用户名: 密码: 验证码:
汽车稳定性控制系统分层优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来汽车在全世界范围内迅速普及,在提高了人们的生活水平并促进社会发展的同时,也带来了包括交通安全在内的一系列社会问题。汽车稳定性控制系统(Electronic StabilityControl, ESC)可以有效降低交通事故的发生率,是汽车主动安全控制领域的一项最新科技。它通过对制动力控制产生合适的横摆力矩,在极限工况下也能保持汽车的行驶稳定性。本文针对ESC控制理论与方法展开深入的理论和试验研究。
     论文首先回顾ESC系统的发展,介绍ESC的基本工作原理,说明ESC控制系统中采用的上层运动控制器与底层压力控制器的分层结构,并总结目前国内外的研究现状。
     在veDYNA中基于Simulink开发环境建立非线性整车模型,在“人-车-路”闭环系统里通过仿真分析汽车失稳的原因。将非线性整车模型的仿真结果与线性二自由度模型的仿真结果进行对比,探讨二自由度模型在ESC控制器设计中存在的不足,说明在上层运动控制器设计中引入自适应侧偏刚度的必要性。
     状态参数估计是ESC控制系统设计中的一项重要内容。前、后轴线性侧偏刚度在汽车的使用周期内往往发生变化,为此提出仅依据车载传感器配置的线性侧偏刚度估计方法。针对轮胎在大侧偏角下侧向力饱和的特点,引入自适应侧偏刚度准确描述非线性区域内轮胎的侧向力,通过对轮胎侧向力的估计建立自适应侧偏刚度的估计模型,并以此优化汽车质心侧偏角的估计。
     分析汽车在线性区域内的稳定转向特性以及汽车的轮胎特性变化对稳定转向特性的影响。在上层运动控制器中采用前馈加反馈的控制结构,通过前馈控制优化轮胎特性发生变化时的ESC控制效果。采用多模型控制理论进行反馈控制器设计,以自适应侧偏刚度为切换参数,设计具有鲁棒自适应特性的全局控制器进一步优化ESC反馈控制的性能。在底层压力控制器中,针对电子液压制动系统(Electro Hydraulic Brake, EHB)的液压执行器,采用广义预测控制理论(Generalized Predictive Control,GPC)进行底层制动压力控制器的设计。
     在对比研究国内外ESC试验台的基础上,采用基于NI PXI与veDYNA的ESC驾驶员在环试验台解决方案,构成了完整的“人―车―环境”闭环驾驶环境,并通过快速原型的开发方法对提出的ESC上层运动控制器的控制效果进行了验证。同时该试验台也能为实际产品的开发打下一定的基础,有利于提高开发的效率。
In recent years automobiles have been popularized rapidly in the worldwide. Automobilespromote the living standard of people and the social development, but at the same time they alsobring a series of social problems including traffic safety. Electronic Stability Control(ESC) caneffectively reduce the incidence of traffic accidents which is the newest technology in the field ofactive safety. By controlling the braking force to produce the adequate yaw moment, it can keep thestability of the automobiles even in the extreme conditions. This thesis focuses on the research ofESC control theory and method and also the experiment method in the development of ESC.
     First the review of the development of ESC is given. The basic principle of ESC and the layeredcontrol structure is introduced, which consists of the upper motion controller and the bottompressure controller. The current research status at home and abroad is also presented.
     Nonlinear vehicle model is established in veDYNA based on Simulink development environment.The cause of the car instability in extreme conditions is analyzed in the “driver-vehicle-road”closed-loop system by simulation test. The simulation results of the nonlinear model and the2DOFslinear model are compared. Then the deficiencies of the2DOFs linear model in the ESC controllerdesign is discussed, which shows that it is necessary to introduce the adaptive cornering stiffness inthe upper motion controller design.
     Vehicle state estimation is an important research content in the ESC control system. Front/rearcornering stiffness always changes in the car life cycle. This thesis proposed an estimation method offront/rear cornering stiffness based on the available sensors in the car. In order to describe the tirelateral force accurately even when the tire sideslip angle is large, the adaptive cornering stiffness isintroduced in the estimation model by the estimated tire lateral force. This estimation model is alsoused to achieve the better estimation of vehicle sideslip angle.
     The stable steering characteristic in the linear region and the influence of the changed tireproperties are analyzed. The feedback control coupled feedfroward control is utilized in the uppermotion controller. The performance of ESC with the changed tire properties is optimized. Themulti-model control theory is applied in the feedback controller design. Taking the adaptivecornering stiffness as switching parameter, the designed multi-model global controller can furtheroptimize the performance of ESC because of its robust and adaptive characteristic.
     By comparing the existing ESC test bench domestic and overseas, the solution which is based onthe NI PXI and veDYNA is chosen. Then the entire “driver-vehicle-road” closed-loop driveenvironment is established. The proposed upper motion controller is verified by rapid control prototype in the ESC test bench. Meanwhile, this test bench system can also lay basis for thedevelopment of real product to increase efficiency.
引文
[1]黄安华.现代汽车的主动安全技术[J].商用汽车,2002,24(4):23~24.
    [2]赵琢.我国高等级公路交通事故预测及对策研究[J].汽车运输研究,1997,16(2):71~77.
    [3]吴龙.近期我国道路交通事故分析[J].汽车运输研究,1997,16(2):82~86.
    [4]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].长春:吉林大学汽车工程学,2003.
    [5]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学汽车工程学院,2007.
    [6]郭建华.双轴汽车电子稳定性协调控制系统研究[D].长春:吉林大学汽车工程学院,2008.
    [7] Masaki Yamamoto. Active Control Strategy for Improved Handling and Stability[C].SAETechnical Paper,911902.
    [8] Nicholas Cooper, David Crolla, Martin Levesley, Warren Manning. Integration of ActiveSuspension and Active Driveline to Improve Vehicle Dynamics[C].SAE TechnicalPaper,2004-01-3544.
    [9] Abe M. Roll Moment Distribution Control in Active Suspension for Improvement of LimitPerformance of Vehicle Handling[C].Proceeding of the Advanced Vehicle Control(AVEC)1992.
    [10] Cooke R., Crolla D., Abe M. Combined Ride and Handling Modeling of a Vehicle with ActiveSuspension[C].Proceeding of the Advanced Vehicle Control(AVEC)1996.
    [11] Shibahata, Shimada, Tomari. The improvement of vehicle maneuverability by direct yawmoment control[C].Proceeding of the Advanced Vehicle Control(AVEC)1992.
    [12] NHSTA. Federal Motor Vehicle Safety Standards No.126:Electronic Stability Control Systems.http://www.nhtsa.dot.gov/,2007.
    [13] Anton T.Van Zanten, Rainer Erhardt, Georg Pfaff. VDC the Vehicle Dynamics Control Systemof Bosch[C].SAE Technical Paper,950759.
    [14] Anton T. Van Zanten, Rainer Erhardt, Georg Pfaff,Friedrich Kost, Uwe Hartmann. ControlAspects of the Bosch-VDC[C].Proceeding of the Advanced Vehicle Control(AVEC)1996.
    [15] BOSCH,“ESP Electronic Stability Program Edition1999”, Technical Instruction,1999.
    [16] Daegun Hong,Inyong Hwang,Kunsoo Huh. Development of a Vehicle Stability ControlSystem Using Brake-by-Wire Actuators[J]. Journal of Dynamic Systems, Measurement, andControl,2008,130(1):1-9.
    [17]王德平,郭孔辉.车辆动力学稳定性的控制原理与控制策略研究.机械工程学报,2000,36(3):97~99.
    [18] Rajesh Rajamani. Vehicle dynamics and control[M]. Springer,2005.
    [19] Glaser H. Electronic Stability Program ESP[M]. Sweden: Audi Press Presentation,1996.
    [20] Sugiyam M, Inoue H. Development of Vehicle Stability Control System[J].TOYOTATechnical Review,1997,46(2):61~68.
    [21]黄炳华,陈祯福. ESC的最新动向和发展趋势[J].汽车工程,2008,30(1):1~9.
    [22]马钧,章靖萍.我国ESP电子稳定系统推广关键影响因素分析.农业装备与车辆工程,2010,224(3):7~11.
    [23] Uwe Kiencke, Lars Nielsen. Automotive Control system[M]. Gemany, Springer,2ed,2004.
    [24] H.-J.Schopf.J. Paul. ASR Acceleration Skid Control-A Further Contribution Towards IncreasingThe Active Safety of Daimler-Benz Vehicles[C]SAE885050.
    [25] H. Demel., H. Hemming. ABS and ASR for Passenger Cars-Goals and Limits[C].SAE890834.
    [26] Michael A. Kremer, Ford-Werke AG. The Electronic Stability Program(ESP) On The FordFocus.Vehicle Electronic Systems2000European Conference and Exhibition, StratFord Manor,StratFord-upon-Avon, UK,2000.
    [27] Liang Li, Jian Song, Cai Yang, Yanxia Zhou and Liangyao Yu. Tire Force Fast EstimationMethod for Vehicle Dynamics Stability Real-Time Control[C]. SAE2007-01-4244.
    [28] Liang Li, Jian Song, Quanan Huang. Vehicle Velocity Estimation for Real-time DynamicStability Control[J]. International Journal of Automotive Technology,2009,10(6):675-685.
    [29] Liang Li, Jian Song, Cai Yang and Liangyao Yu. Predictive Control Algorithm Based onDynamic Stability Matrix Method for DSC[C]. SAE:2007-01-0848.
    [30]郭孔辉,付皓,丁海涛.基于扩展卡尔曼滤波的汽车质心侧偏角估计[J].汽车技术,2009,(04):1~3.
    [31]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].吉林大学博士学位论文,2003.
    [32]付皓.汽车电子稳定性系统质心侧偏角估计与控制策略研究[D].吉林大学博士论文,2008.
    [33]玄圣夷.面向主动安全的汽车底盘行驶稳定性控制策略研究[D].吉林大学博士论文,2010.
    [34]张永生.轿车稳定性控制系统的状态参数估算及控制算法研究[D].吉林大学博士论文,2010.
    [35]赵梓含.基于滑移率的汽车制动集成控制研究[D].吉林大学硕士论文,2009.
    [36] Bin Li, Daofei Li and Fan Yu. Vehicle Yaw Stability Control Using the Fuzzy-LogicController[C].Vehicular Electronics and Safety, IEEE International Conference.2007:1~5.
    [37]李道飞,喻凡.基于最优轮胎力分配的车辆动力学集成控制[J].上海交通大学学报,2008,42(6):887~891.
    [38]张勇.基于主动制动的汽车稳定性控制系统开发研究[D].上海交通大学博士论文,2010.
    [39]余卓平,左建令,陈慧.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141~145.
    [40] Xiaojie Gao, Zhuoping Yu, Tifan Xu. Longitudinal Velocity Estimation of Electric Vehicle With4In-Wheel Motors[C]. SAE2008-01-0605.
    [41]刘翔宇.基于直接横摆力矩控制的车辆稳定性研究[D].合肥工业大学博士论文,2010.
    [42]裴锦华.汽车ESP控制系统研究[D].重庆大学硕士论文,2005.
    [43] Seunghan You, Jinoh Hahn, Youngman Cho, et al. Modeling and control of a hydraulic unit fordirect yaw moment control in an automobile[J]. Control EngineeringPractice,2006,14(9):1011~1022.
    [44] Tseng H.E, et al. The Development of Vehicle Stability Control at Ford[J]. IEEE/ASMETransactions on Mechatronics,1999,4(3):223~234.
    [45] Park K,Heo S,J. Design of a Control Logic for Improving Vehicle Dynamic Stability[C].Proceedings of AVEC,2000.
    [46] Masao Nagai, Yutaka Hirano, Sachiko Yamanaka. Integrated Control of Active Rear WheelSteering and Direct Yaw Moment Control[J]. Vehicle System Dynamics,1997,27(5):357~370.
    [47] Nakazawa M, Isobe O, Takahashi S, et al. Braking force distribution control for improvedvehicle dynamics and brake performance[J]. Vehicle system dynamics,1995,24(4):413~426.
    [48] Stefan B rjesson, Tomas Forsberg. Sliding Mode Control as design method for automotiveTraction Control[R]Volvo Car Corporation,2003.
    [49] Van Zanten A. T. Bosch VSC:5Years of Experience[J]. SAE paper2000-01-1633,2000.
    [50] Robert J. Rieveley, Bruce P. Minaker. Variable Torque Distribution Yaw Moment Control ForHybrid Powertrains[J]. SAE paper2007-01-0278,2007.
    [51] Zhang Wei, Yu Guizhen,Wang Jian, Su Tianshu, Xu Xiangyang. Self-Tuning Fuzzy PIDApplied to Direct Yaw Moment Control for Vehicle[C].IEEE International Conference onElectronic Measurement&Instruments,2009:257~261.
    [52]皮大伟,陈南等.基于主动制动的车辆稳定性系统最优控制策略[J].农业机械学报,2009,40(11):1~6.
    [53]王其东,章贵华,陈无畏,祝辉.基于滑模变结构控制的车辆动力学稳定性控制研究[J].中国机械工程,2009,19(5):622~626.
    [54]杨秀建,王增才.基于线性变参数建模的汽车横摆力矩增益调度控制[J].机械工程学报,2009,45(1):300-308.
    [55]李亮,宋健,于良耀,黄全安.低附路面汽车动力学稳定性控制系统控制策略[J].机械工程学报,2008,44(11):229~235.
    [56] Taeyoung Chung, Kyongsu Yi. Design and Evaluation of Side Slip Angle-Based VehicleStability Control Scheme on a Virtual Test Track[J]. IEEE Transactions on Control SystemsTechnology,2006,14(2):224~234.
    [57]宋宇,陈无畏,陈黎卿.基于ADAMS与Matlab的车辆稳定性控制联合仿真研究J].机械工程学报,2011,47(16):86~92.
    [58] Cong Geng, Lotfi Mostefai, et al. Design on Adaptive Fuzzy Observer of Vehicle Side SlipAngle[C]. Technical Meeting on Vehicle Technology, IEEE Japan,2007.
    [59] Takatoshi Nishimaki, Hideaki Sasaki. A Side-slip Angle Estimation Using Neural Network for aWheeled Vehicle[J]. SAE Paper.2000-01-0695.
    [60]李普,陈南,孙庆鸿.基于状态观测器的4WS车辆最优随动操纵研究.机械工程学报,2004,40(1):50~55.
    [61] L.Imsland. Vehicle velocity estimation using modular nonlinear observers. In Proceedings of44thIEEE Conference Decision Control.2005.
    [62] L.Imsland. Vehicle velocity estimation using modular nonlinear observers.Automatica,2006.
    [63] Bevly D., Sheridan R., Christian J. Integrating INS sensors with GPS velocity measurements forcontinuous estimation of vehicle sideslip and tire cornering stiffness[C]. American ControlConference,2001.
    [64] Ryu J., Gerdes J. Integrating inertial sensors with GPS for vehicle dynamics control[J]. Journalof Dynamic Systems Measurement and Control,2004,126(6):1~26.
    [65] Yung-Hsiang J. Hsu, Shad Laws, J. Christian Gerdes. Experimental Studies of Using SteeringTorque Under Various Road conditions for side slip and friction estimation[R]. Department ofMechanical Engineering Stanford University,2007.
    [66] E. Ono, Y. Hattori, Y. Muragish, et al. Vehicle Dynamics Integrated Control forFour-wheel-distributed Steering and Four Wheel Distributed Traction/braking Systems[J].Vehicle System Dynamics,2006,44(2):139~151.
    [67] Chia-shang Liu, huei Peng. Road Friction Coefficient Estimation For Vehicle Path Prediction[J].Vehicle System Dynamics,1996,25:413~425.
    [68] Mathieu Gerard. Tire-road friction estimation using slip-based observers[R]. Department ofAutomatic Control,Lund University,2006.
    [69]陈无畏,刘翔宇,黄鹤,杨军.车辆转向工况下的路面附着系数估计算法[J]汽车工程.2011,6:521~526
    [70]李亮,宋健,韩宗奇,孔磊.用于电子稳定程序(ESP)在线控制的液压模型和反模型.机械工程学报,2008,44(2):139~144.
    [71]张彪,刘昭度,崔海峰,李志远.基于PWM控制的轮缸压力精细调节试验.农业机械学报,2007,38(7):58~61.
    [72]祁雪乐,宋健,王会义,李亮.基于AMESim的汽车ESP液压控制系统建模与分析.机床与液压,2005,8:115~122.
    [73] Aldo Sorniotti. Hardware in the loop for braking systems with anti lock brake system(ABS) andelectronic stability program(ESP)[J]. SAE Paper.2004-01-2062.
    [74] Aldo Sorniotti, Mauro Velardocchia. Hardware-In-the-Loop (HIL) Testing of ESP(ElectronicStability Program) Commercial Hydraulic Units and Implementation of New Controlstrategies[J]. SAE Paper.2004-01-2770.
    [75]邢科礼,冯玉,金侠杰,李庆.基于AMESim/Matlab的电液伺服控制系统的仿真研究.机床与液压,2004,10:57~58.
    [76] Mauro Velardocchia. A Methodology to Investigate the Dynamic Characteristics of ESP andEHB Hydraulic Units [J]. SAE Paper.2006-01-1281.
    [77] Herbert Schuette, Peter Waeltermann. Hardware-in-the-Loop Testing of Vehicle [J]. SAEPaper.2005-01-1660.
    [78]李亮,宋健,于良耀.汽车动力学稳定性控制系统仿真平台研究.系统仿真学报,2007,19(7):1597~1600.
    [79]丁海涛,郭孔辉,张建伟,付皓,吕济明.汽车ESP硬件与驾驶员在回路仿真试验台的开发与应用.汽车工程,2006,28(4):346~350.
    [80]张勇,殷承良,熊伟威.基于Matlab的车辆动力学控制交互式硬件在环仿真系统研究.机械科学与技术,2006,07-0821-03.
    [81] TESIS DYNAware GmbH. Tesis DYNAware ve-DYNA3.10User Manual, München,2006.
    [82] TESIS DYNAware GmbH. Tesis DYNAware ve-DYNA3.10Model Overview, München,2006.
    [83]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].长春:吉林工业大学汽车工程学院,2000.
    [84] TESIS DYNAware GmbH. Tesis DYNAware ve-DYNA3.10TM-easy Manual, München,2006.
    [85]余志生.汽车理论[M].北京:机械工业出版社,2002.
    [86] H.Fennel, E.L.Ding. A Model-Based Failsafe System for the Continental TEVESElectronic-Stability-Program(ESP),SAE Paper.2000-01-1635.
    [87] Christian L, Thomas B S. Recursive identification of cornering stiffness parameters for anenhanced single track model[C]. In Proceedings of the15th IFAC Symposium on SystemIdentification,1726-1731, Saint-Malo,France,2009.
    [88] Anderson R, Bevly D M. Estimation of tire cornering stiffness using GPS to improve modelbased estimation of vehicle states[C]. Intelligent Vehicles Symposium,801~806,USA,2005.
    [89] Van Zanten A T. Evolution of electronic control systems for improving the vehicle dynamicbehavior[C]. AVEC2002:4481~4488.
    [90]余卓平,高晓杰.车辆行驶过程中的状态估计问题[J].机械工程学报,2009,49(5):20~33.
    [91]郑智忠,李亮,杨财等.基于扩展卡尔曼滤波的汽车质心侧向速度观测器[J].农业机械学报,2008,39(5):1~5.
    [92] S.M.鲍奇克.数字滤波和卡尔曼滤波[M].科学出版社,1984.
    [93] Simon Haykin.自适应滤波器原理(第四版)[M].电子工业出版社,2003.
    [94] H.SAKAI. Theoretical and experimental studies on the dynamic properties of tyres part4:Investigations of the influences of running conditions by calculation and experiment. Int. J.of Vehicle Design, No.3,3:333-375,1982.
    [95] Salgado M, Goodwin G, Richard H. Modified least squares algorithm incorporating exponentialresetting and forgetting[J]. International Journal of Control,47(2):477~491,1988.
    [96] Ungoren A Y, Peng H. A study on lateral speed estimation methods[J].Int. J. VehicleAutonomous System,2004,2(1):126~144.
    [97] Aleksander Hac and Melinda D.Simpson. Estimation of Vehicle Side Slip Angle and YawRate,SAE paper2000-01-0696.
    [98] Guillaume B, Ali C, Daniel L. Estimation of vehicle sideslip, tire force and wheel corneringstiffness[J] Control Engineering Practice,2009,17(11),1255~1264.
    [99]周红妮.车辆稳定性控制方法与策略的比较研究[D].武汉科技大学,2007.
    [100]DrAHac. Evaluation of Two Concepts in Vehicle Stability Enhancement Systems[J].98ME031
    [101]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率控制[J].汽车工程,2006(9):844~848.
    [102]Zadeh,L.A, Outline of a new approach to the analysis of complex systems and decisionprocesses, IEEE Trans. Systems, man, and Cybernetics,1973,3,28~44.
    [103]Murray-Smith R, Johansen T A. Multiple Model Approaches to Modeling andControl,Taylor&Francis,London,1997.
    [104]Nagal M, Shino M, Gao F. Study on integrated control of active front steer angle and directyaw moment[J]. JSAE Review,2002,23(3):309~315.
    [105]GEORGIOU T T, SMITH M C. Optimal robustness in the gap metric, IEEE Transactions onAutomatic Control,1990,35(6).
    [106]ZHOU K. Essentials of Robust Control, Prentice Hall,1997,349~375.
    [107]TAN W,CHEN T,MARQUEZ H J. Robust Controller Design and PID Tuning for MultivariableProcesses, Asian Journal of Control,2002,4(4),439~451.
    [108]Apkarian, P and Adams, R. Advanced gain-scheduling techniques for uncertain systems. IEEETransactions on Control Systems Technology,1998,6(1):21~32.
    [109]A.Leonessa, W.M.Haddad, V.Chellaboina. Nonlinear System Stabilization via Stability-basedSwitching. Proceedings of the37thIEEE Conference on Decision andControl,Tampa,FL.1988:2983~2996.
    [110]HANUS R,KINNAERT M,HENROTTE J L. Conditioning technique, a general anti-windupand bumpless transfer method,Automatica,1987,23(6),729~739.
    [111]李才永.非线性系统多模型分析及增益调度PID控制器设计[D].华北电力大学硕士论文,2003.
    [112]Horiuchi, S. and N. Yuhara. An Analytical Approach to the Prediction of Handling Qualities ofVehicles With Advanced Steering Control System Using Multi-Input Driver Model. Journal ofDynamic Systems, Measurement, and Control,2000.122(3):p.490~497.
    [113]Velardocchia M. A Methodology to Investigate the Dynamic Characteristics of ESP and EHBHydraulic Units[J]. SAE paper2006-01-1281.
    [114]苏明,陈伦军.基于AMESim的电磁高速开关阀动静态特性研究[J].液压与气动,2010,2:68~72.
    [115]AMESim User Manual[Z].IMAGINE S.A.2007.
    [116]Ijin Yang, Woogab Lee and Inyong Hwang. A Model-Based Design Analysis of HydraulicBraking System[C].SAE Paper2003-01-0253.
    [117]Milliken W, Milliken D. Race Car Vehicle Dynamics[M]. SAE International,1995.
    [118]王其东,黄鹤,陈无畏,刘翔宇.基于广义预测控制的汽车EHB压力控制仿真研究[J].中国机械工程,2011,22(23):2887-2892.
    [119]庞中华.系统辨识与自适应控制MATLAB仿真[M].北京:北京航空航天大学出版社,2009.
    [120]王静,龚国芳,杨华勇.油液体积模量的研究与在线测量[J].机械工程学报,2009,45(7):120~125.
    [121].Hahn S,etc. Simulation and Measurement of Driving Simulator, Presentation of SelectedExperiments, SAE Paper No.880058,1998.
    [122]Borut Zupancic. Extension Software for real-time control system design and implementationwith Matlab/Simulink. Simulation Practice and Theory1998(6):703~719.
    [123]Quan-Zhong Yan, Frank C.Thompson, Russell E.Paul and Jim J.Bielenda. Hardware in theLoop for Dynamic Chassis Control Algorithms Test and Validation[C]. SAEPaper,2004-01-2059.
    [124]Zhang Yong,Yin Chengliang, Zhang Jiancheng. Matlab Based Human&Hardware-in-LoopSimulation for the Study on Vehicle Stability Control[J].Journal of Shanghai JiaotongUniversity(Science),2006,11(4):498~505.
    [125]李红志.基于PXI和cRIO的电子稳定程序硬件在环仿真平台开发[J].电子设计应用,2009,10:74~76.
    [126]张良.基于xPCTarget的汽车ESP硬件在环仿真试验台的开发[D].长春:吉林大学.2008.
    [127]Taehun Hwang, Jihoon Rohl, Kihong Park, Jeongho Hwang, Kyu Hoon Lee, Kangwon Lee,Soo-Jin Lee and Young-Jun Kim. Development of HILS Systems for Active Brake ControlSystems[C].SICE-ICASE International Joint Conference2006:4404-4408.
    [128]宋正华.汽车稳定性控制虚拟样车及硬件在环仿真研究[D].南京:东南大学,2005:38~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700