.北京:人民交通出版社,2003
    10周杏鹏,仇国富,王寿容等.现代检测技术.北京:高等教育出版社,2004
    11 Wait P C, Newson T P. Landau Placzek ratio applied to distributed fiber sensing. Opt Commun, 1996,122 (4-6): 141-146
    12 Kin-tak Lau, Libo Yuan, Li-min Zhou. Strain monitoring in FRPlaminates and concrete beams using FBG sensors. Composites structures, 2001, 51: 9-20.
    13 K.O. Hill, Y.Fuji, D.C. Jonson. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32:647-649
    14 R. Kashyap. Fiber Bragg Gratings. Academic Press, London,1999
    15 G. Meltz, W.W. Morey, H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 1989, 14: 823-825
    16 K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson and J. Albert. Bragg grating fabricated in multimode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 1993, 62:1035-1037
    17 I. Bennion, J.A.R Williams, L. Zhing. UV-written in-fiber Bragg gratings. Opt. and Quant. Electron,1996, 28(2): 93-135
    18贾宏志,李育林.光纤光栅的制作方法.激光技术,2001,25(1):23-26
    19黄权,秦子雄.光纤光栅制作技术的最新进展.光通信技术,2006,30(6):19-21
    20 T. Erdogan. Fiber grating spectra. Lightwave Technol., 1997, 15(8):1277-1294
    21 H.J. Patrick, C.C.Chang, S.T. Vohhra. Long period fiber gratings for structural bend sensing. Electron. Lett., 1998,34(18):1773-1775
    22 A.M Vengsarkar, P.J Lemaire, J.B Judkins, et al. Long period fiber gratings as band rejection filters. Journal of Light wave Technology,1996,14(1):58-65
    23 A.M Vengsarkar, J.R Pedrazzani, J.B Judkins, et al. Long period fiber grating based gain equalizers. Opt. Lett. , 1996,21:336-338
    24 P. Kashyap. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating. Electron. Lett.,1993,29:154-156
    25 Chun Yang,Yong Wang,Chang-Qing Xu. A Novel Method to Measure Modal Power Distribution in Multimode Fibers Using Tilted Fiber Bragg Gratings. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005,17(10):2146-2148
    26 Xianfeng Chen, Kaiming Zhou, Lin Zhang,Ian Bennion. Optical Chem-sensor Based on Etched Tilted Bragg Grating Structures in Multimode Fiber. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005,17(4):864-866
    27 J.A.R. Williams. Fiber dispersion compensation using a chirped in fiber Bragg grating. Electron. Lett.,1994, 30(12):985-987
    28 F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Opt. Lett., 1987, 12(10):847-849
    29 L. Zhang. Wide-stop band chirped fiber moirégrating transmission filters. Electron. Lett., 1995,31:477-479
    30 M.G. Xu. Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre. Electron. Lett., 1995,31(10):823-825
    31 J. Azana. Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings. Electron. Lett., 1999,35(25):2223-2224
    32 L. R. Chen. Designs of flat-top band pass filters based on symmetric multiple phase-shifted long-period fiber gratings. Optics Communications, 2002,205(4):271-276
    33 R.Zengerle,O.Leminger. Phase-shifted Bragg Filters with improved transmission characteristics. IEEE Journal of Light wave Tech., 1995,13:2354-2358
    34 L. R. Chen. Designs of flat-top band pass filters based on symmetric multiple phase-shifted long-period fiber gratings. Optics Communications, 2002,205(4):271-276
    35周少玲.相移光纤光栅特性分析.光通信技术,2003, 27(4):47-49
    36 Qing Ye, Feng Liu, Ronghui Qu ,et al.Generation of millimeter-wave in optical pulse carrier by using an apodized Moiréfiber grating. Optics Communications,2006, 266(2):532-535
    37 Zongqiang Lin, Xiangfei Chen, Fei Wu, et al. A novel method for fabricating apodized fiber Bragg gratings. Optics & Laser Technology, 2003, 35(4):315-318
    38 Vincent Ruddy,Aurelian Seugnet,Barry.O’Neill. Line shape and polarization mode dispersion of waves diffracted by apodized and chirped fiber Bragg gratings in reflection. Optics Communications, 2007, 269(1):107-11
    39 B. J. Eggleton, C. Martijn de Sterke, A. B. Aceves,et al. Modulational instability and tunable multiple soliton generation in apodized fiber gratings. Optics Communications,1998, 149(4):267-271
    40 Xi-Hua Zou, Wei Pan, Bin Luo, et al. Accurate Analytical Expression for Reflection-Peak Wavelengths of Sampled Bragg Grating. IEEE PHOTONICS TECHNOLOGY LETTERS, 2006,18(3):529-531
    41 Maurizio Tormen, Silvia Ghidini, Paola Crespi, et al. Randomly Sampled Apodization in Bragg Gratings. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006,24(4):1896-1902
    42 Yitang Dai, Xiangfei Chen, Jie Sun,et al. Dispersion Compensation Based on Sampled Fiber Bragg Gratings Fabricated With Reconstruction Equivalent-Chirp Method. IEEE PHOTONICS TECHNOLOGY LETTERS,2006,18(8):941-943
    43 Jean Carlos Cardozo da Silva,Cicero Martelli. Dynamic analysis and temperaturemeasurements of concrete cantilever beam using fibre Bragg gratings. Optics and Lasers in Engineering,2007, 45(1): 88-92
    44 A.T.A lavie,R,Masskant. Application and characterization of Grating Sensor in a CFRP prestressed Concrete girder.SPIE,1994,219:103-110
    45 M.A.Davis, A.D.Kersey. Dynamic strain monitoring of an in-use interstate bridge using Fiber Bragg Grating Sensors.SPIE,1997,3043:87-95
    46 J.Seim, E.Udd. Health monitor of an Oregon Historical Bridge with Fiber Grating Strain Sensors.SPIE,1999,3671:123-134
    47 K.C.Chan,W.Jin,K.T.Lau. Strain monitoring of composite-boned concrete specimen measurements by use a FMCW Multiplexed Fiber Bragg Grating Sensor Grating Sensor Array.SPIE,2000,4077:56-59
    48 F.Peter,D. Huston.Intelligent civil Structures effects in Vermont.SPIE,1992,1798:205-216
    49梁磊,姜德生,罗裴.光纤Bragg光栅在结构健康监测中的实验研究.山东理工大学学报.2003,3(17):4-7
    50万里冰,武湛君,张博明.基于光纤光栅传感技术的桥梁结构内部应变监测.光电子激光.2004,12(15):1472-1476
    51鲍文忠.光纤光栅传感器在桥梁工程结构健康监测中的应用.科技前沿.
    52田石柱,赵雪峰,杨卫东.布拉格光栅传感器在土木工程中的应用.世界地震工程.2002,18(3):146-152
    53 Hang-Yin Ling, Kin-Tak Lau, Wei Jin,et al.Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating. Optics Communications, 2007, 270(1): 25-30
    54 J.Silva, C. Martelli. Dynamic analysis and temperature measurements of concrete cantilever beam using fibre Bragg gratings. Optics and Lasers in Engineering,2007, 45(1): 88-92
    55 Fang Xie, Shulian Zhanga, Yan Lia.Temperature-compensating multiple fiber Bragg grating strain sensors with a metrological grating. Optics and Lasers in Engineering, 2004,41 (1) :205–216
    56 C.Femadez,I.R.Matias. Simultaneous measurement of strain and temperature using a Fiber Bragg Grating.IEEE,2002,23(1):203-206
    57姜德生,徐先东,何伟.聚合物封装的高灵敏度光纤Bragg光栅温度传感器.光学与光电技术.2003,1(1):27-30
    58 H.Y. Liu,G.D. Peng. Thermal stability of gratings in PMMA and CYTOP polymer fibers. Optics Communications. 2005,4 (2):151-156
    59 Jiang Deshen,Liang Lei. The Compatibility in Optic Fiber Smart Concrete and Structure. Journal of Wuhan University of technology.2003,18(1):86-89
    60陈莉.光纤光栅器件的长期稳定性及其寿命预期.功能材料与器件学报.2000,6(4):448452
    61 N.L.Idriss. Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges. Smart Materials and Structures. 1998,(7):209-216
    62 M.G. X u, H. Geiger, J.P. Dakin. Fiber Grating Pressure Sensor with Enhanced Sensitivity Using a Glass-Tube Housing. Electric Lett.1999,332(2):128-129
    63刘云启,郭转运,刘志国等.聚合物封装的高灵敏度光纤光栅压力传感器.中国激光,2000, 27 (3) :211 - 214
    64宁提纲,简水生,魏淮等.封装对长周期光纤光栅的影响.半导体光电.2002,23(1):37-39
    65 Ansari Farhad, Yuan Libo. Mechanics of bond and interface shear transfer in optical fiber sensors. Jouraal of Engineering Mechanics, 1998, 124(4): 385-394
    66黄国君,殷昀虢,戴锋等.光纤布拉格光栅应变传感器的灵敏性及疲劳可靠性研究.激光杂志. 2003, 24(6): 45-47
    67李东升,李宏南.埋入式封装的光纤光栅传感器应变传递分析.力学学报.2005,37(4): 435-440
    68于秀娟,余有龙,冯维等.钛合金片封装光纤光栅传感器的应变和温度传感特性研究.光纤传感器的发展与产业化国际论坛.中国,平湖,2005,9-102
    69张伟刚,李红民,开桂云等.基于长周期光纤光栅的压力传感器.中国激光,2005,32(7) : 956~960
    70张颖,刘志国,郭转运等.高灵敏度光纤光栅力传感器及其压力传感特性的研究.光学学报,2002, 22( 1):89- 91
    71 Seunghwan Chung, Jungho Kim. Fiber Bragg Grating Sensor Demodulation Technique using a Polarization Maintaining Fiber Loop Mirror. IEEE PHOTONICS TECHNOLOGY LETTERS. 2001, 12(13):1343-1345
    72 Kersey AD. Multiplexed fiber Bragg grating stain sensor system with a fiber F-P wavelength filter. Opt letters.1993,18(16):1370-172
    73 Hang-Yin Ling,Kin-Tak Lau,Wei Jin,et al. Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating. Optics Communications, 2007, 270(1): 25-30
    74 G.Breglio, A.Cusano, A.Irace. Fiber optic sensor arrays: a new method to improve multiplexing capability with a low complexity approach. Sensors and Actuators B-Chemical, 2004. 100(1-2):147-150
    75方福波.基于单片机的光纤Bragg光栅传感器的解调系统.光学精密工程.2002,10(4): 383-387
    76 Ran Y J. Recent progress in applications of in-fiber Bragg grating sensors. Optics and Lasers in Engineering.2005, 31: 297-324
    77 Y.J. Chiang, Likarn Wang, Wen-Fung Liu et al. Hsiao. Temperature-Insensitive Multipoint Strain-Sensing System Based on Fiber Bragg Gratings and Optical Power Detection Scheme. IEEE SENSORS JOURNAL, 2006, 6(2):465-470
    78 C.C.Ye, S.E.Staines, S.W.James et al. A polarization-maintaining fibre Bragg grating Interrogation system for multi-axis strain sensing. Measurement Science & Technology. 2002,.13(9):1446-1449
    79 M.A.Davis,D.G.Bellemore, M.A.Putnam,et al.Interrogation of 60 fiberBragg grating sensors with microstrain resolution capability. Electron. Lett.1996,32(10):1393~1394.
    80吴朝霞,李志全,吴飞.啁啾光栅解调的FBG传感阵列系统研究.仪器仪表学报.2006(6): 1677-1678
    81 Hsu-Chih Cheng, Jen-Fa Huang, Yu-Lung Lo. Simultaneous strain and temperature distribution sensing using two fiber Bragg grating pairs and a genetic algorithm. Optical Fiber Technology, 2006,12(4):340-349
    82 Z. J. Wang, Y. Zhou, X. W. Wang , et al. A fiber-optic Bragg grating sensor for simultaneous static and dynamic temperature measurement on a heated cylinder in cross-flow. International Journal of Heat and Mass Transfer,2003,46(16):2983-2992
    83 Hang-yin Ling, Kin-tak Lau, Li Cheng, et al. Viability of using an embedded FBG sensor in a composite structure for dynamic strain measurement .Measurement, 2006,39(4): 328-334
    84安毓英,曾小东.光学传感与测量.北京:电子工业出版社,2001:203-220
    85高建军,高葆新,梁春广. PIN光电探测器等效电路模型研究.微波学报, 1998, 14(1):29-34
    86张谢东,李永斌,李卫华,郭奔.光纤布喇格光栅传感器在桥梁应力监测中的实效性研究.桥梁建设,2006,(2):74-76
    87陈建明,鲁改凤.光纤光栅与大型结构安全实时监测.山西建筑,2005,31(11):5-6
    88姜德生,信思金.光纤光栅智能混凝土材料与结构试验技术的研究.中国水泥,2004,(8):57-59
    89 Jean Carlos Cardozo da Silva, Cicero Martelli. Dynamic analysis and temperature measurements of concrete cantilever beam using fibre Bragg gratings. Optics and Lasers in Engineering,2007, 45(1): 88-92
    90 Y.J. Chiang, Likarn Wang, Wen-Fung Liu, et al.Temperature-Insensitive Multipoint Strain-Sensing System Based on Fiber Bragg Gratings and Optical Power Detection Scheme. IEEE SENSORS JOURNAL, 2006, 6(2):465-470
    91 Sébastien Bette, Christophe Caucheteur, Marc Wuilpart, et al. Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber. Optics Communications, 2007,269(2):331-337
    92 Bao-Jin Peng, Yong Zhao, Jian Yang , et al. Pressure sensor based on a free elastic cylinder and birefringence effect on an FBG with temperature-compensation. Measurement, 2005, 38(2):176-180
    93孙利民,蔡海文.采用光纤光栅及无线智能传感技术的桥梁结构健康监测系统研究取得重要进展.中国激光.2006,33(1):96-96
    94 Jung-Ryul Lee, Hiroshi Tsuda, Bon-Yong Koo. Single-mode fibre optic Bragg grating sensing on the base of birefringence in surface-mounting and embedding applications. Optics & Laser Technology, 2007,39(1):157-164
    95 Y. J. Rao. In-fiber Bragg Grating Temperature Sensor System for Medical Application. Lightwave Technol.,1997,15:779-785
    96朱永,陈伟民,封君等.混凝土固化期收缩应变监测的光纤的光纤珐泊传感器.土木工程学报,2001,34(5) :24-28
    97 B.Glisic, N. Simon. Monitoring of Concrete at Very Early Age using Stiff SOFO Sensors. Cement&Concrete Composites. 2000, (22): 115-119.
    98朱伯芳.大体积混凝土温度应力与温度控制.北京:中国电力出版社,1999.
    99李兵.钢筋混凝土框一剪结构多维非线性地震反应分析及试验研究:(博士学位论文).大连:大连理工大学,2005
    100 Lung Ren, Hong-Nan Li, Li Sun, et al. Development of tube-packaged FBG strain sensor and application in the vibration experiment of submarine pipeline model. Proceedings of SPIE Advanced Sensor Systems and Applications II,2004, Beijing: 5634-13.
    101 U. J. Sennhauser, R. Bronnimann, P. Mauron, et al. Reliability and Durability of Fiber Grating Sensors in Structural Monitoring Applications. Proceedings of SPIE, 1997:317-326
    102 Daniele Inaudi, A.Rufenacht, B.von Arx, et al. Noher, S.Vurpillot, B. Glisic. Monitoring of a concrete arch bridge during construction .SPIE Proceedings, 2002, 4696: 146-153.
    103卢哲安,江志学,石玉华等.光纤光栅传感技术在桥梁监测中的应用研究.武汉理工大学学报,2003,25(11):57-59.
    104黄桥,李忠龙,吴红林等.哈尔滨松花江斜拉桥成桥静动载试验.中国公路学会2005年学术年会论文集.237-244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700