用户名: 密码: 验证码:
离子液体两相催化体系中有机合成单元反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是近年来在绿色化学的框架下发展起来的全新的介质与软功能材料,由于具有不挥发、不可燃、液态范围宽、热稳定性好、溶解性好、物化性质可调等优点,已被作为催化剂或反应介质成功的应用于有机合成、两相催化、电化学、分离提取等领域。催化剂的高效分离和回收利用问题一直以来是绿色化学研究的重点内容之一。具有“高温均相、低温两相”性质的温控离子液体两相催化体系和离子液体相转移催化体系,因其能有效结合均相催化体系反应高效与非均相催化体系催化剂易回收的优点己成为研究热点。
     本课题主要研究了离子液体温控两相催化体系和离子液体相转移催化体系中芳烃化合物氯甲基化反应、胺解反应、水解反应、C-O偶联反应、氧化反应和还原C-C自偶联反应,以期开发出环境友好的新方法,具体的研究内容包括以下几个方面。
     在实施芳烃化合物的氯甲基化反应中,分别研究了PEG1000-DAIL/甲基环己烷和PEG1000-DIL/甲基环己烷这两种离子液体温控两相催化体系对反应的影响规律。研究表明,PEG1000-DIL/甲基环己烷温控两相体系能够较好的催化芳烃化合物单氯甲基化反应;PEG1000-DAIL/甲基环己烷温控两相体系能更好的催化联苯、二甲苯和四氢萘的二氯甲基化反应,反应得到了一些对称的二氯甲基化产物。整个反应过程条件温和,选择性好,后处理简单,离子液体催化体系循环使用效果良好,实现了环境友好的氯甲基化反应。
     以硫酸铜(CuS04)为催化剂,将PEG1000-DIL/甲基环己烷温控两相体系应用于有机卤化物的氨解反应。研究发现PEG1000-DIL/CuSO4催化体系可以高效的催化有机卤化物的氨解反应,反应收率在84%以上。反应选择性好,条件温和,操作简单,反应结束后产物相催化相易分离而且没有异构体生成,离子液体催化体系回收循环使用效果良好。
     以酸性聚乙二醇型双子离子液体PEG1000-DAIL为基础合成了三种不同阴离子的离子液体PEG1000-DAIL[BF4],PEG1000-DAIL[PF6]和PEG1000-DAIL[OTf],发现了这三种离子液体都可以与甲苯形成良好的温控两相体系,并研究了它们在有机卤化物、环氧化合物和酯类化合物的水解反应。实验表明,采用Fe2(S04)3为辅助催化剂,在PEG1000-DAIL[BF4]/甲苯温控两相体系作用下,水解反应能够快速高效的进行。相对于环氧化合物和酯类化合物的催化水解反应过程,PEG1000-DAIL[BF4]/Fe2(SO4)3/甲苯温控两相催化体系能够更有效的催化有机卤化物的水解反应,反应速度更快。反应结束后,产物与催化体系形成油-水两相,通过简单的倾析便可实现产物与催化体系的分离。催化体系可以方便的回收循环使用而催化活性基本保持不变。
     以PEG1000-DAIL为基础合成了一系列不同阴离子的过渡金属离子液体,这些离子液体可以与甲苯形成良好的温控两相体系。将所形成的温控两相体系应用于催化有机卤化物与醇和酚的C-O偶联反应,研究结果表明,过渡金属离子液体PEG1000-DAIL[CdCl3]/甲苯温控两相体系催化反应效果较好。
     合成了一系列具有相转移催化性质的长链1-烷基-3-甲基咪唑盐过渡金属离子液体。分别研究了这些离子液体中有机卤化物的选择性氧化反应和有机卤化物的还原C-C自偶联反应。发明了一种新的[C12min][FeCl4]催化有机卤化物的选择性H5I06氧化体系,该体系能够有效的将一系列的有机卤化物选择性氧化为相应的醛或酮,并能高收率的得到氧化产品。离子液体催化剂可以方便的回收循环使用,反应条件温和,选择性好,操作简单,催化剂用量少,符合绿色化学的发展方向。发展了一种有效的还原C-C自偶联[C12mim][CuCl2]/Cu/Zn反应体系,该体系能够有效的将一系列苄基和芳基卤化物转化为相应的联苄和联苯类化合物,反应在无溶剂条件下进行,产品收率都在80%以上,反应选择性好,催化剂可以方便的回收循环使用,该工艺符合绿色化学的发展方向,具有良好的应用前景。
Recently, ionic liquids research has become a new field of green chemistry. Due to their favorable properties such as non-inflammability, negligible vapour pressure, reusability and high thermal stability, ionic liquid technology has been successfully applied to many areas of chemistry including organic and inorgnic synthesis, biphasic catalysis, separation proeesses, electrochemistry etc. Separation and recovery of catalyst with high efficiency plays an important role in green chemistry. Ionic liquids of catalytic system possess the thermoregulated biphasic behavior of "mono-phase under high temperature, bi-phase under room temperature" and phase transfter catalysis have been attracted much attention due to their advantages of both homogeneous and heterogeneous eatalysis with high product yield and the easy separation of product from catalytic system.
     The main objective of this dissertation is to perform the chloromethylation of aromatic hydrocarbons, animation of organic halides, hydrolysis of organic halides、epoxides and esters, C-O coupling of organic halides, oxidation of organic halides, and the reductive homocoupling of benzyl and aryl halides in ionic liquids with a view to develop new environment-friendly methods, and the specific research contents include the following aspects.
     Two temperature-dependent biphasic systems, PEG1000-DAIL/methylcyclohexane and PEG1000-DIL/methylcyclohexane, were used as isolated catalyst in the chloromethylation of aromatic hydrocarbons, and the effect of reaction conditions on the catalytic reaction was investigated. It was found that a new chloromethylation reaction system using PEG1000-DIL in combination with methylcyclohexane has been developed, which is capable of converting aromatic hydrocarbons into the corresponding mono-chloromethyl-substituted aromatic compounds in good to excellent isolated yield. And the new dichloromethylation reaction system using PEG1000-DA.IL in combination with methylcyclohexane has also been developed, which is capable of converting some aromatic compounds (e.g. biphenyl,p-xylene, m-xylene, o-xylene,1,2,3,4-tetrahydro-naphthalene) into the corresponding dichloromethyl-substituted aromatic compounds in good to excellent isolated yield. Mild reaction conditions, ease of workup, high yields, stability, easy isolation of the compounds, good thermoregulated biphasic behavior of IL, and excellent recyclability of the catalyst are the attractive features of this methodology, which is a good example of green chloromethylation method.
     A simple, efficient, and environmentally friendly procedure for the amination of organic halides catalyzed by CuSO4·5H2O in PEG1000-DIL/methylcyclohexane temperature-dependent biphasic system has been developed. A wide range of aryl, benzylic, allylic, and aliphatic halides were found to be applicable to the catalytic system. This procedure include many advantages such as mild reaction conditions, simplicity of operation, high yields, easy isolation of products by a simple decantation, good thermoregulated biphasic behavior of the IL, and excellent recyclability of the catalytic system.
     Three kinds of new PEGiooo-based dicationic acidic ionic liquids (PEG1000-DAIL[BF4], PEG1000-DAIL[PF6] and PEGiooo-DAIL[OTf]) have been synthesized from the ionic liquid PEGiooo-DAIL, and found that these ionic liquids can also exhibite good temperature-dependent phase behavior with toluene, and their applications in hydrolysis of organic halides, epoxides, and esters have been extensively studied. The results showed that Fe2(SO4)3was found to be the most effective cocatalyst in terms of yield and reaction rate in PEG1000-DAIL[BF4]/toluene temperature-dependen biphasic system. And the PEG1000-DAIL[BF4]/Fe2(SO4)3catalytic system was found to be more effective in hydrolysis of organic halides than that of both epoxides and esters. After the completion of the reaction, the phase-separation appeared along with cooling, and a complete oil-water biphasic system was formed again after being cooled to room temperature. The product can be easily isolated by a simple decantation, and the catalytic system can be recycled and reused without loss of catalytic activity.
     Nine kinds of new PEG1000-based dicationic ionic liquids based on transition metals (PEG1000-DAIL[CdCl3], PEG,ooo-DAIL[FeCl3], PEG1000-DAIL[FeCl4], PEG1000-DAIL[CuCl2], PEG1000-DAIL[CuCl3], PEG1000-DAIL[ZnCl3], PEG1000-DAIL[PdCl3], PEG1000-DAIL[MnCl3] and PEG1000-DAIL[AlCl4) have been synthesized from the ionic liquid PEG1000-DAIL, and found that these ionic liquids can also exhibite good temperature-dependent phase behavior with toluene, and their applications in C-O coupling of organic halides with phenols and alcohols have been extensively studied. The results showed that PEG1000-DAIL[CdCl3] demonstrated the best performance, and an experimentally simple and efficient protocol for the C-O coupling of organic halides with phenols and alcohols in PEG1000-DAIL[CdCl3]/toluene temperature-dependent biphasic system has been developed.
     A series of ionic liquids of transition metals based on1-alkyl-3-methylimidazolium cation [Cnmim]+) as phase transfer catalysts were synthesized, and their applications in the selective oxidation of organic halides to aldehydes and ketones and reductive homocoupling of benzyl and aryl halides have been extensively studied. A simple, mild, and efficient procedure for the oxidation of organic halides to aldehydes and ketones with H5IO6in ionic liquid [C12mim][FeCl4] has been developed. The oxidation reactions afford the target products in good to high yields and no overoxidation was observed. The products can be separated by a simple extraction with organic solvent, and the catalytic system can be recycled and reused without loss of catalytic activity. A facile and efficient synthesis of bibenzyl and biaryl derivatives by reductive C-C homocoupling reaction has been described. Treatment of benzyl and aryl halides with metallic zinc and copper powder in the presence of a catalytic amount of [C12mim][CuCl2] under ligand-and base-free conditions gives the corresponding bibenzyls and biaryls in good to high yields. The product can be isolated by a simple extraction with organic solvent, and the advantages of our procedure include simplicity of operation, low cost, high yields, and excellent recyclability of the catalyst.
引文
[1]魏荣宝,梁娅,孙有光.绿色化学与环境[M].北京:国防工业出版社,2007.
    [2]Mukesh D, Anil K K. Green chemistry and processes [M]北京:科学出版社,2009.
    [3]Lankey R L, Anastas P T. Advancing sustainability through green chemistry and engineering [M]. American Chemical Society:Washington, DC,2002.
    [4]余红霞,李攀.绿色化学的研究进展[J].湖南理工学院学报(自然科学版),2009,22:77-81.
    [5]Anastas P T, Kirchhoff M M, Williamson T C. Catalysis as a foundational pillar of green chemistry [J]. Appl. Catal. A:Gen.2001,221:3-13.
    [6]Roger A S, Isabel W C E A, Gerd-Jan ten B, Arne D. Green, catalytic oxidations of alcohols [J]. Acc. Chem. Res.,2002,35 (9):774-781.
    [7]Johnson J. Watvhdog slams terrorism study [J]. Chem. Eng. News,2002,80:14.
    [8]Leitner, W. Supercritical carbon dioxide as a green reaction medium for catalysis [J]. Acc. Chem. Res.,2002,35:746-756.
    [9]Licence P, Ke J, Sokolova M. Chemical reactions in supercritical carbon dioxide:from laboratory to commercial plant [J]. Green Chem.,2003,5:99-104.
    [10]易文斌.氟两相体系中的有机合成反应[D].博士学位论文.南京:南京理工大学,2006.
    [11]廖永卫,陈卫平.氟两相催化反应的进展[J].有机化学,2001,21:181-190
    [12]张锁江,吕兴梅.离子液体:从基础研究到工业应用[M].北京:科学出版社,2006.
    [13]张锁江,徐春明,吕兴梅,周清等编著.离子液体与绿色化学[M].北京:科学出版社,2009.
    [14]李文明,王建国,李正名.绿色化学研究进展[J].天津化工,2008,22:1-4.
    [15]Rogers R D, Seddon K R, Ionic liquids:Fundamentals, progress, challenges, and opportunities [M]. American Chemical Society:Washington, DC,2005.
    [16]曾家豫,刘雄雄,孔维宝,赵应伟,夏春谷.离子液体的特性及其在生物催化和生物转化中的应用[J].分子催化,2010,24(4):378-385.
    [17]蒋伟燕,余文轴.离子液体的分类、合成及应用[J].金属材料与冶金工程,2008,36:51-54.
    [18]邓友全.离子液体:性质、制备与应用[M].北京:中国石化出版社,2006.
    [19]张金生,边鲁宁,李丽华.离子液体的合成研究与应用进展[J].化学与生物工程,2007.24:7-9.
    [20]黄碧纯,黄仲涛.离子液体的研究开发及其在催化反应中的应用[J].工业催化,2003.24:1-5.
    [21]Leveque J M, Luche J L, Petrier C, Roux R, Bonrath W. An improved preparation of ionic liquids by ultrasound [J]. Green Chem.,2002,4:357-360.
    [22]Varma R S, Namboodiri V V. An expeditious sol vent-free route to ionic liquids using microwaves [J]. Chem. Commun.,2001,643-644.
    [23]Namboodiri V V, Varma R S. An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves [J]. Tetrahedron Lett.,2002,43:5381-5383.
    [24]Xia M, Lu Y D. A novel neutral ionic liquid-catalyzed solvent-free synthesis of 2,4,5-trisubstituted imidazoles under microwave irradiation [J]. J. Mol. Catal. A:Chem., 2007,265:205-208.
    [25]赵地顺,鲍晓磊,闪俊杰,武彤,王文荣.微波合成配位离子液体[J].河北科技大学学报,2010,31:128-131.
    [26]Moulton R. Electrochemical process for producing ionic liquids [P]. US Patent 0094380, 2003.
    [27]Waterkamp D A, Heiland M, Schliuter M, Sauvageau J C, Beyersdorff T, Thoming J. Synthesis of ionic liquids in micro-reactors-a process intensification study [J]. Green Chem.,2007,9:1084-1090.
    [28]Waterkamp D A, Engelbert M, Thoming J. On the effect of enhanced mass transfer on side reactions in capillary microreactors during high-temperature synthesis of an ionic liquid [J]. Chem. Eng. Technol,2009,32:1717-1723.
    [29]Renken A, Hessel V, Lob P, Miszczuk R, Uerdingen M, Kiwi-Minsker L. Ionic liquid synthesis in a microstructured reactor for process intensification [J]. Chem. Eng. Process., 2007,46:840-845.
    [30]Zhang J, Martin G R, DesMarteau D D. Direct methylation and trifluoroethylation of imidazole and pyridine derivatives [J]. Chem. Commun.,2003,2334-2335.
    [31]Wasserscheid P, Drieβen-Holscher B, van Hal R, Steffens H C, Zimmermann J. New, functionalised ionic liquids from Michael-type reactions-a chance for combinatorial ionic liquid development [J]. Chem. Commun.,2003,2038-2039.
    [32]Siriwardana A I, Crossley I R, Torriero A A J, Burgar I M, Dunlop N F, Bond A M, Deacon G B, MacFarlane D R. Methimazole-based ionic liquids [J]. J. Org. Chem.,2008, 73:4676-4679.
    [33]曹霞,乐长高.手性离子液体的合成[J].有机化学,2010,30:816-832.
    [34]杜大明,陈晓,花文廷.离子液体介质中有机合成及不对称催化反应研究新进展[J].有机化学,2003,23:331-343.
    [35]Ranu B C, Banerjee S. Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmim]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles [J]. Org. Lett.,2005,7:3049-3052
    [36]张庆华,王瑞峰,李作鹏,邓友全.离子液体在绿色催化和清洁合成中应用的进展[J].石油化工,2007,36:975-983.
    [37]Yi H, Liu J B, Li Q, Tang J. Suzuki coupling reaction catalyzed by cyclopalladated complexes of tertiary arylamines in ionic liquid [J]. Chin. Chem. Lett.,2005,16:1173-1176.
    [38]Yang C H, Tai C C, Huang Y T, Sun I W. Ionic liquid promoted palladium-catalyzed Suzuki cross-couplings of N-contained heterocyclic chlorides with naphthaleneboronic acids [J]. Tetrahedron,2005,61:4857-4861.
    [39]Wang, J Y, Song, G H, Peng Y Q. Reusable Pd nanoparticles immobilized on functional ionic liquid co-polymerized with styrene for Suzuki reactions in water-ethanol solution [J]. Tetrahedron Lett.,2011,52:1477-1480.
    [40]Wang R, Tw am ley B, Shreeve J M. A highly efficient, recyclable catalyst for C-C coupling reactions in ionic liquids:Pyrazolyl-functionalized N-heterocyclic carbine complex of palladium (Ⅱ) [J]. J. Org. Chem.,2006,71:426-429.
    [41]Zhang G P, Zhou H H, Hu J Q, Liu M, Kuang Y F. Pd nanoparticles catalyzed ligand-free Heck reaction in ionic liquid microemulsion [J]. Green Chem.,2009,11: 1428-1432.
    [42]Hierso J C, Boudon J, Picquet M, Meunier P. The first catalytic method for Heck alkynylation of unactivated aryl bromides (copper-free Sonogashira) in an ionic liquid:1 mol-% palladium/triphenylphosphane/pyrrolidine in [Bmim][BF4] as a simple, inexpen-sive and recyclable system [J]. Eur. J. Org. Chem.,2007,583-587.
    [43]de Lima P G, Antunes O A C. Copper-free Sonogashira cross coupling in ionic liquids [J]. Tetrahedron Lett.,2008,49:2506-2509.
    [44]李红玲,张霞,蔺红桃,齐彦兴.离子液体中无膦、无铜、钯催化的Sonogashira偶联反应的研究[J].分子催化,2009,23:412-417.
    [45]Gholap A R, Venkatesan K, Pasricha R, Daniel T, Lahoti R J, Srinivasan K V. Copper-and ligand-free Sonogashira reaction catalyzed by Pd(0) nanoparticles at ambient conditions under ultrasound irradiation [J]. J. Org. Chem.,2005,70:4869-4872.
    [46]Zheng Y F, Du X F, Bao W L. L-Proline promoted cross-coupling of vinyl bromide with thiols catalyzed by CuBr in ionic liquid [J]. Tetrahedron Lett.,2006,47:1217-1220.
    [47]Ranu B C, Banerjee S, Jana R. Ionic liquid as catalyst and solvent:the remarkable effect of a basic ionic liquid, [bmim]OH on Michael addition and alkylation of active methylene compounds [J]. Tetrahedron,2007,63:776-782.
    [48]Liang D P, Xin X, Gao H, Duan H F, Lin Y J. Guanidinium lactate ionic liquid:an efficient and recycling catalyst for Michael addition reaction [J]. Chem. Res. Chin. Univ., 2009,25:169-173.
    [49]Mi X L, Luo S Z, Xu H, Zhang L, Cheng J P. Hydroxyl ionic liquid (HIL)-immobilized quinuclidine for Baylis-Hillman catalysis:synergistic effect of ionic liquids as organocatalyst supports [J]. Tetrahedron,2006,62:2537-2544.
    [50]Natrajan A, Wen D. Facile N-alkylation of acridine esters with 1,3-propane sultone in ionic liquids [J]. Green Chem.,2011,13:913-921.
    [51]Fu X L, Zhang Z, Li C M, Wang L B, Ji H Y, Yang Y, Zou T, Gao G H. N-heterocyclic carbomethoxylation catalyzed by ionic liquids in the presence of dimethyl carbonate [J]. Catal. Commun.,2009,10:665-668.
    [52]Xin X, Guo X, Duan H F, Lin Y J, Sun H. Efficient Knoevenagel condensation catalyzed by cyclic guanidinium lactate ionic liquid as medium [J]. Catal. Commun.,2007,8: 115-117.
    [53]职慧珍.具有温控两相性质的聚乙二醇型双子离子液体及其在有机合成中的应用[D].博士学位论文.南京:南京理工大学,2009.
    [54]Miao W S, Chan T H. Ionic-liquid-supported organocatalyst:Efficient and recyclable ionic-liquid-anchored proline for asymmetric aldol reaction [J]. Adv. Synth. Catal.,2006, 348:1711-1718.
    [55]Saha D, Saha A, Ranu B C. Remarkable influence of substituent in ionic liquid in control of reaction:simple, efficient and hazardous organic solvent free procedure for the synthesis of 2-aryl benzimidazoles promoted by ionic liquid [pmim]BF4 [J]. Green Chem.,2009,11:733-737.
    [56]Kumar A, Pawar S S. Ionic liquids as powerful solvent media for improving catalytic performance of silyl borate catalyst to promote Diels-Alder reactions [J]. J. Org. Chem., 2007,72:8111-8114.
    [57]徐国津,唐玉海,魏赛丽,孙杨,傅强.负载型磺酸化席夫碱二-邻苯甲醛乙二胺(Salen)-Mn(Ⅲ)配合物催化不对称环氧化反应[J].无机化学学报,2009,8:1359-1365.
    [58]Pinto L D, Dupont J, de Souza R F, Bernardo-Gusmao K. Catalytic asymmetric epoxidation of limonene using manganese Schiff-base complexes immobilized in ionic liquids [J]. Catal. Commun,2008,9:135-139.
    [59]Herbert M, Alvarez E, Cole-Hamilton D J, Montilla F, Galindo A. Olefin epoxidation by hydrogen peroxide catalysed by molybdenum complexes in ionic liquids and structural characterisation of the proposed intermediate dioxoperoxomolybdenum species [J]. Chem. Commun.,2010,5933-5935.
    [60]Jiang N, Ragauskas A J. Selective aerobic oxidation of activated alcohols into acids or aldehydes in ionic liquids [J]. J. Org. Chem.,2007,72:7030-7033.
    [61]Qian W X, Jin E L, Bao W L, Zhang Y M. Clean and highly selective oxidation of alcohols in an ionic liquid by using an ion-supported hypervalent iodine (Ⅲ) reagent [J]. Angew. Chem. Int. Ed.,2005,44:952-955.
    [62]Mehdi H, Bodor A, Lantos D, Horvath I T, De Vos D E, Binnemans K. Imidazolium ionic liquids as solvents for Cerium(IV)-mediated oxidation reactions [J]. J. Org. Chem., 2007,72:517-524.
    [63]Sharma U K, Sharma N, Kumar R, Kumar R, Sinha A K. Biocatalytic promiscuity of lipase in chemoselective oxidation of aryl alcohols/acetates:a unique synergism of CAL-B and [hmim]Br for the metal-free H2O2 activation [J]. Org. Lett.,2009,11: 4846-4848.
    [64]He X, Chan, T H. New non-volatile and odorless organosulfur compounds anchored on ionic liquids. Recyclable reagents for Swern oxidation [J]. Tetrahedron,2006,62: 3389-3394.
    [65]Conte V, Floris B, Galloni P, Mirruzzo V, Scarso A, Sordi D, Strukul G. The Pt(II)-catalyzed Baeyer-Villiger oxidation of cyclohexanone with H2O2 in ionic liquids [J]. Green Chem.,2005,7:262-266.
    [66]Li X H, Geng W G, Zhou J X, Luo W, Wang F R, Wang L F, Tsang S C. Synthesis of multicarboxylic acid appended imidazolium ionic liquids and their application in palladium-catalyzed selective oxidation of styrene [J]. New J. Chem.,2007,31: 2088-2094.
    [67]Chiappe C, Sanzone A, Dyson P J. Styrene oxidation by hydrogen peroxide in ionic liquids:the role of the solvent on the competition between two Pd-catalyzed processes, oxidation and dimerization [J]. Green Chem.,2011,13:1437-1441.
    [68]Shi F, He Y D. Li D M, Ma Y B, Zhang Q H, Deng Y Q. Developing effective catalyst system for reductive carbonylation of nitrobenzene based on the diversity of ionic liquids [J]. J. Mol. Catal. A:Chem.,2006,244:64-67.
    [69]Boxwell C J, Dyson P J, Ellis D J, Welton T. A highly selective arene hydrogenation catalyst that operates in ionic liquid [J]. J. Am. Chem. Soc.,2002,124:9334-9335.
    [70]Virtanen P, Karhu H, Kordas K, Mikkola J P. The effect of ionic liquid in supported ionic liquid catalysts (SILCA) in the hydrogenation of α,β-unsaturated aldehydes [J]. Chem. Eng. Sci.,2007,62:3660-3671.
    [71]Hagiwara H, Nakamura T, Hoshib T, Suzuki T. Palladium-supported ionic liquid catalyst (Pd-SH-SILC) immobilized on mercaptopropyl silica gel as a chemoselective, reusable and heterogeneous catalyst for catalytic hydrogenation [J]. Green Chem.,2011,13: 1133-1137.
    [72]Li X, Eli W, Li G. Solvent-free synthesis of benzoicesters and benzyl esters in novel Br(?)nsted acidic ionic liquids under microwave irradiation [J]. Catal. Commun.,2008,9: 2264-2268.
    [73]Ranu B C, Banerjee S, Das A. Catalysis by ionic liquids:Cyclopropyl carbinyl rearrangements catalyzed by [pmim]Br under organic solvent free conditions [J]. Tetrahedron Lett.,2006,47:881-884.
    [74]Hamashima Y, Takano H, Hotta D, Sodeoka M. Immobilization and reuse of Pd complexes in ionic liquid:Efficient catalytic asymmetric fluorination and michael reactions with β-ketoesters [J]. Org. Lett.,2003,5:3225-3228.
    [75]Ranu B C, Adak L, Banerjee S. Ionic liquid promoted interrupted Feist-Benary reaction with high diastereoselectivity [J]. Tetrahedron Lett.,2008,49:4613-4617.
    [76]Kunene T E, Webb P B, Cole-Hamilton D J. Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system [J]. Green Chem., 2011,13:1476-1481.
    [77]魏作君,黄勇,刘迎新,任其龙.离子液体在非均相催化反应中的应用研究进展[J].现代化工,2007,27:13-17.
    [78]金子林,刘宁,刘春.温控液/液两相催化进展[J].化学进展,2010,22:1295-1309.
    [79]职慧珍,罗军,吕春绪,户安军.离子液体在两相催化反应中的应用[J].现代化工,2007,27:67-70.
    [80]崔锐博,章靖,李万博,田丹碧.长链离子液体的合成及性质[J].南京工业大学学报(自然科学版),2009,31:33-36.
    [81]易封萍,李积宗,陈斌.离子液体型表面活性剂研究[J].化学学报,2008,66:239-244.
    [82]Wang J, Wang H, Zhang S, Zhang H, Zhao Y. Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim] [BF4] and [Cnmim]Br (n= 4,6,8,10,12) in aqueous solutions [J]. J. Phys. Chem. B,2007,111:6181-6188.
    [83]Shang Y, Wang T, Han X, Peng C, Liu H. Effect of Ionic Liquids CnmimBr on properties of gemini surfactant 12-3-12 aqueous solution [J]. Ind. Eng. Chem. Res.,2010,49: 8852-8857.
    [84]邵丽丽,王雯娟,彭惠琦,王有菲,刘彩华,杨建国.离子液体相转移催化环己醇氧化制备环己酮[J].分子催化,2007,21:520-524.
    [85]邵丽丽,王雯娟,王有菲,龚国珍,杨建国.离子液体作相转移剂催化合成N,N-二乙基苯胺的研究[J].分子催化,2008,22:101-104.
    [86]陈学伟,宋红兵,李雪辉,王芙蓉,钱宇.咪唑根碱性离子液体在水介质Knoevenagel反应中的催化作用[J].催化学报,2011,32:693-698.
    [87]Fang Y X, Deng Y Q, Ren Q G, Huang J P, Zhang S D, Huang B H, Zhang K. Blanc reaction of aromatic compounds catalyzed by ionic liquids [J]. Chin. J. Chem. Eng., 2008,16:357-360.
    [88]Dyson P J, Ellis D J, Welton T. A temperature-controlled reversible ionic liquid-water two phase-single phase protocol for hydrogenation catalysis [J]. Can. J. Chem.,2001,79: 705-708.
    [89]Broeke J, Winter F, Deelman B J, van Koten G. A highly flourous room-temperature ionic liquid exhibiting flourous biphasic behavior and its use in catalyst recycling [J]. Org. Lett,2002,4:3851-3854.
    [90]Kong F Z, Jiang J Y, Jin Z L. Ammonium salts with polyether-tail:New ionic liquids for Rhodium catalyzed two-phase hydroformylation of 1-tetradecene [J]. Catal. Lett.,2004, 96:63-65.
    [91]Li W, Jiang J Y, Wang Y H, Jin Z L. Selective hydrogenation of SBS catalyzed by Ru/TPPTS complex in polyether modified ammonium salt ionic liquid [J]. J. Mol. Catal. A:Chem.,2004,221:47-50.
    [92]Tan B, Jiang J Y, Wang Y H, Wei L, Chen D J, Jin Z L. Thermoregulated ionic liquids and their application for the hydroformylation of 1-dodecene catalyzed by Rh/TPPTS complex [J]. Appl. Organometal. Chem.,2008,22:620-623.
    [93]Leng Y, Wang J, Zhu D, Ren X, Ge H, Shen L. Heteropolyanion-based ionic liquids: Reaction-induced self-separation catalysts for esterification [J]. Angew. Chem. Int. Ed., 2009,48:168-171.
    [94]职慧珍,罗军,马伟,吕春绪.PEG型酸性温控离子液体中芳香酸和醇的酯化反应[J].高等学校化学学报,2008,29:772-774.
    [95]Zhi H Z, Lu C X, Zhang Q, Luo J. A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans [J]. Chem. Commun.,2009,2878-2880.
    [1]俞凌翀.有机化学中的人名反应[M].北京:科学出版社,1984.
    [2]Shacklett C D, Smith H A. The application of the chloromethylation reaction to the syntheses of certain polymethylbenzenes [J]. J. Am. Chem. Soc.,1951,73:766-768.
    [3]Rabjohn N. The chloromethylation of toluene and conversion of p-xylyl chloride to terephthaloyl chloride [J]. J. Am. Chem. Soc.,1954,76:5479-5481.
    [4]Johns W F. Chloromethylation of estrone methyl ether [J]. J. Org. Chem.,1965,30: 3993-3994.
    [5]Wightman R H, Laycock D E, Avdovich H W. Chloromethylation of ortho-disubstituted benzenes. A simple preparation of some useful a-isomers of indan, tetralin, and benzosuberane [J]. J. Org. Chem.,1978,43:2167-2170.
    [6]McCarthy J R, Huffman J C. The chloromethylation of 1-bromo-2-methoxy-naphthalene. A revised structure for the product [J]. J. Org. Chem.,1984,49:4995-4997.
    [7]Mirviss S B. Chloromethylation process [P]. US Patent 4901903,1985.
    [8]Barker R H, Collman J P, Marshall R L. Reactions of metal chelates. VII. Dimethylaminomethylation and chloromethylation of metal acetylacetonates [J]. J. Org. Chem.,1964,29:3216-3220.
    [9]Pisanenko D A, Smirnov-Zamkov Y I. chloromethylation of benzyltoluenes with chlorodimethyl ether [J]. Russ. J. Appl. Chem.,2004,77:513-514.
    [10]Okada Y, Kaneko M, Nishimura J. Chloromethylation of syn-[2.n]metacyclophanes and application toward multi-bridged cyclophane synthesis [J]. Tetrahedron Lett.,2001,42: 25-27.
    [11]Pinnell R P, Khune G D, Khatri N A, Manatt S L. Concerning the chloromethylation of alkylbenzenes and polystyrenes by chloromethyl methyl ether [J]. Tetrahedron lett.,1984, 25:3511-3514.
    [12]Xu F J, Zhao J P, Kang E T, Neoh K G. Surface functionalization of polyimide films via chloromethylation and surface-initiated atom transfer radical polymerization [J]. Ind. Eng. Chem. Res.,2007,46:4866-4873.
    [13]Olah G. A. Friedel crafts and related reactions [M]. Wiley:New York,1964.
    [14]Brown H C, Nelson K L. An interpretation of meta orientation in the alkylation of toluene. The relative reactivity and isomer distribution in the chloromethylation and mercuration of benzene and toluene [J]. J. Am. Chem. Soc.,1953,75:6292-6299.
    [15]Granger R, Orzalesi H, Muratelle A. Reactions of o-xylene [J]. Compt. Rend.,1959,249: 2337.
    [16]Zwanenburg D J, Haan H D, Wynberg H. The synthesis of 4,6-dihydrothieno[3,4-b] thiophene [J]. J. Org. Chem.,1966,31:3363-3365.
    [17]Barker P L, Bahia C.4-Chloromethylation of 1-methyl-2-pyrryl ketones [J]. Tetrahedron, 1990,46:2691-2694.
    [18]Stephen D. Process for the production of chloromethyl phenethyl bromide [P]. EP Patent 345478,1989.
    [19]Thomas P J, Pews R G. Process for preparing 3-chloromethylbenzo-cyclobutene [P]. US Patent 5099083,1991.
    [20]Fuson R. C, McKeever C H. Chloromethylation of aromatic compounds in organic reactions [M]. John Wiley and Sons:New York,1942.
    [21]Wolf G. Preparation of polycyclic aromatic hydrocarbons as potential carcinogens [J]. J. Am. Chem. Soc.,1953,75:2673-2678.
    [22]Moshchinskaya N K, Chizh G K, Olifer V S. The chloromethylation of a serial aryl hydrocarbon [P]. US Patent 405880,1974.
    [23]Kishida T, Ieda N, Yamauchi T, Komura K, Sugi, Y. Strong organic acids as efficient catalysts for the chloromethylation of m-xylene:the synthesis of 1,3-bis(chloromethyl)-4,6-dimethylbenzene [J]. Ind. Eng. Chem. Res.,2009,48:1831-1839.
    [24]Kobayashi S. Rare earth trifluoromethanesulfonates as water-tolerant Lewis acid catalysts in organic synthesis [J]. Synlett.,1994, (9):689-701.
    [25]Barrett A G M, Braddock D C. Scandium(Ⅲ) triflates as recyclable catalysts for the direct acetylation of alcohols with acetic acid [J]. Chem. Commun.,1997, (4):351-352.
    [26]Kishida T, Yamauchi T, Kubota Y, Sugi Y. Rare-earth metal triflates as versatile catalysts for the chloromethylation of aromatic hydrocarbons [J]. Green Chem.,2004,6: 57-62.
    [27]Kishida T, Yamauchi T, Komura K, Kubota Y, Sugi Y. The chloromethylation of biphenyls catalyzed by group 3 and 4 metal triflates [J]. J. Mol. Catal. A:Chem.,2006, 246 (12):268-275.
    [28]Adams F S, Chloromethylation process [P]. US patent 3723548,1973.
    [29]牟莉娟,蒋文伟,夏素兰.1,3-苯并二嗯茂的微胶束催化氯甲基化新技术[J].应用化学,2000,17:563-565.
    [30]刘启发,高保娇,杨云峰,安富强.胶束催化作用下实现聚苯乙烯的氯甲基化[J].高等学校化学学报,2006,27:380-385.
    [31]Liu Q F, Lu M, Li Y Q, Li J. Effect of organic electrolyte on chloromethylation of 2-bromoethylbenzene in micellar catalytic system [J]. J. Mol. Catal. A:Chem.,2007, 277:113-118.
    [32]Liu Q F, Wei W, Lu M, Sun F, Li J, Zhang Y C. Chloromethylation of aromatic compounds catalyzed by surfactant micelles in oil-water biphasic system [J]. Catal. Lett., 2009,131:485-493.
    [33]Selva M, Trotta F, Tundo P. Improved selectivity in chloromethylation of alkylbenzenes in presence of quaternary ammonia salts [J]. Synthesis,1991,1003-1004.
    [34]Kachurin O L, Zaraiskii A P, Velichko L L, Zaraiskaya N A, Matvienko N M, Okhrimenko Z A. Phase-transfer catalysis in reactions of electrophilic aromatic substitution [J]. Russ. Chem. Bull.,1995,44:1815-1821.
    [35]王明慧,吴坚平,杨立荣.相转移催化法合成2-氯-3-氯甲基-噻吩及噻康唑[J].应用化学,2006,23:106-108.
    [36]Wang Y, Shang Z C, Wu T X. [emim]BF4-promoted chloromethylation of aromatic hydrocarbons [J]. Synth. Commun.,2006,36:3053-3059.
    [37]乔煜,邓全友.氯铝酸温室离子液体介质中Blanc氯甲基化反应的研究[J].化学学报,2003,61:133-136.
    [38]Fang Y X, Deng Y Q, Ren Q G, Huang J P, Zhang S D, Huang B H, Zhang K. Blanc reaction of aromatic compounds catalyzed by ionic liquids [J]. Chin. J. Chem. Eng., 2008,16:357-360.
    [39]职慧珍.具有温控两相性质的聚乙二醇型双子离子液体及其在有机合成中的应用[D].博士学位论文.南京:南京理工大学,2009.
    [40]Kuroda N., Nakamura T. Manufacturing of 4,4'-bis(chloromethyl birphenyl) as in termediate for fluorescent brightener and epoxy resin [P]. JP Patent 11080047,1999.
    [1]Trost B M, Crawley M L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis [J]. Chem. Rev.,2003,103:2921-2944.
    [2]Lawrence S A. Amines:Synthesis, properties and applications [M]. Cambridge University: Cambridge,2004.
    [3]Yang B H, Buchwald S L. Palladium-catalyzed amination of aryl halides and sulfonates [J]. J. Organomet. Chem.,1999,576:125-146.
    [4]Hartwig J F. Modern arene chemistry [M]. Wiley-VCH:Weinheim,2002.
    [5]Muci A R, Buchwald S L. Practical palladium catalysts for C-N and C-O bond formation [J]. Top. Curr. Chem.,2002,219:131-209.
    [6]Hesse S, Kirsch G. Selective palladium-catalyzed amination of (3-chloroacroleins by substituted anilines [J]. Tetrahedron,2005,61:6534-6539.
    [7]Fleckenstein C A, Plenio H.9-Fluorenylphosphines for the Pd-catalyzed Sonogashira, Suzuki, and Buchwald-Hartwig coupling reactions in organic solvents and water [J]. Chem. Eur. J.,2007,13:2701-2716.
    [8]Xu C, Gong J F, Wu Y J. Amination of aryl chlorides in water catalyzed by cyclopalladated ferrocenylimine complexes with commercially available monophosphinobiaryl ligands [J]. Tetrahedron Lett,2007,48:1619-1623.
    [9]Shen Q L, Hartwig J F. [(CyPF-'Bu)PdCl2]:an air-Stable, one-component, highly efficient catalyst for amination of heteroaryl and aryl halides [J]. Org. Lett.,2008,10:4109-4112.
    [10]Fors B P, Watson D A, Biscoe M R, Buchwald S L. A highly active catalyst for Pd-catalyzed amination reactions:cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides [J]. J. Am. Chem. Soc,2008,130:13552-13554.
    [11]Barluenga J, Valdes C. Palladium catalyzed alkenyl amination:from enamines to heterocyclic synthesis [J]. Chem. Commun.,2005,4891-4901.
    [12]Hartung C G, Tillack A, Trauthwein H, Beller M. A convenient Rhodium-catalyzed intermolecular hydroamination procedure for terminal alkynes [J]. J. Org. Chem.,2001, 66:6339-6343.
    [13]Takemiya A, Hartwig J F. Rhodium-catalyzed intramolecular, Anti-Markovnikov hydroamination. Synthesis of 3-arylpiperidines [J]. J. Am. Chem. Soc.,2006,128: 6042-6043.
    [14]Liu Z, Hartwig J F. Mild, Rhodium-catalyzed intramolecular hydroamination of unactivated terminal and internal olefins with primary and secondary amines [J]. J. Am. Chem. Soc.,2008,130:1570-1571.
    [15]Kim M, Chang S. Rhodium(NHC)-catalyzed amination of aryl bromides [J]. Org. Lett., 2010,12:1640-1643.
    [16]Bolm C, Hildebrand J P, Rudolph J. Catalytic coupling of aryl sulfonates with sp2-hybridized nitrogen nucleophiles:Palladium-and nickel-catalyzed synthesis of N-aryl sulfoximines [J]. Synthesis,2000,911-913.
    [17]Gradel B, Brenner E, Schneider R, Fort Y. Nickel-catalysed amination of aryl chlorides using a dihydroimidazoline carbene ligand [J]. Tetrahedron Lett.,2001,42:5689-5692.
    [18]Desmarets C, Schneider R, Fort Y. Nickel(0)/Dihydroimidazol-2-ylidene complex catalyzed coupling of aryl chlorides and amines [J]. J. Org. Chem.,2002,67:3029-3036.
    [19]Gao C Y, Cao X B, Yang L M. Nickel-catalyzed cross-coupling of diarylamines with haloarenes [J]. Org. Biomol. Chem.,2009,7:3922-3925.
    [20]Chen C, Yang L M. Ni(Ⅱ)-(σ-Aryl) Complex:A facile, efficient catalyst for Nickel-catalyzed carbon-nitrogen coupling reactions [J]. J. Org. Chem.,2007.72:6324-6327.
    [21]Monnier F, Taillefer M. Catalytic C-C, C-N and C-O Ullmann-type coupling reactions: Copper makes a difference [J]. Angew. Chem. Int. Ed.,2008,47:3096-3099.
    [22]Lang F R, Zewge D, Houpis I N, Volante R P. Amination of aryl halides using copper catalysis [J]. Tetrahedron Lett.,2001,42:3251-3254.
    [23]Xu H H, Wolf C. Copper catalyzed coupling of aryl chlorides, bromides and iodides with amines and amides [J]. Chem. Commun.,2009,1715-1717.
    [24]Huang Y Z, Gao J, Ma H, Miao H, Xu J. Ninhydrin:an efficient ligand for the Cu-catalyzed N-arylation of nitrogen-containing heterocycles with aryl halides [J]. Tetrahedron Lett.,2008,49:948-951.
    [25]Reddy K R, Kumar N S, Sreedhar B, Kantam M L. N-Arylation of nitrogen heterocycles with aryl halides and arylboronic acids catalyzed by cellulose supported copper(O) [J]. J. Mol. Catal. A:Chem.,2006,252:136-141.
    [26]Klapars A, Huang X H, Buchwald S L. A general and efficient copper catalyst for the amidation of aryl halides [J]. J. Am. Chem. Soc.,2002,124:7421-7428.
    [27]Lu Z K, Twieg R J. Copper-catalyzed aryl amination in aqueous media with 2-dimethylaminoethanol ligand [J]. Tetrahedron Lett.,2005,46:2997-3001.
    [28]Kubo T, Katoh C, Yamada K, Okano K, Tokuyama H, Fukuyama T. A mild inter-and intramolecular amination of aryl halides with a combination of Cul and CsOAc [J]. Tetrahedron,2008,64:11230-11236.
    [29]Chen J M, Yuan T J, Hao W Y, Cai M Z. Simple and efficient CuI/PEG-400 system for amination of aryl halides with aqueous ammonia [J]. Tetrahedron Lett.,2011,52: 3710-3713.
    [30]Yan J C, Zhou L, Wang L. Amination reactions of aryl halides with nitrogen-containing reagents catalyzed by Cul in ionic liquid [J]. Chin. J. Chem.,2008,26:165-169.
    [31]Arnauld T, Barton D H R, Doris E. The chemistry of pentavalent organobismuth reagents. Part 14. Recent advances in the copper-catalyzed phenylation of amines [J]. Tetrahedron, 1997,53:4137-4144.
    [32]Mao J C, Guo J, Song H L, Ji S J. Copper-catalyzed amination of aryl halides with nitrogen-containing heterocycle using hippuric acid as the new ligand [J]. Tetrahedron, 2008,64:1383-1387.
    [33]Sarrafi Y, Mohadeszadeh M, Alimohammadi K. Microwave-assisted chemoselective copper-catalyzed amination of o-chloro and o-bromobenzoic acids using aromatic amines under solvent free conditions [J]. Chin. Chem. Lett.,2009,20:784-788.
    [34]Zhu D, Wang R L, Mao J C, Xu L, Wu F, Wan B S. Efficient copper-catalyzed amination of aryl halides with amines and N-H heterocycles using rac-BINOL as ligand [J]. J. Mol. Catal. A:Chem.,2006,256:256-260
    [35]Son S U, Park I K, Park J, Hyeon T. Synthesis of CU2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides [J]. Chem. Commun.,2004,778-779.
    [36]Gujadhur R K, Bates C G, Venkataraman D. Formation of aryl-nitrogen, aryl-oxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts [J]. Org. Lett.,2001, 3:4315-4317.
    [37]Sperotto E, van Klink G P M, de Vries J G, van Koten G. C-N Coupling of nitrogen nucleophiles with aryl and heteroaryl bromides using aminoarenethiolato-copper(I) (pre-)catalyst [J]. Tetrahedron,2010,66:3478-3484.
    [38]Tye J W, Weng Z Q, Johns A M, Incarvito C D, Hartwig J F. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides [J]. J. Am. Chem. Soc.,2008,130:9971-9983.
    [39]Likhar P R, Roy S, Roy M, Kantam M L, De R L. Silica immobilized copper complexes: Efficient and reusable catalysts for N-arylation of N(H)-heterocycles and benzyl amines with aryl halides and arylboronic acids [J]. J. Mol. Catal. A:Chem.,2007,271:57-62.
    [40]Bolliger J L, Frech C M. Transition metal-free amination of aryl halides-A simple and reliable method for the efficient and high-yielding synthesis of N-arylated amines [J]. Tetrahedron,2009,65:1180-1187.
    [41]Bio M M, Cleator E, Davies A J, Hamilton S E, Lawrence A, Sheen F J, Stewart G W, Wilson R D. Regioselective coupling reactions of 2,4-diaminopyridine derivatives with aryl halides:The synthesis of elaborated pyridines [J]. Tetrahedron,2009,65: 8950-8955.
    [42]Yadav J S, Reddy B V S, Basak A K, Narsaiah A V. [Bmim]PF6 and BF4 ionic liquids as novel and recyclable reaction media for aromatic amination [J]. Tetrahedron Lett.,2003, 44:2217-2220.
    [1]Baes C F, Mesmer R E. The hydrolysis of cations [M]. John Wiley:New York,1976.
    [2]Sarrouh B F, Silva S S, Santos D T, Converti A. Technical/economical evaluation of sugarcane bagasse hydrolysis for bioethanol production [J]. Chem. Eng. Technol.,2007, 30:270-275.
    [3]Sisido K, Kazama Y, Kodama H, Nozaki H. Condensation of t-butyl esters with organic halides in the presence of alkali amides [J]. J. Am. Chem. Soc.,1959,81:5817-5819.
    [4]Blay G, Cardona M L, Garcia M B, Pedro J R. A selective hydrolysis of aryl acetates [J]. Synthesis,1989,438-439.
    [5]Carey F A, Sundberg R J. Advanced organic chemistry [M]. Plenum Press:New York, 1990.
    [6]Smith M B, March J. Advanced organic chemistry:Reactions, mechanisms, and structure [M]. Wiley-Interscience:New York,2007.
    [7]Tagaki W, Fukushima D, Eiki T, Yano Y. Functional micelles.8. Micellar catalysis of the hydrolysis of substituted phenyl carboxylates by imidazole containing cationic surfactants [J]. J. Org. Chem.,1979,44:555-563.
    [8]Zhang Y, Liu F, Xiang Q, Xiong J. Micellar catalysis of p-nitrophenyl picolinate with ternary complexes [J]. J. Disper. Sci. Technol.,2004,25:149-156.
    [9]Lawin L R, Fife W K, Tian C X. Hydrolysis of p-nitrophenyl esters in the presence of polymer micelles. Selectivity and biphasic behavior with increasing ester concentration [J]. Langmuir,2000,16:3583-3587.
    [10]Iglesias E. Ethyl cyclohexanone-2-carboxylate in aqueous micellar solutions.1. Ester hydrolysis in cationic and nonionic micelles [J]. J. Phys. Chem. B,2001,105:10287-10294.
    [11]Bunton C A, Savelli G. Organic reactivity in aqueous micelles and similar assemblies [J]. Adv. Phys. Org. Chem.,1986,22:213-309.
    [12]Lee J J, Ford W T. Acceleration of o-iodosobenzoate-catalyzed hydrolysis of p-nitrophenyl diphenyl phosphate by cationic polymer colloids [J]. J. Am. Chem. Soc., 1994,116:3753-3759.
    [13]Miller P D, Spivey H O, Copeland S L, Sanders R, Woodruff A, Gearhart D, Ford W T. Analysis of the kinetics of hydrolysis of p-nitrophenyl alkanoates in colloidal polymer dispersions by an ion-exchange model [J]. Langmuir,2000,16:108-114.
    [14]Sakakibara M, Wang D, Takahashi R, Takahashi K, Mori S. Influence of ultrasound irradiation on hydrolysis of sucrose catalyzed by invertase [J]. Enzyme Microb. Technol., 1996,18:444-448.
    [15]Salmar S, Cravotto G, Tuulmets A, Hagu H. Effect of ultrasound on the base-catalyzed hydrolysis of 4-nitrophenyl acetate in aqueous ethanol [J]. J. Phys. Chem. B,2006,110: 5817-5821.
    [16]Chen L, Li B, Li D, Gan J, Jiang W, Kitamura Y. Ultrasound-assisted hydrolysis and acidogenesis of solid organic wastes in a rotational drum fermentation system [J]. Bioresour Technol.,2008,99:8337-8343.
    [17]Caddick S. Microwave assisted organic reactions [J]. Tetrahedron,1995,51:10403-10432.
    [18]Yu H M, Chen S T, Suree P, Nuansri R, Wang K T. Effect of microwave irradiation on acid-catalyzed hydrolysis of starch [J]. J. Org. Chem.,1996,61:9608-9609.
    [19]Singh V, Tiwari A, Kumari P, Tiwari S. Microwave-promoted hydrolysis of plant seed gums on alumina support [J]. Carbohydr. Res.,2006,341:2270-2274.
    [20]Zhu Y, Ford W T. Hydrolysis of p-nitrophenyl esters in mixtures of water and a fluorous solvent [J]. Langmuir,2009,25:3435-3439.
    [21]Bevilaqua J V, Lima L M, Cunha A G, Barreiro E J, Alves T L M, Paiva L M C, Freire D M G. Hydrolysis of new phthalimide-derived esters catalyzed by immobilized lipase [J]. Appl. Biochem. Biotech.,2005,121-124:117-128;
    [22]Miyazawa T, Imagawa K, Minowa H, Yamada T. Studies on the enhancement of enantioselectivity in the microbial protease-catalyzed hydrolysis of N-free non-protein amino acid esters [J]. J. Mol. Catal. B:Enzym.,2006,38:73-75.
    [23]Guler M O, Stupp S I.A self-assembled nanofiber catalyst for ester hydrolysis [J]. J. Am. Chem. Soc.,2007,129:12082-12083.
    [24]Kotsuki H, Kataoka M, Nishizawa H. High pressure-promoted uncatalyzed hydrolysis of epoxides [J]. Tetrahedron Lett.,1993,34:4031-4034.
    [25]Wang Z, Cui Y T, Xu Z B, Qu J. Hot water-promoted ring-opening of epoxides and aziridines by water and other nucleopliles [J]. J. Org. Chem.,2008,73:2270-2274.
    [26]Saito A, Shirasawa T, Tanahashi S, Uno M, Tatsumi N, Kitsuki T. An efficient synthesis of glyceryl ethers:catalyst-free hydrolysis of glycidyl ethers in water media [J]. Green Chem.,2009,11:753-755.
    [27]Aoyama H, Tokunaga M, Hiraiwa S, Shirogane Y, Obora Y, Tsuji Y. Hydrolysis of alkenyl esters and ethers catalyzed by metal complexes [J]. Org. Lett.,2004,6:509-512.
    [28]Bhattacharya S, Kumari N. Metallomicelles as potent catalysts for the ester hydrolysis reactions in water [J]. Coord. Chem. Rev.,2009,253:2133-2149.
    [29]Tang S P, Zhou Y H, Chen H Y, Zhao C Y, Mao Z W, Ji L N. Ester hydrolysis by a cyclodextrin dimer catalyst with a tridentate N,N',N"-zinc linking group [J]. Chem. Asian J.,2009,4:1354-1360.
    [30]Kong L Y, Zhu H F, Okamura T, Mei Y H, Sun W Y, Ueyama N. Dinuclear zinc(Ⅱ) complex with novel tripodal polyamine ligand:synthesis, structure and kinetic study of carboxy ester hydrolysis [J]. J. Inorg. Biochem.,2006,100:1272-1279.
    [31]Polyzos A, Hughes A B, Christie J. R. Catalysis of aryl ester hydrolysis in the presence of metallomicelles containing a copper(Ⅱ) diethylenetriamine derivative [J]. Langmuir, 2007,23:1872-1879.
    [32]Zhou Y H, Zhao M, Sun H, Mao Z W, Ji L N. Effect of cyclodextrin dimers with bipyridyl and biphenyl linking groups on carboxyl ester hydrolysis catalyzed by zinc complex [J]. J. Mol. Catal. A:Chem.,2009,308:61-67.
    [33]Tlili A, Xia N, Monnier F, Taillefer M. A very simple copper-catalyzed synthesis of phenols employing hydroxide salts [J]. Angew. Chem. Int. Ed.,2009,48:8725-8728.
    [34]Sergeev A G, Schulz T, Torborg C, Spannenberg A, Neumann H, Beller M. Palladium-catalyzed hydroxylation of aryl halides under ambient conditions [J]. Angew. Chem. Int. Ed.,2009,48:7595-7599.
    [35]Tokunaga M, Aoyama H, Kiyosu J, Shirogane Y, Iwasawa T, Obora Y, Tsuji Y. Metal complexes-catalyzed hydrolysis and alcoholysis of organic substrates and their application to kinetic resolution [J]. J. Organomet. Chem.,2007,692:472-480.
    [36]Chiappe C, Leandri E, Hammock B D, Morisseau C. Effect of ionic liquids on epoxide hydrolase-catalyzed synthesis of chiral 1,2-diols [J]. Green Chem.,2007,9:162-168.
    [37]Zhao D B, Wu M, Kou Y, Min E. Ionic liquids:applications in catalysis [J]. Catal. Today, 2002,74:157-189.
    [38]Lindberg D, Revenga M F, Widersten M. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis [J]. J. Biotechn.,2010,147:169-171.
    [1]Sawyer J S. Recent advances in diaryl ether synthesis [J]. Tetrahedron,2000,56: 5045-5065.
    [2]Buckingham J. Dictionary of natural products [M]. University Press:Cambridge MA, 1994.
    [3]Hassner A, Stumer C. Organic synthesis based on name reactions and unnamed reactions [M]. Pergamon:Kidlington,1994.
    [4]Paul S, Gupta M. Zinc-catalyzed Williamson ether synthesis in the absence of base [J]. Tetrahedron Lett.,2004,45:8825-8829.
    [5]Lindley J. Copper assisted nucleophilic substitution of aryl halogen [J]. Tetrahedron,1984, 40:1433-1456.
    [6]Niu J, Zhou H, Li Z, Xu J, Hu S. An Efficient Ullmann-type C-O bond formation catalyzed by an air-stable copper(Ⅰ)-bipyridyl complex [J]. J. Org. Chem.,2008,73:7814-7817.
    [7]Zhang Q, Wang D, Wang X, Ding K. (2-Pyridyl)acetone-promoted Cu-catalyzed O-arylation of phenols with aryl iodides, bromides, and chlorides [J]. J. Org. Chem.,2009, 74:7187-7190.
    [8]Fagan P J, Hauptman E, Shapiro R, Casalnuovo A. Using intelligent/random library screening to design focused libraries for the optimization of homogeneous catalysts: Ullmann ether formation [J]. J. Am. Chem. Soc.,2000,122:5043-5051.
    [9]Cai Q, Zou B, Ma D. Mild Ullmann-type biaryl ether formation reaction by combination of ortho-substituent and ligand effects [J]. Angew. Chem. Int. Ed.,2006,45:1276-1279.
    [10]Buck E, Song Z J, Tschaen D, Dormer P G, Volante R P, Reider P J. Ullmann diaryl ether synthesis:Rate acceleration by 2,2,6,6-tetramethylheptane-3,5-dione [J]. Org. Lett., 2002,4:1623-1626.
    [11]Chen Y J, Chen H H. 1,1,1-Tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols [J]. Org. Lett.,2006,8:5609-5612.
    [12]Cristau H J, Cellier P P, Hamada S, Spindler J F, Tailefer M. A general and mild Ullmann-type synthesis of diaryl ethers [J]. Org. Lett.,2004,6:913-916.
    [13]Rao H, Jin Y, Fu H, Jiang Y, Zhao Y. A versatile and efficient ligand for formation of copper-catalyzed C-N, C-O and P-C bonds:Pyrrolidine-2-phosphonic acid phenyl monoester [J]. Chem. Eur. J.,2006,12:3636-3646.
    [14]Gujadhur R K, Venkataraman D. Synthesis of diaryl ethers using an easy-to-prepare, air-stable, soluble copper(Ⅰ) catalyst [J]. Synth. Commun.,2001,31:2865-2879.
    [15]Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Formation of aryl-nitrogen, aryl-oxygen, and aryl-carbon bonds using well-defined Copper(Ⅰ)-based catalysts [J]. Org. Lett.,2001,3:4315-4317.
    [16]Ouali A, Spindler J F, Jutand A C, Taillefer M. Nitrogen ligands in copper-catalyzed arylation of phenols:Structure/activity relationships and applications [J]. Adv. Synth. Catal.,2007,349:1906-1916.
    [17]Ouali A, Laurent R, Caminade A M, Majoral J P, Taillefer M. Enhanced catalytic properties of copper in O-and N-arylation and vinylation reactions, using phosphorus dendrimers as ligands [J]. J. Am. Chem. Soc.,2006,128:15990-15591.
    [18]Naidu A B, Jaseer E A, Sekar G. General, mild, and intermolecular Ullmann-type synthesis of diaryl and alkyl aryl ethers catalyzed by diol-copper(Ⅰ) complex [J]. J. Org. Chem.,2009,74:3675-3679.
    [19]Chen W, Li J, Fang D, Feng C, Zhang C. Copper-catalyzed one-pot multicomponent coupling reaction of phenols, amides, and 4-bromphenyl iodide [J]. Org. Lett.,2008,10: 4565-4568.
    [20]Liu X, Fu H, Jiang Y, Zhao Y. Highly efficient copper-catalyzed O-arylation using readily available (S)-N-methylpyrrolidine-2-carboxamide as the ligand [J]. Synlett, 2008,221-224.
    [21]Kataoka N, Shelby Q, Stambuli J, Hartwig J. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O bond-forming cross-couplings [J]. J. Org. Chem.,2002,67:5553-5566.
    [22]Vorogushin A V, Huang X, Buchwald S L. Use of tunable ligands allows for intermolecular Pd-catalyzed C-O bond formation [J]. J. Am. Chem. Soc,2005,127: 8146-8149.
    [23]Andersonv K W, Ikawa T, Tundel R E, Buchwald S L. The selective reaction of aryl halides with KOH:Synthesis of phenols, aromatic ethers, and benzofurans [J]. J. Am. Chem. Soc.,2006,128:10694-10695
    [24]Milton E J, Fuentes J A, Clarke M L. Palladium-catalysed synthesis of aryl-alkyl ethers using alkoxysilanes as nucleophiles [J]. Org. Biomol. Chem.,2009,7:2645-2648.
    [25]Gowrisankar S, Neumann H, Beller M. Palladium-catalyzed synthesis of arylpropargyl ethers [J]. ChemCatChem,2011,3:1439-1441.
    [26]Chan D M T, Monaco K L, Wang R P, Winters M P. New N-and O-arylations with phenylboronic acids and cupric acetate [J]. Tetrahedron Lett.,1998,39:2933-2936.
    [27]Sagar A D, Tale R H, Adude R N. Synthesis of symmetrical diaryl ethers from arylboronic acids mediated by copper(Ⅱ) acetate [J]. Tetrahedron Lett.,2003,44: 7061-7063.
    [28]Lam P Y S, Vincent G, Clark C G, Deudon S, Jadhav P K. Copper-catalyzed general C-N and C-O bond cross-coupling with arylboronic acid [J]. Tetrahedron Lett.,2001,42: 3415-3418.
    [29]Lam P Y S, Vincent G, Bonne D, Clark C G. Copper-promoted/catalyzed C-N and C-O bond cross-coupling with vinylboronic acid and its utilities [J]. Tetrahedron Lett.,2003, 44:4927-4931.
    [30]Bistri O, Correa A, Bolm C. Iron-catalyzed C-O cross-couplings of phenols with aryl iodides [J]. Angew. Chem. Int. Ed.,2008,47:586-588.
    [31]Namboodiri V V, Polshettiwar V, Varma R S. Expeditious oxidation of alcohols to carbonyl compounds using iron(Ⅲ) nitrate [J]. Tetrahedron Lett.,2007,48:8839-8842.
    [32]Sherry B D, Furstner A. The promise and challenge of iron-catalyzed cross coupling [J]. Ace. Chem. Res.,2008,41:1500-1511.
    [33]Joshi G, Adimurthy S. New methodD for the synthesis of benzyl alkyl ethers mediated by FeSO4 [J]. Synth. Commun,2011,41:720-728.
    [34]Mann G, Hartwig J F. Nickel-vs Palladium-catalyzed synthesis of protected phenols from aryl halides [J]. J. Org. Chem.,1997,62:5413-5418.
    [35]Robinson M W C, Buckle R, Mabbett I, Grant G M, Graham A E. Mesoporous aluminosilicate promoted alcoholysis of epoxides [J]. Tetrahedron Lett.,2007,48: 4723-4725.
    [36]Benyahya S, Monnier F, Taillefer M, Man M W C, Bied C, Ouazzanib F. Efficient and versatile sol-gel immobilized copper catalyst for Ullmann arylation of phenols [J]. Adv. Synth. Catal.,2008,350:2205-2208.
    [37]Robinson M W C, Davies A M, Buckle R, Mabbett I, Taylor S H, Graham A E. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates [J]. Org. Biomol. Chem.,2009,7:2559-2564.
    [38]Zvagulis A, Bonollo S, Lanari D, Pizzo F, Vaccaro L.2-tert-Butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine supported on polystyrene (PS-BEMP) as an efficient recoverable and reusable catalyst for the phenolysis of epoxides under solvent-free conditions [J]. Adv. Synth. Catal.,2010,352:2489-2496.
    [39]Benyahya S, Monnier F, Man M W C, Bied C, Ouazzani F, Taillefer M. Sol-gel immobilized and reusable copper-catalyst for arylation of phenols from aryl bromides [J]. Green Chem.,2009,11:1121-1123.
    [1]Hudlicky M. Oxidation in organic chemistry [M]. American Chemical Society: Washington DC,1990.
    [2]Larock R C. Comprehensive organic transformations [M]. John Wiley:New York,1999.
    [3]Angyal S J, Morris P J, Tetaz J R, Wilson J G. The Sommelet reaction. Part Ⅲ. The choice of solvent and the effect of substituents [J]. J. Chem. Soc.,1950,2141-2145.
    [4]Ferguson L. The synthesis of aromatic aldehydes [J]. Chem. Rev.,1946,38:227-254.
    [5]Hass H B, Myron L B, The reaction of benzyl halides with the sodium salt of 2-nitropropane. A general synthesis of substituted benzaldehydes [J]. J. Am. Chem. Soc., 1949,71:1767-1769.
    [6]Klanderman B H. Aldehyde synthesis. A study of the preparation of 9,10-anthracene-dicarboxaldehyde and other aromatic dialdehydes [J]. J. Org. Chem.,1966,31:2618-2620.
    [7]Krohnke P F. Syntheses using pyridinium salt (Ⅳ) [J]. Angew. Chem. Int. Ed.,1963,2: 380-393.
    [8]Kornblum J W, Powers O J. A new and selective method of oxidation:the conversion of alkyl halides and alkyl tosylates to aldehydes [J]. J. Am. Chem. Soc.,1959,81:4113-4114.
    [9]Barbry D, Champagne P. Fast synthesis of aromatic aldehydes from benzylic bromides without solvent under microwave irradiation [J]. Tetrahedron Lett.,1996,37:7725-7726.
    [10]Chandrasekhar S, Sridhar M. A bifunctional approach towards the mild oxidation of organic halides:2-dimethylamino-N,N-dimethylaniline N-oxide [J]. Tetrahedron Lett., 2000,41:5423-5425.
    [11]Griffith W P, Jolliffe J M, Ley S V, Springhorn K F, Tiffin P D. Oxidation of activated halides to aldehydes and ketons by N-methylmorpholine-N-oxide [J]. Synth. Commun., 1992,22:1967-1971.
    [12]Godfrey A G, Ganem B. Ready oxidation of halides to aldehydes using trimethylamine N-oxide in dimethylsulfoxide [J]. Tetrahedron Lett.,1990,31:4825-4826.
    [13]Kornblum J W, Powers O J. Anew and selective method of oxidation:the conversion of alkyl halides and alkyl tosylates to aldehydes [J]. J. Am. Chem. Soc.,1959,81:4113-4114.
    [14]Helms A, Heiler D, Melendon G. Electron transfer in bis-porphyrin donor-acceptor compounds with polyphenylene spacera show a weak distance dependence [J]. J. Am. Chem. Soc,1992,114:6227-6238.
    [15]Xu G, Wu J P, Ai X A, Yang L R. Microwave-assisted Kornblum oxidation of organic halides [J]. Chin. Chem. Lett.2007,18:643-646.
    [16]Dave P, Byun H S, Engel R. An improved direct oxidation of alkyl halides to aldehydes [J]. Synth. Commun.,1986,16:1343-1346.
    [17]McKillop A, Ford M E. An improved procedure for the conversion of benzyl halides into benzaldehydes [J]. Synth. Commun.,1974,4:45-50.
    [18]Khodaei M M, Khosropour A R, Jowkar M. Bi(NO3)3·5H2O-TBAF as an efficient reagent for in situ oxidation:dihydropyrimidinone formation from benzyl halides [J]. Synthesis,2005,1301-1304.
    [19]Liu Q F, Lu M, Sun F, Li J, Zhao Y B. Oxidation of benzyl halides to aldehydes and ketones with potassium nitrate catalyzed by phase-transfer catalyst in aqueous media [J]. Synth. Commun.,2008,38:4188-4197.
    [20]Das S, Panigrahi A K, Maikap G C. NalO4-DMF:a novel reagent for the oxidation of organic halides to carbonyl compounds [J]. Tetrahedron Lett.,2003,44:1375-1377.
    [21]Syper L, Meochowski J. A convenient oxidation of halomethylarenes and alcohols to aldehydes with dimethyl selenoxide and potassium benzeneselenite [J]. Synthesis,1984, 747-751.
    [22]Sibi M P, Shankaran K, Alo B I, Hahn W R, Snieckus V. Overriding normal Friedel-Craft regiochemistry in cycliacylation. Regiospecific carbodesilylation and Parham cyclization routes to 7-methoxy-l-indanols [J]. Tetrahedron Lett.,1987,28:2933-2936.
    [23]Tang J T, Zhu J L, Shen Z X, Zhang Y W. Efficient and convenient oxidation of organic halides to carbonyl compounds by H2O2 in ethanol [J]. Tetrahedron Lett.,2007,48: 1919-1921.
    [24]Li C B, Zheng P W, Li J, Zhang H, Cui Y, Shao Q Y, Ji X, Zhang J, Zhang P Y, Xu Y L. The dual roles of oxo diper oxo-vanadate both as a nucleophile and an oxidant in the green oxidation of benzylalcohols or benzyl halides to aldehydes and ketones [J]. Angew. Chem. Int. Ed.,2003,42:5063-5066.
    [25]Moorthy J N, Singhal N, Senapati K. Oxidation with IBX:benzyl halides to carbonyl compounds, and the one-pot conversion of olefins to 1,2-diketones [J]. Tetrahedron Lett., 2006,47:1757-1761.
    [26]Itoh A, Kodama T, Inagaki S, Masaki Y. Photooxidation of arylmethyl bromides with mesoporous silica FSM-16 [J]. Org. Lett.,2000,2:2455-2457.
    [27]Firouzabadi H, Seddighi N, Emottaghineiad M. Barium permanganate, Ba(MnO4)2, a versatile and mild oxidizing agent for use under aprotic and non-aqueous conditions [J]. Tetrahedron,1990,46:6869-6878.
    [28]Goswami S, Jana S, Dey S, Adak A K. A simple and convenient manganese dioxide oxidation of benzyl halides to aromatic aldehydes under neutral condition [J]. Chem. Lett.,2005,34:194-195.
    [29]Khurana J M, Sahoo P K, Titue S S. Ultrasound assisted oxidation of benzylic halides with sodium hypochlorite [J]. Synth. Commun.,1990,20:1357-1361.
    [30]Liu Q F, Lu M, Yang F, Wei W, Sun F, Yang Z B, Huang S F. Aerobic oxidation of benzylic halides to carbonyl compounds with molecular oxygen catalyzed by TEMPO/KNO2 in aqueous media [J]. Synth. Commun.,2010,40:1106-1114.
    [31]Sikdar A P, Chetri A B, Baishya G, Das P J. Solid phase oxidation of alcohols and benzyl halides to carbonyls using bromate exchange resin [J]. Synth. Commun.,2003,33: 3147-3151.
    [32]Chen D X, Ho C M, Wu Q Y R, Wu P R, Wong F M, Wu W M. Convenient oxidation of benzylic and allylic halides to aldehydes and ketones [J]. Tetrahedron Lett.,2008,49: 4147-4148.
    [33]Hashemi M M, Rahimi A, Ahmadibeni Y. Microw-expedited synthesis of aromatic aldehydes and ketones from alkyl halides without solvent using wet montmorillonite K 10 supported iodic acid as oxidant [J]. Acta Chim. Slov.,2004,51:333-336.
    [34]Yadav G D, Mistry C K. A new model of capsule membrane transfer catalysis for oxidation of benzyl chloride to benzaldehyde with hydrogen peroxide [J]. J. Mol. Catal. Chem. A..1995.102:187-194.
    [35]Hashemi M M, Beni Y A. Copper(Ⅰ) chloride/kieselguhr:a versatile catalyst for oxidation of alkyl halides and alkyl tosylates to the carbonyl compounds [J]. J. Chem. Res.,1999, 434-435.
    [36]Goswami S, Mahapatra A K. Aromatic aldehydes from benzylbromides via cobalt(I) mediated benzyl radicals in the presence of aerial oxygen:a mild oxidation reaction in neutral condition [J]. Tetrahedron Lett.,1998,39:1981-1984.
    [37]Peyman S, Irai M B. Tetrakis(pyridine)silver(II)peroxodisulfate, [Ag(py)4]S2O8, a reagent for the oxidative transformations [J]. Bull. Chem. Soc. Jpn.,1992,65:2878-2880.
    [38]Bergeron R J, Hoffman P G Mide oxidation of alkyl halides [J]. J. Org. Chem.,1979,44: 1835-1839.
    [39]Bressan M, Forti L. Ruthenium-catalyzed oxidation of alkylaromatics by mono-persulfate with preferential oxidative fission of the benzene ring [J]. J. Mol. Catal.,1993, 84:59-66.
    [40]Wang J Y, Zhao H, Zhang X J, Liu R J, Hu Y Q. Oxidation of cyclohexane catalyzed by TS-1 in ionic liquid with tert-butyl-hydroperoxide [J]. Chin. J. Chem. Eng.,2008,16 (3): 373-375.
    [41]刘耀华,崔鹏,孙靖,杨帆,汤杰.离子液体中芳烃侧链分子氧催化氧化反应研究[J].高等学校化学学报,2006,27(12):2314-2318.
    [42]王利,刘丹,朱香芹,张晓彤,宋丽娟,桂建舟.酸性离子液体中苯甲醇催化氧化合成苯甲醛[J].工业催化,2007,15(10):27-30.
    [43]安莹,陆亮,李才猛,程时富,高国华.磷钼杂多酸离子液体催化氧化脱硫[J].催化学报,2009,30(12):1222-1226.
    [44]郑敏燕,李艳,古元梓,耿薇.离子液体相转移催化氧化苯甲醛制备苯甲酸[J].应用化工,2011,40(3):417-419.
    [45]王晓丹,吴文远,涂赣峰,蒋开喜.内酰胺型离子液体催化环己酮氧化合成己二酸[J].有机化学,2010,30(12):1935-1938.
    [1]Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds [J]. Chem. Rev.,1995,95:2457-2483.
    [2]Nun P, Martinez J, Lamaty F. Solvent-free microwave-assisted Suzuki-Miyaura coupling catalyzed by PEPPSI-iPr [J]. Synlett,2009,1761-1764.
    [3]Kirchhoff J H, Netherton M R, Hill I D, Fu G C. Boronic acids:new coupling partners in room-temperature Suzuki reactions of alkyl bromides. Crystallographic characterization of an oxidative-addition adduct generated under remarkably mild conditions [J]. J. Am. Chem. Soc.,2002,124:13662-13663.
    [4]Fujihara T, Yoshida S, Terao J, Tsuji Y. A triarylphosphine ligand bearing dodeca(ethylene glycol) chains:Enhanced efficiency in the palladium-catalyzed Suzuki-Miyaura coupling reaction [J]. Org. Lett.,2009,11:2121-2124
    [5]Silva A C, Senra J D, Aguiar L C S, Simas A B C, de Souza A L F, Malta L F B, Antunes O A C. Ligand-free Suzuki-Miyaura reactions in PEG-300 [J]. Tetrahedron Lett.,2010,51: 3883-3885
    [6]Martin R, Buchwald S L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands [J]. Acc. Chem. Res.,2008,41:1461-1473.
    [7]Gunawan M A, Qiao C, Abrunhosa-Thomas I, Puget B, Roblin J P, Prim D, Troin Y. Simple pyridylmethylamines:efficient and robust N,N-ligands for Suzuki-Miyaura coupling reactions [J]. Tetrahedron Lett.,2010,51:5392-5394.
    [8]So C M, Yeung C C, Lau C P, Kwong F Y. A new family of tunable indolylphosphine ligands by one-pot assembly and their applications in Suzuki-Miyaura coupling of aryl chlorides [J]. J. Org. Chem.,2008,73:7803-7806.
    [9]Rahimi A, Schmidt A. A cyclobutene-1,2-bis(imidazolium) salt as efficient precursor of palladium-catalyzed room-temperature Suzuki-Miyaura reactions [J]. Synlett,2010,1327-1330.
    [10]Han J, Liu Y, Guo R. Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water [J]. J. Am. Chem. Soc.,2009.131:2060-2061.
    [11]Wu Q, Wang L. Immobilization of copper(Ⅱ) in organic-inorganic hybrid materials:A highly efficient and reusable catalyst for the classic Ullmann reaction [J]. Synthesis, 2008,2007-2012.
    [12]Monnier F, Taillefer M. Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions: Copper makes a difference [J]. Angew Chem. Int. Ed.,2008,47:3096-3099.
    [13]梁云,李金恒.钯催化卤代芳烃Ullmann偶合反应[J].有机化学,2005,25:147-151.
    [14]Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction [J]. Chem. Rev.,2002,102: 1359-1470.
    [15]Monnier F, Taillefer M. Minireview catalytic C-C, C-N, and C-0 Ullmann-type coupling reactions [J]. Angew. Chem. Int. Ed.,2009,48:6954-6971.
    [16]Beletskaya I P. Copper in cross-coupling reactions:The post-Ullmann chemistry [J]. Coordin. Chem. Rev.,2004,248:2337-2364.
    [17]Smith M B, March J. Advanced organic chemistry [M]. Wiley:New York,2001.
    [18]Beadle J R, Korzeniowski S H, Rosenberg D E, Garcia-Slanga B J, Gokel G W. Phase-transfer-catalyzed Gomberg-Bachmann synthesis of unsymmetrical biarenes:a survey of catalysts and substrates [J].1984, J. Org. Chem.,49:1594-603..
    [19]Imperato G, Vasold R, Konig B. Stille Reactions with tetraalkylstannanes and phenyltrialkylstannanes in low melting sugar-urea-salt mixtures [J]. Adv. Synth. Catal., 2006,348:2243-2247.
    [20]Espinet P, Echavarren A M. The mechanisms of the Stille reaction [J]. Angew. Chem. Int. Ed.,2004,43:4704-4734.
    [21]Huang H, Jiang H, Chen K, Liu H. Pd(PPh3)4-PEG-400 catalyzed protocol for the atom-efficient Stille cross-coupling reaction of organotin with aryl bromides [J]. J. Org. Chem.,2009,74:5599-5602.
    [22]Mee S P H, Lee V, Baldwin J. E. Stille coupling made easier-the synergic effect of copper(I) salts and the fluoride ion [J]. Angew. Chem. Int. Ed.,2004,43:1132-1136.
    [23]Li J H, Liang Y, Wang D P, Liu W J, Xie Y X, Yin D L. Efficient Stille cross-coupling reaction catalyzed by the Pd(OAc)2/Dabco catalytic system [J]. J. Org. Chem.,2005,70: 2832-2834.
    [24]Becht J M, Gissot A, Wagner A, Mioskowski C. An efficient synthesis of biaryls via noncatalysed anionic coupling of an arylsodium with a haloarene [J]. Tetrahedron Lett., 2004,45:9331-9333.
    [25]de Lang R J, van Hooijdonk M J C M, Brandsma L, Kramer H, Seinen W. Transition metal catalysed cross-coupling between benzylic halides and aryl nucleophiles. Synthesis of some toxicologically interesting tetrachlorobenzyltoluenes [J]. Tetrahedron,1998,54: 2953-2966.
    [26]Becht J M, Catala C, Drian C L, Wagner A. Synthesis of biaryls via decarboxylative Pd-catalyzed cross-coupling reaction [J]. Org. Lett.,2007,9:1781-1783.
    [27]Mukhopadhyay S, Rothenberg G, Gitis D, Sasson Y. Tandem one-pot palladium-catalyzed oxidative and reductive coupling of benzene and chlorobenzene [J]. J. Org. Chem.,2000,65:3107-3110.
    [28]Goossen L J, Rodriguez N, Melzer B, Linder C, Deng G, Levy L M. Biaryl synthesis via Pd-catalyzed decarboxylative coupling of aromatic carboxylates with aryl halides [J]. J. Am. Chem. Soc.,2007,129:4824-4833.
    [29]Robinson M K, Kochurina V S, Jr Hanna J M. Palladium-catalyzed homocoupling of arenediazonium salts:an operationally simple synthesis of symmetrical biaryls [J]. Tetrahedron Lett.,2007,48:7687-7690.
    [30]Jutand A. Contribution of electrochemistry to organometallic catalysis [J]. Chem. Rev., 2008,108:2300-2347.
    [31]Adamo C, Amatore C, Ciofini I, Jutand A, Lakmini H. Mechanism of the palladium-catalyzed homocoupling of arylboronic acids:Key involvement of a palladium peroxo complex [J]. J. Am. Chem. Soc.,2006,128:6829-6836.
    [32]Kuroboshi M, Waki Y, Tanaka H. Palladium-catalyzed tetrakis(dimethylamino) ethylene-promoted reductive coupling of aryl halides [J]. J. Org. Chem.,2003,68:3938-3942.
    [33]Li J H, Xie Y X, Yin D L. New role of CO2 as a selective agent in palladium-catalyzed reductive Ullmann coupling with zinc in water [J]. J. Org. Chem.,2003,68:9867-9869.
    [34]Hashim J, Kappe C O. Synthesis of symmetrical bisquinolones via Nickel(0)-catalyzed homocoupling of 4-chloroquinolones [J]. Adv. Synth. Catal.,2007,349:2353-2360.
    [35]Inaba S, Matsumoto H, Rieke R D. Highly reactive metallic nickel:reductive homocoupling reagent for benzylic mono-and polyhalides [J]. J. Org. Chem.,1984,49: 2093-2098
    [36]Raynal F, Barhdadi R, Perichon J, Savall A, Troupel M. Water as solvent for Nickel-2,2'-bipyridine-catalysed electrosynthesis of biaryls from haloaryls [J]. Adv. Synth. Catal.,2002,344:45-49.
    [37]Everson D A, Shrestha R, Weix D J. Nickel-catalyzed reductive cross-coupling of aryl halides with alkyl halides [J]. J. Am. Chem. Soc.,2010,132:920-921.
    [38]Khurana J M. Sushma C. Maikap G C. Facile reductive coupling of benzylic halides with ferrous oxalate dihydrate [J]. Org. Biomol. Chem.,2003,1:1737-1740.
    [39]LiuJ, Li B. Facile synthesis of bibenzyl by reductive homocoupling of benzyl halides in aqueous media [J]. Synth. Commun.,2007,37:3273-3278.
    [40]Sustmann R, Kopp C. Reactions of vanadocene with benzyl bromide [J]. J. Organomet. Chem.,1988,347:313-323.
    [41]Eisch J J, Fregene P O. Vanadium(Ⅰ) chloride and lithium vanadium(I) dihydride as selective epimetallating reagents for π-and σ-bonded organic substrates [J]. Eur. J. Org. Chem.,2008,4482-4492.
    [42]Nishino T, Watanabe T, Okada M, Nishiyama Y, Sonoda N. Reduction of organic halides with lanthanum metal:a novel generation method of alkyl radicals [J]. J. Org. Chem.,2002,67:966-969.
    [43]Mukhopadhyay S, Rothenberg G, Gitis D, Baidossi M, Ponde DE, Sasson Y. Regiospecific cross-coupling of haloaryls and pyridine to 2-phenylpyridine using water, zinc, and catalytic palladium on carbon [J]. J. Chem. Soc. Perkin. Trans.2,2000,1809-1812.
    [44]Mukhopadhyay S, Rothenberg G, Gitis D, Sasson Y. On the mechanism of palladium-catalyzed coupling of haloaryls to biaryls in water with zinc [J]. Org. Lett., 2000,2:211-214.
    [45]Qian Y L, Li G S, Huang Y Z. Organotitanium chemistry XVIII. Dehalogenation of organic halides by Cp2TiX (X= Cl, Br) [J]. J. Organomet. Chem.,1990,381:29-34.
    [46]Moncomble A, Floch P L, Gosmini C. Cobalt-catalyzed formation of symmetrical biaryls and its mechanism [J]. Chem. Eur. J.,2009,15:4770-4774.
    [47]Barrero A F, Herrador M M, Moral J F Q, Arteaga P, Akssira M, Hanbali F E, Arteaga J F, Dieguez H R, Sanchez E M. Couplings of benzylic halides mediated by titanocene chloride:synthesis of bibenzyl derivatives [J]. J. Org. Chem.,2007,72:2251
    [48]Barrero A F, Herrador M M, Moral J F Q, Arteaga P, Arteaga J F, Dieguez H R, Sanchez E M. Mild TiⅢ-and Mn/ZrⅣ-catalytic reductive coupling of allylic halides:Efficient synthesis of symmetric terpenes [J]. J. Org.Chem.,2007,72:2988-2995.
    [49]Barrero A F, Herrador M M, del Moral J F Q, Arteaga P, Arteaga J F, Piedra M, Sa'nchez E M. Reductive coupling of terpenic allylic halides catalyzed by Cp2TiCl:A short and efficient asymmetric synthesis of onocerane triterpenes [J]. Org. Lett.,2005,7: 2301-2304.
    [50]Dahlen A, Prasad E, Flowers Ⅱ R A, Hilmersson G. Exploring SmBr2-, SmI2-, and Ybl2-mediated reactions assisted by microwave irradiation [J]. Chem. Eur. J.,2005,11: 3279-3284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700