用户名: 密码: 验证码:
大气紫外成像光谱仪地面测试与定标技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国科学院空间科学与应用研究中心已研制出大气紫外成像光谱仪原理样机。该样机采用推扫式成像光谱技术,使用二维CCD探测器给出光谱信息和垂直飞行方向的空间信息。本论文主要针对该样机,系统地研究了仪器的地面测试与定标技术,为其定量化应用奠定了基础,并为后续紫外成像光谱仪的研制和技术改进积累了经验。
     论文第一章介绍了大气紫外遥感的应用,描述了国内外大气紫外光谱仪的发展,分析了大气紫外光谱仪定标的意义、内容和方法,举例介绍了国内外典型的星载大气紫外光谱仪的地面定标技术。论文第二章简要介绍了大气紫外成像光谱仪系统,包括探测目标和原理、工作方式和主要性能指标以及系统组成,引出了论文接下来三章要研究的地面定标内容。
     论文第三、四、五章深入研究了大气紫外成像光谱仪的地面测试与定标技术,包括光谱定标、辐亮度定标、视场定标、线性和杂散光测试。主要研究内容如下:
     1.光谱定标技术研究部分。首先介绍了典型光谱仪光谱定标的方法,研究了大气紫外成像光谱仪光谱定标理论。其次对大气紫外成像光谱仪的波长定标技术进行了研究。选取Pt-Ne空心阴极放电灯作为定标光源,建立了定标装置,对仪器进行了波长定标。通过对仪器的输出结果进行预处理、寻峰、峰位—波长配对、亚像元级峰位确定以及回归分析,得到了波长定标结果,并分析了定标不确定度。然后结合大气紫外成像光谱仪的特点,采用放电灯法估计了仪器的光谱响应函数。用波长定标用的Pt-Ne空心阴极灯作为光源,估计出了仪器的光谱响应函数,进而得到了仪器的光谱分辨率。最后采用了两种方法对光谱定标结果进行了检验。
     2.辐亮度定标技术研究部分。首先研究了大气紫外成像光谱仪辐亮度定标理论,包括定标原理以及两种定标方法——漫反射板法和积分球法。然后研究了两种方法下大气紫外成像光谱仪的辐亮度定标技术。选取1000 W光谱辐照度标准灯作为定标光源,分别建立了两种方法下的定标装置,对仪器的输出结果进行了处理,得到了辐亮度定标结果,比对了两种方法下的定标结果,并对两种方法的定标不确定度进行了分析和比较。
     3.视场定标、线性和杂散光测试技术研究部分。首先研究了大气紫外成像光谱仪的视场定标技术,包括总视场定标和空间响应函数测量。研究了总视场定标的原理和方法,建立了定标装置,对仪器进行了总视场定标。测量了仪器的空间响应函数,进而得到了空间分辨率。其次研究了大气紫外成像光谱仪的线性测试技术,分别采用两种方法——偏振片法和积分时间法对仪器进行了线性测试。最后研究了大气紫外成像光谱仪的杂散光测试技术。
     论文第六章研究了紫外波段材料的漫反射特性定标和测试技术。首先介绍了描述材料表面反射特性的一些基本概念,研究了双向反射分布函数的测量原理和方法。其次对风云三号紫外臭氧总量探测仪漫反射板进行了定标,并分析了定标误差。然后利用漫反射板光谱角反射特性测量系统,研究了材料的光谱双向反射分布函数绝对测量技术。最后测量了与紫外臭氧总量探测仪漫反射板采用相同工艺、同批制成的两块漫反射板的半球反射比,并监测了其半球反射比的长期变化。论文第七章总结了全文的研究工作,并对下一步可以开展的研究工作进行了设想。
The prototype of the Atmospheric Ultraviolet Imaging Spectrograph (AUVIS) is developed by CSSAR CAS, which employs hyperspectral imaging in a push-broom mode. The AUVIS instrument has been equipped with a two-dimensional CCD detector to record both the spectrum and the swath perpendicular to the flight direction. The aim of this dissertation is to study the ground testing and calibration of the AUVIS instrument, attempting to lay the foundation for its quantitative measurement and accumulate experience for development of the follow-up ultraviolet imaging spectrograph.
     In chapter 1, the main application domains of atmospheric ultraviolet remote sensing are introduced, the developments and the calibration methods of atmospheric ultraviolet spectrometer are described, and examples of groud calibration at home and abroad are given. In chapter 2, the AUVIS instrument is introduced, including the detection targets, the principle, the working modes, the main performance, the design of the systems components, and the calibration contents to be studied in the next three chapters.
     In chapter 3, 4&5, the ground testing and calibration of the AUVIS instrument are studied, including spectral calibration, radiance calibration, viewing calibration, linearity test and stray light test. The main studies are as follows:
     In chapter 3, spectral calibration technology of the AUVIS instrument is studied. Firstly, the calibration theory is discussed. Secondly, the wavelength calibration technology is studied. A Pt-Ne gas discharge lamp is chosen as the source, and the calibration setup is established. After the experimental data preprocessing, peak finding, peak location-wavelength pairing, subpixel location and regression analysis, a function of―column number-wavelength‖is established. The uncertainty of the wavelength calibration is analyzed. Secondly, considering the characteristics of the AUVIS, the spectral response function is estimated using the gas discharge lamp method. The Pt-Ne lamp used in the wavelength calibration is also used, and the spectral response function and spectral resolution are estimated. Thirdly, the results of the spectral calibration are verified by two methods.
     In chapter 4, radiance calibration technology of the AUVIS instrument is studied. Firstly, the calibration theory is discussed, including the principle and two methods-the diffuser method and the integrating sphere method. Secondly, the AUVIS radiance calibration is performed by the two methods. A 1000 W FEL lamp is chosen as the source, and two calibration setups are established. After the experimental data processing, the radiance calibration results are calculated and compared. The uncertainty of the radiance calibration of the two methods are analyzed and compared.
     In chapter 5, viewing calibration, linearity testing and stray light testing technology are studied. Firstly, the viewing calibration is studied, including the FOV calibration and the spatial response function measurement. The calibration principle and method of the FOV calibration are discussed, the calibration setup is established, and the FOV of the AUVIS is calibrated. The spatial response function and the spatial resolution are measured. Secondly, the linearity of the AUVIS is tested by two methods-the polarizer method and the exposure time method. Thirdly, the stray light of the AUVIS is measured.
     In chapter 6, diffuser calibration and testing in the UV are studied. Firstly, the descriptions of the diffuse properties are introduced, and the BRDF measurement principle and method are discussed. Secondly, the three diffusers of FY-3 TOU are calibrated, and the error is analyzed. Thirdly, the absolute BRDF testing technology is studied employing a Spectro-Gonio-Reflectometer. Finally, the hemispherical reflectance of the two diffusers is measured, which have the same technology and the same class with the three diffusers of FY-3 TOU, and their long-term changes are monitored.
     In chapter 7, all of the studies in the dissertation are summarized, and the next-step research idea is briefly described.
引文
[1]周秀骥等,高等大气物理学,气象出版社,1991
    [2]韩心志,航天多光谱遥感,宇航出版社,1991
    [3]童庆禧,张兵,郑兰芬,高光谱遥感:原理、技术与应用,高等教育出版社,2006
    [4] R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, et al., Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide, NASA Reference Publication 1384, 1996
    [5] J. R. Herman, P. K. Bhartia, A. J. Krueger, R. D. McPeters, et al., Meteor-3 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide, NASA reference publication 1393, 1996
    [6] A. J. Krueger, P. K. Bhartia, R. D. McPeters, J. R. Herman, et al., ADEOS Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide, NASA Technical Publication 1998-206857, 1998
    [7] R. D. McPeters, A. J. Krueger, P. K. Bhartia, J. R. Herman, et al., Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide, NASA Reference Publication 1998-206895, 1998
    [8] A. Hahne, A. Lefebvre, J. Callies, et al., GOME: A New Instrument for ERS-2, ESA Bulletin, 1993, 73:22-29
    [9] A. Hahne, A. Lefebvre, J. Callies, et al., GOME-The Development of a New Instrument, ESA Bulletin, 1995, 83: 41-46
    [10] J.P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, et al., The Global Ozone Monitoring Experiment (GOME): Mission concept and first results, J. Atmos. Sci., 1999, 56, 151-175
    [11] H. Bovensmann, J. P. Burrows, M. Buchwitz, et al., SCIAMACHY-Mission objectives and measurement modes, J. Atmos. Sci., 1999, 56(2): 127-150
    [12] P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, J. Claas, H. Visser, J. de Vries, The Ozone Monitoring Instrument, IEEE Trans. Geosci. Remote Sens., 2006, 44(5): 1093–1101
    [13] J. de Vries, G. H. J. van den Oord, E. Hilsenrath, M. te Plate, P. Levelt, R. Dirksen, Ozone Monitoring Instrument (OMI), Proc. SPIE, 2001, 4480: 315–325
    [14] S. C. Asbury, OMPS - The Next Generation Sensor Suite for Global Ozone Monitoring
    [15] H. Park, F. G. Cunningham, J.Herman, R. Mcpeters, et al., Prelaunch tests for the calibration of Total Ozone Mapping Spectrometer (TOMS) flight model 5 (FM-5), Proc. SPIE, 1999, 3870: 354-364
    [16] R. E. Haring, F. L. Williams, U. G. Hartmann, et al., Spectral band calibration of the Total Ozone Mapping Spectrometer (TOMS) using a tunable laser technique, Proc. SPIE, 2004, 4135: 421–431
    [17] M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, et al., Ozone Monitoring Instrument Calibration, IEEE Trans. Geosci. Remote Sens., 2006, 44(5): 1209-1238
    [18] G. R. Hopkinson, T. M. Goodman, S. R. Prince, A Guide to the Use and Calibration of Detector Array Equipment, SPIE, 2004
    [19] G. H. J. van den Oord, J. P. Veefkind, P. F. Levelt, M. R. Dobber, OMI Level 0 to 1B processing and operational aspects, IEEE Trans. Geosci. Remote Sens., 2006, 44(5): 1380–1397
    [20] R. H. M. Voors, M. R. Dobber, R. J. Dirksen, OMI Calibration and Characterisation, Algorithm Theoretical Baseline Document: OMI Instrument,Level 0 - 1B processor, Calibration & Operations, P. F. Levelt (ed.), vol. I, ATBD-OMI-01, version 2, Aug. 2002.
    [21] G. H. J. van den Oord, R. H. M. Voors, J. de Vries, The Level 0 to Level 1B processor for OMI radiance, irradiance and calibration data, Algorithm Theoretical Baseline Document: OMI Instrument, Level 0-1B processor, Calibration & Operations, P. F. Levelt (ed.), vol. I, ATBD-OMI-01, version 2, 2002
    [22] R. Dirksen, M. Dobber, P. Levelt, G. H. J. van den Oord, et al., The on-ground calibration of the Ozone Monitoring Instrument from a scientific point of view, Proc. SPIE, 2003, 5234: 400–410
    [23] R. Dirksen, M. Dobber, R. Voors, P. Levelt, Prelaunch characterization of the Ozone Monitoring Instrument transfer function in the spectral domain, Appl. Opt., 2006, 45: 3972-3981
    [24] S7031-0908.pdf,Hamamatsu, CCD area image sensor S7030/S7031 series
    [25]赵凯华,钟锡华,光学,北京大学出版社,1984
    [26]钟锡华,现代光学基础,北京大学出版社,2003
    [27] (美)杨振宇,邱炎春著,路明哲等译,光学工程原理,南开大学出版社,1995
    [28] J. Mirapeix, A. Cobo, A. M. Cubillas, O. M. Conde, J. M. Lopez-Higuera, In-process automatic wavelength calibration for CCD-spectrometers, Proc. SPIE, 2008, 7003: 70031T-1-70031T-8
    [29] A. K. Gaigalas, L Wang, H. J. He, P. DeRose, Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers, J. Res. Natl. Inst. Stand. Technol, 2009, 114: 215-228
    [30]吴翊,李永乐,胡庆军,应用数理统计,国防科技大学出版社,2003
    [31] P. E. Berlo, G. A. Locascio, Ultraviolet-visible photodiode array spectrophotometer wavelength calibration method. A practical computer algorithm, Analyst, 1991, 116: 313-316
    [32] W. Budde, Optical radiation measurements, Academic Press, 1979
    [33] F. C. Grum, Optical radiation measurements, Academic Press, 1979
    [34] (美)格鲁姆(F. Grum),贝彻雷(R. J. Becherer)著,缪家鼎等译,辐射度学,机械工业出版社,1987
    [35]车念曾,闫达远,辐射度学和光度学,北京理工大学出版社,1990
    [36] J. Z. Klose, G. F. Hartig, W. J. Rosenberg, Characterization of a Pt-Ne hollow cathode spectral line source, Appl. Opt., 1990, 29: 2951-2959
    [37] National Institute for Standards and Technology (NIST) atomic spectra database (http://physics.nist.gov/cgibin/AtData/main_asd)
    [38] B. N. Taylor and C. E. Kuyatt, A Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, U.S. Department of Commerce, National Institute of Standards and Technology, 1997
    [39] J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, Spectral radiance calibrations, NBS Special Publication 250-1, National Institute of Standards and Technology, Gaithersburg, Md., 1987, 68 pp
    [40] C. L. Wyatt, Radiometric calibration: theory and methods, Academic Press, 1978
    [41] J. H. Walker, C. L. Cromer and J. T. McLean, A Technique for Improving the Calibration of Large-Area Sphere Source, Calibration of Passive Remote Observing Optical and Microware Instrumentation, Proc. Soc. Photo-Opt. Instrum. Eng., 1991, 1493: 224 -230
    [42] J. H. Walker, C. L. Cromer, Improving the accuracy of sphere-source calibrations, Global and Planetary Change, 1991, 90: 265-269
    [43] D. F. Heath, Zhongying Wei, W. K. Fowler, and V. W. Nelson, Comparison of spectral radiance calibration of SBUV-2 satellite ozone monitoring instruments using integrating sphere and flat-plate diffuser techniques, Metrologia, 1993, 30: 259-264
    [44] D.F. Heath, Z. Wei, W.K. Fowler, V.W. Nelson, E. Hilsenrath, Comparability of spectral radiance calibrations oflarge aperture earth observing instruments based upon diffuse reflective panels and internally illuminated spherical integrator techniques, Proc. SPIE, 1994, 2209: 148-159
    [45] D. F. Heath, Zhongying Wei, W. K. Fowler, et al., Comparisons of UV radiance calibrations of SBUV-2 type ozone monitoring instruments and traceability to NIST, Proc. SPIE, 1994, 2282: 313-323
    [46] D. F. Heath,Large aperture spectral radiance calibration source for ultraviolet remote sensing instruments, SPIE, 2003, 4891: 335-342
    [47] W. A. Hovis, J. S. Knoll, Characteristics of an internally illuminated calibration sphere, Appl. Opt., 1983, 22: 4004-4007
    [48] J. T. McLean, B. W. Guenther, Radiance Calibration of Spherical Integrators, Optical Radiation Measurements, Proc. Soc. Photo-Opt. Instrum. Eng., 1989, 1109: 114-421
    [49] S. W. Brown, G. P. Eppeldauer, K. R. Lykke, Facility for spectral irradiance and radiance responsivity calibrations using uniform sources, Appl. Opt., 2006, 45: 8218-8237
    [50]刘颖,博士学位论文,臭氧垂直分布探测仪紫外光谱辐射传输特性与定标的研究,中国科学院长春光学精密机械与物理研究所,2001
    [51]邢进,博士学位论文,空问遥感仪器紫外一真空紫外光谱辐射标准及高精度辐射定标的研究,中国科学院长春光学精密机械与物理研究所,2006
    [52] M. F. MODEST, Radiative heat transfer, Academic Press, 2003
    [53] E. M. Sparrow, R. D. Cess, Radiation Heat Transfer, Hemisphere Publishing Corporation, 1978
    [54]杨贤荣,辐射换热角系数手册,国防工业出版社,1982
    [55] AQ-02590-000 Rev1 XTH Uniform Source Systems.pdf
    [56] S. Janz, E. Hilsenrath, J. Butler, D. F. Heath, and R. P. Cebula, Uncertainties in radiance calibrations of backscatter ultraviolet (BUV) instruments, Metrologia, 1995, 32: 637-641
    [57]薛君敖,朴在植,孟昭仟,光辐射测量原理和方法,计量出版社,1981
    [58] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsburg, and T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, NIST Monograph 160, 1977
    [59] W. K. Fowler, V. W. Nelson. Performance of various diffuser materials in the absolute radiometric calibration of the SBUV/2, Metrologia, 1993, 30: 255-257
    [60] W. Erb, Computer-controlled gonioreflectometer for the measurement of spectral reflection characteristics. Appl. Opt., 1980, 19: 3789-3794
    [61] D. Hünerhoff, U. Grusemann, A. H?pe, New robot-based gonioreflectometer for measuring spectral diffuse reflection, Metrologia, 2006, 43: S11-S16
    [62] S. Nevas, F. Manoocheri, E. Ikonen, Gonioreflectometer for Measuring Spectral Diffuse Reflectance, Appl. Opt., 2004, 43: 6391-6399
    [63] G. T. Georgiev and J. J. Butler, Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet, Appl. Opt., 2007, 46: 7892-7899
    [64] G. T. Georgiev, C. K. Gatebe, J. J. Butler, M. D. King, Comparison between laboratory and airborne BRDF measurements for remote sensing, Proc. SPIE,2006, 6296, 10pp
    [65] J. J. Butler, H. Park, Y. P. Barnes, E. A. Early, C. van Eijk-Olij, A. E. Zoutman, S. Buller-van Leeuwen, and J. G. Schaarsberg, Comparison of ultraviolet bidirectional reflectance distribution function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS), Proc. SPIE, 2002, 4881: 345–354
    [66] C. J. Chunnilall, A. J. Deadman, L. Crane, E. Usadi, NPL scales for radiance factor and total diffuse reflectance, Metrologia, 2003, 40: S192-S195
    [67] A. A. Fegley, W. K. Flower, Radiometric Calibration of SBUV/2 Instruments: Retrospective Improvements, Metrologia, 1991, 28: 297-300
    [68] G. Jaross, A. Krueger, R. P. Cebula, et al, Calibration and postlaunch performance of the Meteor 3/TOMS instrument, J. Geophys. Res., 1995, 100: 2985-2995
    [69] Hahne, A., Callies, J., Lefebvre, A., et al, Calibration of the GOME Instrument for ERS-2, ESA Journal, 1994, 18:119-128
    [70] Hoekstra, R., Olij, C., Zoutman, A. E., et al, Pre- and in-flight calibration of GOME, Proc. SPIE, 1997, 2957: 312-321
    [71] G. T. Georgiev, J. J. Butler, Bidirectional Reflectance Distribution Function and Hemispherical Reflectance of JSC Mars-1, SPIE, 2002, 4780: 165-175
    [72] GT Georgiev, JJ Butler, Long-term Comparison of Spectralon BRDF Measurements in the Ultraviolet, Proc. SPIE, 2004, 5542: 323-333
    [73] Barnes, Patricia Y., Nadal, Maria E., Early, Edward A, Reflectance standards at ultraviolet wavelengths, SPIE, 1999, 3813: 9-14
    [74] J. E. Proctor, P. Y. Barnes, NIST High Accuracy Reference Reflectometer-Spectrophotometer, J. Res. Natl. Inst. Stand. Technol., 1996, 101,619-627
    [75]贾辉,李福田,铝漫反射板200-300 nm相对双向反射分布函数的实验研究,光学学报,2004,24:230-234
    [76] J. C. Stover, Optical Scattering: Measurement and Analysis-2nd edition, SPIE Press, 1995
    [77] V. R. Weidner and J. J. Hsia, NBS Measurement Services: Spectral Reflectance, NIST Special Publication 250-8, 1987
    [78] P. Y. Barnes, E. A. Early, and A. C. Parr, NIST Measurement Services: Spectral Reflectance, NIST Special Publication 250-48, 1998
    [79] E. Renotte, A. Novi, D. Labate et al., Solar diffuser pre-flight calibration set-up, Proc. SPIE, 1996, 2957: 355-373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700