用户名: 密码: 验证码:
矿山边坡裂隙岩体和排土场地下水流数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在分析和评述裂隙岩体和排土场地下水运动研究现状的的基础上,针对矿山边坡裂隙岩体和排土场的具体介质特征和水文地质特征,提出有针对性的研究思路和方法,采用数值模拟方法对矿山边坡裂隙岩体和排土场地下水流特征进行研究,主要工作包括:
     (1) 分析矿山岩体边坡的裂隙发育特征、岩体结构及其力学特征和水文地质边界条件,以及开挖卸载条件下裂隙法向变形性质,对应力作用下的矿山边坡裂隙岩体地下水流特征进行了分析研究。结果表明,考虑自重和开挖应力共同作用,即动态地根据边坡岩体的渗透参数的实际变化,进行矿山开采到某一开采水平或最终坑底时边坡地下水分布的预测分析,对边坡的稳定性有利;同等条件下,应力作用对于矿山边坡裂隙岩体地下水分布的影响比一般工程岩体边坡大。
     (2) 从单个裂隙的角度出发,根据流量等效原则和有限元法思想,研究单个裂隙对岩体局部渗流行为的影响,即研究单个裂隙对单元渗透系数张量的影响,提出了基于单个裂隙的单元等效渗透系数张量计算公式,为采用较为成熟的连续介质模型计算方法来解决离散网络模型和离散介质-连续介质耦合模型地下水运动问题提供了有效的理论工具。算例模拟了矿山岩体边坡主干裂隙的导水作用,计算结果合理,克服了离散介质-连续介质耦合模型数学处理不易,二者之间水交换量难以确定的问题。
     (3) 根据单个裂隙的单元等效渗透系数张量的表达式,提出基于三维随机裂隙网络的裂隙岩体地下水运动随机性有限元分析方法,算例分析表明,基于单元等效渗透系数张量,采用基于三维随机裂隙网络的裂隙岩体地下水运动随机性有限元分析方法分析三维随机裂隙网络地下水运动,反映了矿山边坡裂隙岩体地下水的随机性分布,克服了离散网络模型裂隙数量较多,模型规模庞大难以求解的问题。
     (4) 评述岩体目前裂隙产状分析的方法,分析了两种裂隙模糊聚类方法即模糊等价聚类方法和模糊软划分聚类方法在岩体裂隙产状分析中的优缺点,将上述两种方法结合起来形成岩体结构面产状的综合模糊聚类分析方法,并给出具体的计算方法和过程及算例。论述裂隙岩体渗透系数张量和裂隙等效水力宽度的确定方法及数值反演模型,实数编码遗传算法反演裂隙岩体渗透系数张量和裂隙等效水力宽度的主要过程和算例。在裂隙参数分析基础上,实际计算分析应力作用下朱家包包铁矿南帮边坡裂隙岩体地下水流特征,并分析其对边坡稳定性的影响,结果表明,考虑开挖应力作用对矿山边坡裂隙岩体地下水分布的影响,边坡稳定性较不考虑开挖应力作用有较为明显的提高。
     (5) 进行排土场水文地质分类和相应的地下水补给、迳流和排泄条件的分析,通过排土场降雨和地下水排泄实测数据的相关性分析,排土场降雨入渗和排泄过程的理想化概念模型,分析了排土场地下水运动特征,在此基础上,根据排土场水文地质边界条件和降雨汇流特征,提出适用性较为广泛的降雨汇流排土场饱和地下水运动分析有限元方法,实例计算结果浸润线较低,比较平缓,与实际情况相符。在降雨汇流排土场饱和地下水运动分析有限元方法的基础上,以非线性渗流的普遍表达式描述排土场饱和地下水的运动规律,并以此运动规律建立排土场饱和地下水运动的数学模型,实例计算结果表明,应用非线性渗流来计算降
Based on the analyzing and commenting on the researches of groundwater flow in fractured rock mass and waste dump , characteristic and numerical simulation for groundwater flow in slope fractured rock mass and waste dump of mine are studied, the main contents of this paper are showed as follows:(1)The fractures' characteristics , rock structures , hydro-geological boundary conditions and normal displace of fracture under unload stress are discussed and researched. The characteristics of groundwater flow in slope fractured rock mass of mine under stress are studied, the results show that simulation of groundwater flow under gravity and digging unload stress is beneficial to stability of mine rock slope, the influence on groundwater flow in slope fractured rock mass of mine is greater than that on groundwater flow in common slope fractured rock mass under same condition.(2)Based on the equivalent principle for the volume of flow and the theory of finite element method, the formula of equivalent hydraulic conductivity tensor based on single fracture for element is proposed, so the theoretic tool based on equivalent continuous model for discrete fracture netwok model and discrete- equivalent continuouse coupled model is provided. The drainage effect of artery fractures is simulated without mathematic difficutes of discrete- equivalent continuouse coupled model and flow exchange, the resalts are reasonable.(3) Based on the the formula of equivalent hydraulic conductivity tensor based on single fracture for element, the finite element method for stochastic characteristics of groundwater flow in fractured rock mass based on three-dimension stochastic fracture network is proposed. A case study shows that the results reflect the stochastic characteristics of groundwater flow in slope fractured rock mass of mine, without mathematic difficutes of discrete fracture netwok model.(4) Both the advantages and disadvantages of fuzzy clustering method and ISODATA fuzzy clustering method for fracture occurrences are analyzed, then combines the two fuzzy clustering methods into a synthetical fuzzy clustering method for fracture occurrences, the procedure and case of the synthetical fuzzy clustering method is proposed. The method and it's numerical inversion model for determining the hydraulic conductivity tensor of fractured rock mass and the equivalent hydraulic width of fracture are discussed, the procedure and case of their inversion by real number coding genetic algorithm is presented. Based on the determining of fracture data , the groundwater
    flow characteristics in fractured rock mass of Zhujiabaobao iron mine south-slope under stress are analyzed, the influence of groundwater flow on stability of slope is discussed, the results show that a increasing on stability with influence of groundwater flow under digging unload stress.(5)The hydro-geological classificasion of mine waste dump and their infiltration supplement, run-off and drainage are analyzed. The groundwater flow characteristics of mine waste dump are discussed by analyzing the rainfall and groundwater flow drainage data of a waste dump, ideal conceptual model. According to the hydro-geological boundary conditions and rainfall convergence characteristics of mine waste dump, a general finite elemrnt method with rainfall convergence for saturated groundwater flow of waste dump is proposed. A case study shows a reasonable result Based on the general finite element method with rainfall convergence and nonlinear-seepage formula, a numerical model of groundwater flow in waste dump is established, a case results showed that nonlinear-seepage movement exists in all the seepage area of the waste dump. Therefore, the seepage modeling using nonlinear-seepage model is suitable and safe for mine waste dump.(6)The characteristics of composition structure, hydro-geological structure and settlement displace of mine waste dump are analyzed, a hydraulic parameter predictive method for unsaturated soil of mine waste dump under settlement displace is proposed, case study show a development of multi-layer saturated zone under rainfall with time, the decresing development of high water content zone under settlement displace and compaction of dumping equipment.
引文
[1] 武汉地质大学等合编,构造地质学[M],北京:地质出版社,1979
    [2] 孙广忠等编,中国典型滑坡[M],北京:科学出版社,1988
    [3] 张国,薛玺成等,裂隙岩体水力特性及其对边坡稳定性的影响[J],辽宁工程技术大学学报(自然科学版),1998,17(4):348-352
    [4] Bellier J., Londe P., The Malpasset dam[C], Engineering Foundation Conf. Proc., The evaluation of dam safty,, 1976: 673-680
    [5] Wittke W., Leonards G. A., Modified hypothesis for failure of Malpasset dam[C], Int. Workshop on dam failures, Purdue University, West-lafayette, 1985: 321-328
    [6] Londe P., The Malpasset dam failure, Engineering Geology[J], 1987, 24: 295-329
    [7] Habib P., The Malpasset dam failure, Engineering Geology[J], 1987, 24: 331-338
    [8] Lauffer H., Findings old and new relating to the dam foundation problems encountered at Malpasset, Sta. Maria and Kolnbrein as predicted by D. C. Henny in 1929[J], Dam Engineering, 1999, Ⅹ(1): 3-22
    [9] Snow D. T., Anisotropic permeability of fractured media[J], Water Resour. Resear., 1969, 5(6): 1273-1289
    [10] Wilson C. R., Witherspoon P. A., Steady state flow in rigid networks of fractures[J], Water Resour. Resear., 1974, 10(2): 1016-1024
    [11] Long J. C. S. et al., Porous media equivalents for networks of discontinuous fractures[J], Water Resour. Resear., 1982, 18(3): 645-658
    [12] Long J. C. S. et al., A method for steady fluid flow in radom three-dimensional networks of disc-shaped fractures[J], Water Resour. Resear., 1985, 21(8): 1105-1115
    [13] Oda M., An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J], Water Resour. Resear., 1986, 22(13): 1845-1856
    [14] Khaleel R., Scale dependence of continuum models for fractured Basalts[J], Water Resour. Resear., 1989, 25(8): 1847-1855
    [15] 周志芳,王锦国,裂隙介质水动力学[M],北京:中国水利水电出版社,2004,1
    [16] Snow D. T., Rock fracture spacings, openings and porosities[J], J. Soil Mech. Found. Div., Proc. ASCE, 1968, 94(SM1): 73-91
    [17] Priest S. D. and Hudson J., Discontinuity spacings in rock[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1976, 13: 135-148
    [18] Bacher G.. B. et al., Statistical descriptions of rock properties and sampling[C], Proc. U. S. Symp. Rock Mech., 18th, 1977
    [19] 陈剑平,肖树芳,王清,随机不连续面三维网络计算机模拟原理[M],长春:东北师范大学出版社,1995
    [20] 刘连峰,王泳嘉,三维节理岩体计算模型的建立[J],岩石力学与工程学报,1997,16(1):36-42
    [21] 陈征宙,胡伏生等,岩体节理网络模拟技术研究[J],岩土工程学报,1998,20(1):22-25
    [22] 肖裕行,王泳嘉等,裂隙岩体水力离散介质网络的建立[J],岩石力学与工程学报,1998,17(4):412-418
    [23] 孙其国,模糊聚类分析法在结构面产状分组中的应用[J],化工矿山技术,1997,26(1):57-59。
    [24] Hammah R. E. and Curran J. H., Fuzzy cluster algorithm for the automatic identification of joint sets[J], Int. J. Rock Mech. Min. Sci., 1998, 35(7): 889-905.
    [25] 田景元,刘汉龙等,节理面按产状的模糊聚类及其优势方位的确定[J],华东地质学院学报,2002,25(2):97-99。
    [26] Sirat M. and Talbot C. J., Application of artificial neural networks to fracture analysis at the Aspo HRL, Sweden: fracture sets classification[J], Int. J. Rock Mech. Min. Sci., 2001, 38: 621-639.
    [27] 王媛,速宝玉,单裂隙面渗流特性及等效水力隙宽[J],水科学进展,2002,13(1):61-68
    [28] Barton N. and Choubey V., The shear strength of rock and rock joints in theory and practice[J], Rock Mechanics, 1977, 10: 1-54
    [29] 伍法权,统计岩体力学原理[M],北京:中国地质大学出版社,1993,5
    [30] 切尔内绍大,水在裂隙网络中的运动[M],地质出版社,1987,10
    [31] 速宝玉,詹美礼,赵坚,仿天然岩体裂隙渗流的实验研究[J],岩土工程学报,1995,17(5):19-24
    [32] 谢和平,Willian G,节理粗糙度系数的分形估算[J],地质科学译丛,1992,9(1):85-90
    [33] Xie Heping and Pariseau W. G, Fractal estimation of joint roughness coefficient, Fractured and Joint Rock Masses[C], USA, June 3-5, 1992: 132-139
    [34] Lee Y. H., et al., Fractural dimension as a measure of the roughness of rock discontinuity profiles[J], Int. J. Rock Mech. Min. Sci., 1990, 27(6): 453-464
    [35] 徐光黎,岩石结构面几何特征的分形与分维[J],水文地质工程地质,1993(2):20-22
    [36] 杜时贵,潘别桐,节理粗糙度系数的分形特征[J],水文地质工程地质,1993(3):36-39
    [37] 吴继敏,高正夏,汤瑞凉,裂隙粗糙度系数及其分数维特征[J],岩土力学,1998(3):306-310
    [38] 周创兵,熊文林,不连续面的分形维数及其在渗流分析中的应用[J],水文地质工程地质,1996,23(6):1-5
    [39] 王谦源,分形分布节理的模拟研究[J],岩石力学与工程学报,1999,18(3):271-274
    [40] Kulatilake P. H. S. W., et al., Requirements for accurate estimation of fractual parameters for self-affine roughness profiles using the line scaling method[J], Rock Mech. Rock Engng., 1997, 30(4): 181-206
    [41] Amadei B. and Illangasekare T., A mathematical model for flow and solute transport in no-homogeneous rock fracture[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1994, 18: 719-731
    [42] 速宝玉,詹美礼,张祝添,充填裂隙渗流特性实验研究[J],岩土力学,1994,15(4):46-51
    [43] 田开铭,万力,各向异性裂隙介质渗透性的研究与评价[M],北京:学苑出版社,1989,9
    [44] 田开铭等,裂隙水偏流[M],北京:学苑出版社,1989,9
    [45] Neuzil C. E., Tracy J. V., Flow through fractures[J], Water Resour. Resear., 1981, 17(1): 191-194
    [46] Elsworth D., Goodman R. E., Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1986(b), 23(3): 233-243
    [47] Tsang Y. W., Tsang C. F., Channel model of flow through fracture media[J], Water Resour. Resear., 1987, 23(3): 467-479
    [48] Lomize G. M., Flow in fractured rocks[M], Gesenergoizdat, Moscow, 1951
    [49] Romm E. S., Flow characteristics of fractured rocks[M], Nedra, Moscow, 1966
    [50] Louis C., A study of groundwater flow in jointed rock and its influence on the stability of rock masses[R], Rock Mech. Res. Rep. 10, Imp. Coll., London, 1969: 91-98
    [51] 仵彦卿,张倬元,岩体水力学导论[M],成都:西南交通大学出版社,1995
    [52] 柴军瑞,仵彦卿,变隙宽裂隙的渗流分析[J],勘察科学技术,2000(3):39-41
    [53] Carlsson A., Olsson T., The analysis of fractures, stress and water flow for rock engineering project[J], Comprehensive Rock Engineering, 1993, 2: 415-437
    [54] Tsang Y. W., Witherspoon P. A., Hydromechanical behavior of a deformable rock fracture subject to normal stress[J], J. of Geophys. Resear., 1981, 86(B10): 9187-9298
    [55] Barton N., et al., Strength, deformation and conductivity coupling of rock joints[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1985, 22(3): 121-140
    [56] Iwai K., Foundamental studies of fluid flow through a single fracture[D], Univ. of Calif., Berkely, 1976
    [57] Walsh J. B., Effect of pore pressure and confining pressure on fracture permeability[J], Int. J. Rock mech. Min. Sci. & Geomech. Abstr., 1981, 18(7): 429-435
    [58] Witherspoon P. A., et al., Observation of a potential size effect in experimental determination of the hydraulic properties of fractures[J], Water Resour. Resear., 1979, 15(5): 1142-1146
    [59] Witherspoon P. A., et al., Validity of cubic law for fluid flow in a deformable rock fracture[J], Water Resour. Resear., 1980, 16(6): 1016-1024
    [60] Brown S. R., Fluid flow through rock joints: The effect of surface roughness[J], J. of Geophys. Resear., 1987, 92(B2): p1337-1347
    [61] 张奇,夏颂佑,裂隙基岩渗透特性的研究,水利学报,增刊,1993:6-11
    [62] 张奇,平面裂隙接触面积对裂隙渗透性的影响,河海大学学报,1994,22(2):57-64
    [63] Shenain G., A governing equation for fluid flow in rough fracture[J], Water Resour. Resear., 1997, 33(11): 53-61
    [64] Oren A. P., Berkowitz B., Flow in rock fractures: The local cubic law assumption reexamined[J], Water Resour. Resear., 1998, 34(11): 2811-2825
    [65] 沈洪俊,张奇,岩石面糙率的分布及其对裂隙水流的影响,河海大学学报(自然科学版),1998,26(6):57-61
    [66] Jones F. O., A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J], J. Petrol. Technol., 1975, 21(2): 151-159
    [67] Nelson R., Fracture permeability in porous reservoirs: experimental and field approach[D], Department of geology, Texas A & M University, College Station, Tx77843, 1975
    [68] Kranz R. L., et al., The permeability of whole and jointed Barre granite[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1979, 16(4): 225-234
    [69] Sundaram P. N., Laboratory investigation of coupled stress-deformation-hydraulic flow in a natural rock fracture[C], 28th US Symp. Rock Mech. Univ. Arizona Tucson, 1987: 585-592
    [70] 张玉卓,张金才,裂隙岩体渗流与应力耦合的试验研究[J],岩土力学,1998,19(2):59-62
    [71] 张金才,张玉卓,应力对裂隙岩体渗流影响的研究[J],岩土工程学报,1998,20(2):19-22
    [72] 郑少河,赵阳升等,三维应力作用下天然裂隙渗流规律的实验研究[J],岩石力学与工程学报,1999,18(2):133-136
    [73] Goodman R. E., Methods of geological engineering in discontinuous rocks[M], West, New York: 1976
    [74] Bandis S. C., et al., Fundamentals of rock joint deformation[J], Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., 1983, 20(6): 249-268
    [75] Greenwood J. A., Williamson J. B. P., Contact of nominally flat surfaces[C], Proc. Roy. Soc. London, Ser. A, 295, 1966: 300-319
    [76] 孙宗欣,不连续面应力变形性质研究[J],岩石力学与工程学报,1978,6(4):287-300
    [77] 刘继山,单裂隙受正应力作用时的渗流公式[J],水文地质工程地质,1987(2):22-28
    [78] 刘继山,结构面力学参数与水力参数耦合关系及其应用[J],水文地质工程地质,1988(2):7-12
    [79] Killsall P. C., et al., Evaluation of excavation induced changes in rock permeability[J], Int. J. Rock Mech. Min. Sci., & Geomech. Abstr., 1984, 21(3): 123-135
    [80] M. Bai, et al., Analysis of stress-dependant permeability in nonorthogonal flow and deformation fields[J], Rock Mech. Rock Engng., 1999, 32(3): 195-219
    [81] 许光祥,裂隙岩体渗流与卸荷力学相互作用及裂隙排水研究[D]),重庆:重庆大学,2001
    [82] Gangi A. F., Variation of whole and fractured porous rock permeability with confining pressture[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1978, 15(4): 249-257
    [83] Walsh J. B., A new model for analyzing the effect of fracture on compressibility[J], J. of Geophys. Resear., 1979, 84(B7): 3532-3536
    [84] 周创兵,熊文林,不连续面渗流与变形耦合的机理研究[J],水文地质工程地质,1996,23(3):14-17
    [85] Renshaw C. E., On the relationship between mechanical and hydraulic apertures in rough-walled fractures[J], J. of Geophys. Resear., 1995, 100(B12): 24629-24636
    [86] 耿克勤等,岩体裂隙渗流水力特性的实验研究[J],清华大学学报(自然科学版),1996,36(1):102-106
    [87] Gentler S., et al., Anisotropy of flow in a fracture undergoing shear and its relationship to the direction of shearing and injection press[C], ISRM Int. Symp, 36th U. S. Rock Mech. Symp., Columbia Univ., New York, USA, 1997
    [88] Kwicklis E. M., Healy R. W., Numerical investigation of steady liquid water flow in a variably saturated fracture network[J], Water Resour. Resear., 1993, 29(12): 4091-4102
    [89] Wilson C. R., et al., Large-scale hydraulic conductivity measurements in fractured granite[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1983, 20(6): 269-276
    [90] 周志芳,滕建仁,三峡工程大坝坝基渗控分析[J],岩石力学与工程学报,2001,20(5):700-704
    [91] 周志芳,裂隙双重介质地下水运动参数反演分析[J],水动力学研究与进展,2003,18(6):742-747
    [92] 陈崇希,岩溶管道—裂隙—孔隙三重空隙介质地下水流模型及模拟方法研究[J],中国地质大学学报,1995,20(4):361-366
    [93] Dershowitz W. S., Einstein H. H., Three dimension flow modeling in jointed rock masses[C], 6th International Congress on Rock Mechanics, Montreal, Canada, 1987: 87-92
    [94] Elsworth D., A model to evaluate the transient hydaulic response of three dimensional sparsely fractured rock masses[J], Water Resour. Resear., 1986, 22: 1809-1819
    [95] Wittke W., Rock mechanics-theory and applications with case histories[M], Berlin, 1990
    [96] 黄勇,周志芳,岩体渗流模拟的二维随机裂隙网络模型[J],河海大学学报(自然科学版),2004,32(1):91-94
    [97] 黄勇,周志芳,裂隙网络介质地下水流运动参数反演分析[J],水电能源科学,2004,22(1):12-15
    [98] 王恩志,岩体裂隙的网络分析及渗流模型[J],岩石力学与工程学报,1993,12(3):214-221
    [99] 耿克勤,复杂岩基的渗流、力学及其耦合分析研究及工程应用[D],北京:清华大学,1994
    [100] 王媛,裂隙岩体渗流及其与应力的全耦合分析[D],南京:河海大学,1995
    [101] Wei L., Hudson J. A., Coupled discrete-continuum approach for modeling of water flow in jointed rocks[J], Geotechique, 1993, 43(1): 21-36
    [102] Wei L., Hudson J. A., A Hybrid discrete-continuum approach to model hydro-mechanical behavior of jointed rocks[J], Engineering Geology, 1998, 49: 317-325
    [103] 王洪涛,聂永丰,李雨松,耦合岩体主干裂隙和网络状裂隙渗流分析及应用[J],清华大学学报,1998,38(12):23-26
    [104] 黄勇,多尺度裂隙介质中的水流和溶质运移随机模拟研究[D],南京:河海大学,2004,12
    [105] 周志芳,马庆新等,有限分析法在反求裂隙岩体渗透张量中的应用[J],水利学报,1993,23(5):68-75
    [106] 朱岳明,刘望亭,裂隙岩体渗透系数张量的反演分析[J],岩石力学与工程学报,1997,16(5):461-470
    [107] 周志芳,朱学愚,确定岩体渗透参数的结构面控制反演法[J],南京大学学报,1999,35(3):316-322
    [108] 张奇,夏颂佑,俞国青,裂隙岩体渗透张量反分析及等效连续介质模型,河海大学学报,1994,22(3):74-80
    [109] 周玉新,周志芳等,裂隙岩体渗透参数的实数编码遗传反演[J],金属矿山,2004(1):12-15
    [110] 沈振中,赵坚等,渗透系数反演的可变容差法[J],水电能源科学,1999,17(1):5-8
    [111] Mukhopadhyay A., Spatial estimation of transmissivity using artificial neural network[J], Ground Water, 1999, 37(3): 458-464
    [112] Morshed J., Kaluarachchi J. J., Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery[J], Water Resour. Resear., 1998, 34(5): 1101-1113
    [113] 张乾飞,王建等,基于人工神经网络的大坝渗透系数分区反演分析[J],水电能源科学,2001,19(4):4-7
    [114] 李守巨,刘迎曦等,基于神经网络的岩体渗透系数反演方法及其工程应用[J],岩石力学与工程学报,2002,21(4):479-483
    [115] Desai C. S., Finite element residual shemes for unconfined flow[J], Int. Num. Meth. Eng., 1976, 10(6): 1415-1468
    [116] Bathe K. J., Khoshgoftan M. R., Finite elemnt for surface seepage analysis without mesh iteration[J], Int. J. for Num. & Anal. Meth. in Geomech., 1979, 3:3-22
    [117] 速宝玉,沈振中,赵坚,用变分不等式理论求解有渗流问题的截止负压法[J],水利学报,1996(3):22-29
    [118] 张乾飞,复杂渗流场演变规律及转异特征研究[D],南京:河海大学,2002,9
    [119] Oden J. T., Kikuchi N., Recent Advances: Theory of variational inequalities with applications to problems of flow through porous media[J], Int. J. Eng. Sci., 1980(18): 173-184
    [120] Bruch J. C., A survey of free boundary value problems in the theory of flow through porous media: variational inequality approach[J], Adv. Water Res., 1980(3): 65-80
    [121] 速宝玉,朱岳明,不变网格确定渗流自由面的结点虚流量法[J],河海大学学报,1991(5):113-117
    [122] 吴梦喜,张学勤,有自由面渗流分析的虚单元法[J],水利学报,1994(8):67-70
    [123] 梁业国,雄文林,周创兵,有自由面渗流分析的子单元法[J],水利学报,1997(8):34-38
    [124] 陈洪凯,唐红梅等,求解渗流自由面的复合单元全域迭代法[J],应刚数学与力学,1999,20(10):1045-1050
    [125] 黄蔚,刘迎曦,周承芳,三维无压渗流场的有限元算法研究[J],水利学报,2001(6):33-36
    [126] Morland L. W., Continuum model of regularly jointed mediums[J], J. Geophys. Res., 1974, 79(2): 357-362
    [127] 张武,张宪宏,节理岩体的弹性模型[J],岩土工程学报,1987,9(4):33-44
    [128] 杨海天,邬瑞峰等,节理岩体的复合本构有限元仿真计算[J],岩土工程学报,1996,18(6):69-76
    [129] Noorishad J., et al., A finite-element method for coupled stess and fluid flow analysis in fractured rock masses[J], Int. J. Rock Mech. Sci. & Geomech. Abstr., 1985, 22(4): 251-281
    [130] 常晓林,岩体稳定渗流与应力状态的耦合分析及其工程应用初探[C],第一届全国计算岩土力学研究会论文集(一),西南交通大学出版社,1987:335-343
    [131] 陶振宇,沈小莹,库区应力场的耦合分析[J],武汉水利电力学院学报,1988,21(1):8-13
    [132] 陶振宇,潘别桐,岩石力学原理与方法[M],中国地质大学出版社,1991
    [133] 杨延毅,周维垣,裂隙岩体的渗流.损伤耦合分析模型及其工程应用[J],水利学报,1991(5):18-27
    [134] 段小宁,李继初,刘继山,应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J],大连理工大学学报,1992,32(6):712-717
    [135] Ohnishi Y., Kabayashi A., Thermal-hydraulic-mechanical coupling analysis of rock mass[J], Comprehensive Rock Engineering(Ed. by Hudson J. A.), Pergamon Press, 1993, 2: 191-208
    [136] 陈平,张有天,裂隙岩体渗流与应力耦合分析[J],岩石力学与工程学报,1994,13(4):299-308
    [137] 盛金昌,三维裂隙岩体渗流应力耦合数值分析及工程应用[D],南京:河海大学,2000,6
    [138] 郑少河,姚海林,葛修润,裂隙岩体渗流场与损伤场的耦合分析[J],岩石力学与工程学报,2004,23(9):1413-1418
    [139] 陈胜宏等,节理面渗透特性的探讨[J],武汉水利电力学院学报,1989,22(1):53-60
    [140] 郭雪莽,岩体的变形、稳定和渗流及其相互作用研究[D].大连:大连理工大学,1990
    [141] 王洪涛,王恩志,金宜英,裂隙岩体渗流耦合数值分析方法及其工程应用[J],水利水运科学研究,1998(4):320-328
    [142] 柴军瑞,大坝及其周同地质体中渗流场与应力场耦合分析[D]),西安:西安理工大学,2000,1
    [143] Millard A., et al., Discrete and continuum approaches to simulate the thermo-hydro-mechanical couplings in a large, fractured rock mass[J], Int. J. Rock Mech. Sci. & Geomech. Abstr., 1995, 32(5): 409-434
    [144] 赖远明,吴紫江等,寒区隧洞温度场、渗流场和应力场耦合问题的非线性分析[J],岩土工程学报,1999,21(5):529-553
    [145] 刘亚晨,蔡永庆等,岩体裂隙结构面的温度-应力-水力耦合本构关系[J],岩土工程学报,2001,23(2):196-200
    [146] 黄涛,裂隙岩体渗流-应力-温度耦合作用研究[J],岩石力学与工程学报,2002,21(1):77-82
    [147] Sagar B., and Rinchal A., Permeability of fractured rock: effect of fracture size and data uncertainties[J], Water Resour. Resear., 1982, 18(2): 266-274
    [148] 杜炜平,颜荣贵,高台阶排土场技术及其发展趋势[J],矿冶工程,1998,18(1):18-22
    [149] 李林,夏禄清,矿山排土场稳定性研究的若干问题探讨[J],云南冶金,1998,27(5):8-12
    [150] 唐述虞,铁矿酸性排水的人工湿地处理[J],环境工程,1996,14(4):3-7
    [151] 孙建华,实验法在预测硫化矿山排土场酸水水质中的应用[J],金属矿山,1994(9):48-52
    [152] 汤承彬,晋宁磷矿排土场磷流失模拟研究[J],云南环境科学,1996,15(2):7-11
    [153] 林宏,霍林河露天矿排土场对环境的影响评价与复恳模式研究[J],中国矿业,1998,7(1):85-88
    [154] 刘志斌,露天煤矿排土场地下水环境质量影响的模糊综合评价[J],露天采矿技术,2003(2):16-18
    [155] Townsend R. D., Garga V. K., Hansen D., Finite difference modeling of the variatoion in piezometric head within a rockfill enbankment[J], Canadian Journal of civil Eng., 1991, 18(2): 254-263
    [156] 刘宝琛,从军功,加拿大矿山排土场河水过流的研究及工程概况[J],矿冶工程,1995,15(2):66-67
    [157] 颜荣贵,底部泄流式排土场建设研究[J],湖南有色金属,1996,12(2):26-32
    [158] 丁多文,彭光忠,陈从新,水对排土场边坡作用的模型模拟分析[J],工程勘察,1994(1):11-15
    [159] 戚国庆,排土场中的地下水渗流分析[J],金属矿山,1994(10):13-16
    [160] 曹文贵,范群英,排土场渗流场有限元分析法研究[J],湖南有色金属,1996,12(4):1-7
    [161] 攀枝花钢铁研究院矿山分院等,提前回收朱矿采场南帮挂帮富矿及朱兰采场开采境界综合研究[R],1998,10
    [162] 卫鞍山矿山研究院等,“七·五”国家科技攻关项目—太原钢铁公司尖山铁矿露天矿边坡优化设计方法[R],1990,12
    [163] 马鞍山矿山研究院等,“八·五”国家科技攻关项目—太钢(集团)矿业公司峨口铁矿高陡边坡工程及计算机管理技术研究[R],1996,12
    [164] 马鞍山矿山研究院,马钢总公司姑山矿业公司,马钢总公司姑山矿业公司露天采矿场边坡可靠性研究与优化设计[R],2000,6
    [165] 吴梦喜,高莲士,饱和—非饱和土体非稳定渗流数值分析[J],水利学报,1999(12):38-42
    [166] 朱学愚等,湖南斗笠山煤矿裂隙岩溶水涌水量的计算[J],中国岩溶,1983,2(2)
    [167] 周志芳,尖山铁矿边坡地下水评价与计算[J],勘察科学技术,1994(1):24-27,33
    [168] 周玉新,周志芳等,姑山铁矿复杂边坡含水层渗流数值计算[J],金属矿山,2003(7):3-8页
    [169] 孙宗欣,不连续面应力变形性质研究[J],岩石力学与工程学报,1978,6(4):287-300
    [170] Pyrak-N. L. J., Seismic visibility of fractures[D], University of California, Berkeley, 1988
    [171] 夏才初,孙宗砍,工程岩体节理力学[M],上海:同济大学出版社,2002,5
    [172] 周创兵,熊文林,地应力对裂隙岩体渗透特性的影响[J],地震学报,1997,19(2):154-163
    [173] 徐开礼,朱志澄主编,构造地质学[M],北京:地质出版社,1984,99-123
    [174] 何清,模糊聚类分析理论与应用研究进展[J],模糊系统与数学,1998,12(2):89-94
    [175] 许传华,朱绳武等,边坡稳定性的ISODATA模糊聚类分析[J],金属矿山,2000,35(12):24-26
    [176] 冯德益,楼世博等,模糊数学方法与应用[M],北京:地震出版社,1983,64-66
    [177] 李相镐,李洪兴等,模糊聚类分析及其应用[M],贵阳:贵州科技出版社,1994,111-116
    [178] 何广讷,土工的若干新理论研究与应用[M],北京:水利电力出版社,1994,136-159
    [179] 周玉新,周志芳,孙其国,岩体结构面产状的综合模糊聚类分析[J],岩石力学与工程学报,2005,24(13):2283-2287
    [180] 董聪,郭晓华等,基于广义遗传算法的全局优化方法[J],计算机科学,1999,26(6):7-10
    [181] 李鹏,董聪,基于实数编码的广义遗传算法及其在优化问题中的应用[J],控制与决策,2002,17(4):487-490
    [182] 周明,孙树栋,遗传算法原理及应用[M],北京:国防工业出版社,2000,28-88
    [183] 朱学愚,钱孝星等,基岩山区降水入渗补给量的确定方法[J],工程勘察,1982(3):25-30
    [184] 薛禹群,谢春红,水文地质学的数值法[M],北京:煤炭工业出版社,1980,7-14
    [185] 王来生,鞠时光等编著,大比例尺地形图机助绘图算法及程序[M],北京:测绘出版社,1993,8
    [186] 马鞍山矿山研究院等,本钢歪头山铁矿排土场稳定性及综合治理技术研究[R],1994,1
    [187] 马鞍山矿山研究院等,“七·五”国家科技攻关项目—高台阶排土场稳定性及监测技术的研究[R],1990
    [188] 马鞍山矿山研究院等,德兴铜矿排土场稳定性及泥石流的研究与防治[R],1991
    [189] 周玉新,周志芳,矿山排土场非线性渗流数值计算[J],岩石力学与工程学报,2004,23(13):2215-2219
    [190] R. E. Volker,Nonlinear flow in porous media by finite element[J], Proc. ASCE, J. of the HY., 1969, 95(HY6): 2093-2114.
    [191] J. A.McCorquodalc, Variational approach to non-Darcy flow[J], Proc, ASCE, J. of the HY., 1970, 96(HY11): 2265-2277.
    [192] 柴军瑞,坝基非达西渗流分析[J],水电能源科学,2001,19(4):1-3
    [193] 俞波,胡去劣,过水堆石体的渗流计算[J],水利水运科学研究,1996,18(1):64-69
    [194] 柴军瑞,岩体裂隙网络非线性渗流分析[J],水动力学研究与进展,2002,A辑,17(2):217-221
    [195] 肖焕雄,孙志禹,鞠连义,过水堆石围N—渗流规律的研究与计算[J],人民长江,1994,25(10):11-15
    [196] 代群力,地下水非线性流动模拟[J],水文地质工程地质,2000(2):50-55
    [197] 马鞍山矿山研究院等,马钢总公司南山铁矿排土场合理参数及综合治理措施研究[R],1994,1
    [198] 马鞍山矿山研究院等,“八·五”国家科技攻关项目—高台阶排土机排土稳定性及综合治理措施研究[R],1997,3
    [199] 吴梦喜,高莲士,饱和—非饱和土体非稳定渗流数值分析[J],水利学报,1999(12):38-42
    [200] 叶自桐,用于分析有突变土层界面和水流锋面的非饱和土壤水运动的时间差分格式[J],水利学报,1987(8):1-11
    [201] 张家发,三维饱和非饱和非稳定渗流场的有限元模拟[J],长江科学院院报,1997,14(3):35-38
    [202] 毛昶熙,段祥宝等,渗流数值计算与程序应用[M],南京:河海大学出版社,1999,1
    [203] 雅·贝尔,许涓铭等译,地下水水力学[MJ,北京:地质出版社,1985,12
    [204] 黄康乐,求解非饱和土壤水流问题的一种数值方法[J],水利学报,1987(9):9-16
    [205] 黄康乐,特征交替法求解二维饱和—非饱和土壤水流问题[J],水文地质工程地质,1989(6):6-10
    [206] 朱学愚,谢春红,钱孝星,非饱和流动问题的SUPG有限元数值解法[J],水利学报,1994(6):37-42
    [207] 刘洁,毛昶熙,堤坝饱和与非饱和渗流计算的有限单元法[J],水利水运科学研究,19970):242-252
    [208] 黄勇,降雨入渗条件下边坡裂隙岩体非饱和渗流数值模拟及稳定性评价[D],南京:河海大学,2002,3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700