用户名: 密码: 验证码:
基于Contourlet变换的图像处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多尺度几何分析理论(Multiscale Geometric Analysis, MGA)是近年来在计算理论与调和分析的基础上所发展起来的面向高维信号处理的重要理论,其主要分析工具包括Brushlet、Wedgelet、Beamlet、Ridgelet、Curvelet、Bandelet以及Contourlet和非下采样Contourlet (Nonsubsampled Contourlet Transform,NSCT)等。MGA理论的目的在于通过对图像内在的几何结构如轮廓、边缘和纹理等进行高效逼近和描述,从而更有效地检测、表示和处理高维空间数据,从根本上克服了二维小波变换不能有效提取图像结构中的直线和曲线等高维奇异性且只能获得有限方向性信息的缺陷,具有广阔的应用前景。研究多尺度几何分析理论并结合具体的图像处理应用给出性能更好的处理算法,具有重要的理论意义和实际应用价值,已成为当前国内外图像信号处理领域的研究热点。
     Contourlet是新兴的MGA工具,除具备良好的多尺度、局部化、各向异性以及多方向特性,还兼具便捷的实现方式和数字处理的友好性;此外非下采样Contourlet在Contourlet的基础上进一步扩展,提供良好的平移不变特性,代表了高维信号处理方法的发展趋势。本文以这两类多尺度几何分析工具为主线,对其理论及在若干图像处理应用中的关键技术进行深入研究。论文主要工作及贡献如下:
     1.深入探讨了多尺度几何分析能够获得更优异图像处理性能的深层次原因;研究了Contourlet和非下采样Contourlet的基本原理、实现方案、滤波器组设计等,详细分析了其所拥有的方向性、多尺度、局部化、各向异性,以及数字处理的友好性和稀疏表达方式等优良特性;证明了Contourlet(?)口非下采样Contourlet能够高效捕捉自然图像的高维奇异性,更加适合于各类图像等高维信号表达和处理任务,如图像融合、图像去噪、数字水印、边缘检测等等。
     2.针对不同医学影像设备获得的多源图像信息有效融合和综合利用的问题,提出了一种基于Contourlet区域特性的医学图像融合算法(CRSIF算法)。该算法借助于Contourlet变换的优良特性,在Contourlet变换域综合使用加权平均和选择方式实现频域系数的有效融合。为保证融合图像与人类视觉系统(HVS)的感知特性相吻合,使用了基于区域的融合规则:低频子带采用加权局部能量,高频子带基于尺度间内在的树型结构使设计并使用了Contourlet区域方向对比度。通过对CT/MR医学图像的仿真实验证明了该算法的有效性。
     3.针对成像系统中焦平面外的目标呈现模糊形态不能真实反映外界场景信息的问题,提出了一种基于光学成像机理的Contourlet域多聚焦图像融合算法(OIPIF算法)。在详细探讨离焦成像系统的低通函数特性的基础上,针对低频/高频系数特点设计两类区域性聚焦度量准则,并制定了相应的模值取大系数选择方案,结合Contourlet变换的独特优势在变换域的不同子带独立实施系数融合。该算法能够得到与标准清晰图像更为接近的融合图像,在综合性能方面有显著提升。
     4.将NSCT引入抗几何攻击数字水印技术中,提出了一种基于SIFT特征的NSCT域抗几何攻击水印算法(SND算法)。该算法通过提取宿主图像在空间域的尺度不变特征变换(SIFT)特征,在有效特征点周围的圆形区域实施多尺度NSCT,借助于NSCT的时频不变性和冗余性,在变换域的低频系数中完成水印信息嵌入。为进一步提高算法抗几何攻击的性能,该算法中同时提出了一种基于等面积圆环区域的水印嵌入方案。实验结果表明该算法具有良好的抗几何攻击特性和优秀的不可见性。
     5.针对激光水下成像过程中存在不同程度的散斑噪声使图像的质量变差问题,提出了一种基于NSCT变换的激光水下图像散斑抑制算法(CTSNS算法)。系统研究了激光成像中的散斑产生机理与统计特性,在此基础上将原始图像经对数同态变换和NSCT变换进行处理,通过施加约束条件,依据NSCT高频子带的系数分布模型等先验信息,设计了尺度相关的Bayes闽值对高频子带系数实施阈值萎缩,最后通过逆变换和指数运算重构图像。该算法在有效抑制散斑的同时较好地保持了激光图像中目标的边缘结构,较好地改善了图像的主客观效果。
     6.针对传统边缘检测算法在定位精度、轮廓平滑性和噪声抑制等方面存在的不足,首次将NSCT技术应用到图像边缘检测中,提出了一种基于NSCT的多尺度边缘检测算法(NIED算法)。该算法将原始图像分解至NSCT变换域,针对低频子带与多个尺度上的高频子带的特性分别提取边缘信息:低频子带使类似于Canny算子的空间域检测算法,高频子带则采用NSCT域的模极大值检测策略,通过归一化融合规则融合多尺度中不同方向的边缘信息,基于高频子带和低频子带信息的联合检测和边缘闭合输出最终的边缘检测结果。该算法能够达到更优的边缘检测性能。
Based on computational harmonic analysis, a novel Multiscale Geometric Analysis (MGA) theory was proposed to capture the geometrical structure in visual information efficiently, it can achieve optimal approximation behavior for2-D piecewise smooth function, thus obtaining highly efficient representation and processing methods. MGA tools includes Brushlet, Wedgelet, Beamlet, Ridgelet, Curvelet, Bandelet, Contourlet and Nonsubsampled Contourlet Transform (NSCT), etc. MGA theory and its applications still need further research and development. In this dissertation, the author mainly focuses on the research of Contourlet transform and the key techniques of its applications in image processing. As the latest MGA tool, contourlet and nonsubsampled contourlet are the "true" two dimensional sparse representations, nonsubsampled contourlet also has the "Shift Inviance" property, which provide much better anisotropy, multiresolution, directionality and localization properties for2-D signals than existing image representation methods. The main research work in the dissertation is as follows:
     1. For contourlet transform and its novel extension-nonsubsampled contourlet transform, we provide a detailed analysis to its basic principles, implementation schemes, advantages and disadvantages, which can be seen as the foundation of following image processing applications. The varieties of advantages of multiscale geometric analysis make it able to capture high dimensional singularities in natural image efficiently, and also consistent with the perception and integration principle of receptive field of visual cortex in human vision system. Therefore, they are more appropriate for various image processing tasks. It can be seen that by using contourlet or nonsubsmapled contourlet with proper scheme, better performance would be expected.
     2. A novel medical image fusion algorithm based on local statistics in Contourlet domain is proposed. All fusion operations are performed in Contourlet domain. Based on the tree structure among parent and children coefficients in Contourlet domain, the Contourlet contrast measurement is developed. It is proved to be more suitable for human vision system. Other fusion rules like local energy, weighted average and selection are combined with "region" idea for coefficient selection in the low-pass and high-pass subbands. The final fusion image is obtained by directly applying inverse Contourlet transform to the fused subbands. Extensive fusion experiments have been made on CT and MR medical images, both visual and quantitative analysis show that comparing with conventional image fusion algorithms, the proposed approach can provide a more satisfactory fusion outcome.
     3. A novel multifocus image fusion algorithm based on region statistics in contourlet domain was developed. According to the optical imaging principle, the defocused imaging system can be characterized as a lowpass filtering. For contourlet can handle intrinsic features in natural image much more effectively than wavelet. Original images was first decomposed by contourlet transform, fusion operation was implemented for all directional subbands in each scale, different region based fusion rules were used for lowpass and highpass subband, they are local energy and regional variance. Experimental results show that compared with traditional algorithms, the proposed multifocus image fusion algorithm can obtain a more satisfactory outcome.
     4. A geometrically robust image watermarking algorithm based on nonsubsmpaled contourlet transform (NSCT) and scale invariant feature transform (SIFT) is proposed in this paper. The SIFT features points are first computed from the host image, in which the suitable SIFT points for watermark embedding are selected and tested according to their magnitude changes after being modified. NSCT was adopted by virtual of its advantages over traditional wavelet transform and other multiresolution geometric analysis tools. NSCT decomposition is implemented on the SIFT feature circle region. The lowpass coefficients within the circle region are modified to embed the watermarking bits. To enhance watermarking detection performance, we proposed an equal area based circle pattern and improved odd-even quantization algorithm. Experimental results demonstrate that the proposed scheme is robust against the geometric attacks like rotation, scaling, cropping and moving, as well as the general processing operations.
     5. Based on the speckle noise modeling for underwater laser image, an adaptive speckle reduction algorithm using nonsubsampled contourlet transform (NSCT) is proposed. The statistical model for speckle noise is first analyzed to obtain a simple and tractable solution in a closed analytical form. Gaussian distribution for speckle noise and a general Gaussian distribution are adopted to model the statistics of contourlet coefficients in logarithmically transformed laser images. Then based on the maximizing the a posteriori estimation with the assumption that speckle noise is spatially correlated within a small window, we utilize a locally adaptive Bayesian processor whose parameters are obtained from the neighboring coefficients in highpass subbands. Experimental results show that comparing with classical wavelet method, the proposed algorithm shows a superior performance in suppressing the speckle noise and retaining geometrical structures of the image.
     6. Available image edge detection schemes based on the spacial domain or wavelet transform domain cancapture only limited directional edges in images. A novel multiscale edge detection algorithm based on nonsubsampled contourlet transform (NSCT) was proposed in chapter7. The input image is first decomposed into NSCT domain, different edge detection techniques are applied in lowpass subband and highpass subbands:a spatial domain algorithm like Canny operator is used in lowpass subband, every coefficient in t he subbands is thresholded by comparing against the adaptive thresholds. Based on the directions of each directional subband and its gradient, modulus maxima of the transform coefficients are obtained by comparing the modulus amplitudes of the samples and the neighborhood coefficients on the direction of the gradient. The scheme requires lower complexity without complicated link operation, while edge detecting performance is improved. The results show the proposed algorithm is superior to the image edge detection method based on wavelet modulus maxima by approximating better the edges of images and has lower computational complexity.
引文
[1]冈萨雷斯,数字图像处理(第二版),电子工业出版社,2003.
    [2]K.R. Castleman. Digital Image Processing. Prentice-Hall Press,1996.
    [3]章毓晋.图像工程(上册).清华大学出版社,2002.
    [4]F.G. Meyer, R.R. Coifman. Brushlets:a tool for directional image analysis and image compression. Applied and Computational Harmonic Analysis, Vol.4, pp.147-187,1997.
    [5]F.G. Meyer, R.R. Coifman. Directional image compression with Brushlets. Inter. Symp. on Time-Freq. and Time-Scale Analysis, pp.189-192,1996.
    [6]D.L. Donoho. Wedgelets:nearly minimax estimation of edges. Ann. Statist, Vol.27, No.3, pp.859-897,1999.
    [7]D.L. Donoho, X. Huo. Beamlet pyramids:a new form of multiresolution analysis. Proceedings of SPIE, Vol.4119,2000.
    [8]D.L. Donoho, X.M. Huo. Beamlets and multiscale image analysis in Multiscale and multiresolution methods. Lecture Notes in Computational Science and Engineering, Vol.20, pp.149-196,2001.
    [9]E.J. Candes. Ridgelets:Theory and applications. Ph.D. dissertation, Dept. Statistics, Stanford Univ.,1998.
    [10]E.J. Candes. Monoscale ridgelets for the representation of images with edges. Technical report, Stanford Univ.,1999.
    [11]D.L. Donoho. Orthonormal ridgelets and linear singularities. SIAM, Math Anal., Vol.31, No.5, pp.1062-1099,2000.
    [12]E. Candes, D. Donoho. Curvelets-A Surprisingly Effective Non-adaptive Representation for Objects with Edges, Curves and Surfaces. Vanderbilt University Press,1999.
    [13]J.L. Starck, E.J. Candes, D.L. Donoho. The Curvelet Transform for Image Denoising. IEEE Trans. on Image Proc., Vol.32, Nol.11, pp.670-684,2002.
    [14]E.L. Pennec, S. Mallat. Bandelet representations for image compression. IEEE International Conference on Image Processing, Vol.1, pp.12-14,2001.
    [15]E.L. Pennec, S. Mallat. Image compression with geometrical wavelet. IEEE International Conf. on Signal Proc., Canada, No.9. pp.661-664,2000.
    [16]M.N. Do, M. Vetterli. Contourlets Beyond Wavelets. Academic Press,2003.
    [17]M.N. Do, M. Vetterli. Contourlets:a directional multiresolution image representation. Inter. Conf. on Image Proc., Vol.1, pp.357-360,2002.
    [18]冯象初,宋国乡.数值泛函与小波理论.西安电子科技大学出版社,2003.
    [19]I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun. on Pure and Applied Mathematics., Vol.41, No.7, pp.909-996,1988.
    [20]I. Daubechies. Ten Lectures on Wavelets. CBMS Conference Series in Applied Mathematics, SIAM, Philadelphia,1992.
    [21]郭宝龙,倪伟,闫允一.通信中的视频信号处理.电子工业出版社,2007.
    [22]S. Mallat. Multifrequency channel decomposition of images and wavelets. IEEE Trans. ASSP., Vol.37, No.12, pp.2091-2110,1989.
    [23]S. Mallat. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Trans. PAMI, Vol.11, No.7, pp.674-693,1989.
    [24]T.N. Goodman, S.L. Lee. Wavelet wandering subspaces. Trans. Amer. Math. Soc., Vol.338, No.2, pp.639-654,1993.
    [25]T.N. Goodman, S.L. Lee. Wavelets of multiplicity. Trans. Amer. Math. Soc., Vol.342, No.1, pp.307-324,1994.
    [26]D.L. Donoho. Data Compression and Harmonic Analysis. IEEE Trans. Information Theory, Vol.44, No.6, pp.2435-2476,1998.
    [27]E.J. Candes, D.L. Donoho. New Tight Frames of Curvelets and Optimal Representations of Objects with Smooth Singularities. Department of Statistics, Stanford University,2002.
    [28]D.L. Donoho, M.R. Duncan. Digital curvelet transform:Strategy, implementation and experiment. Tech. Rep., Department of Statistics, Stanford University,1999.
    [29]R.R. Coifman, M.V. Wickerhauser. Adapted waveform analysis as a tool for modeling, feature extraction and denoising. Optical Engineering, Vol.33, No.7, pp.2170-2174,1994.
    [30]E.P Simoncelli, W.T. Freeman, D.J. Heeger. Shiftable multi-scale transforms. IEEE Trans. Information Theory, Vol.38, No.2, pp.587-607,1992.
    [31]W.T. Freeman, E.P. Simoncelli, E.H. Adelson. The design and use of steerable filters. IEEE Trans. Pat. Anal. Mach. Intell., Vol.13, No.9, pp.891-906,1991.
    [32]N. Kingsbury. Complex wavelets and filtering for shift invariant analysis signals. J. ofAppl Comput Harmonic Anal., Vol.10, No.3, pp.234-253,2001.
    [33]M. Livingstone. Art illusion and the visual system. Scientific American, Vol.258, No.1, pp.78-86,1988.
    [34]D.H. Hubel, T.N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, Vol.160, No.4, pp.106-154,1962.
    [35]J. Leowenstein, J.F. Rizzo. Novel retinal adhesive used to attach electrode array to retina. Ophthalmology and Vision Science, Vol.40, pp.S733,1999.
    [36]郭雷,郭宝龙.视觉神经系统与分布式推理理论.西安电子科技大学出版社,1995.
    [37]B.A. Olshausen, D.J. Field. Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, No.381, pp.607-609,1996.
    [38]R.A. Normann, E.M. Maynard, P.J. Rousche. A neural interface for a cortical vision prosthesis. Vision Research, Vol.39, pp.2577-2587,1999.
    [39]Representations of Objects with Smooth Singularities. Department of Statistics, Stanford University,2002.
    [40]E.J. Candes, D.L. Donoho. Curvelets, Multiresolution Representation and Scaling Laws. Proc. of SPIE, Vol.4119, pp.1-12,2000.
    [41]Q. Jiang. On the design of multifilter bands and orthonormal multiwavelet banks. IEEE Trans. SP., Vol.46, No.12, pp.3292-3302,1998.
    [42]Y. Lu, M.N. Do. CRISP:a critically sampled directional multiresolution image representation. Conference on Wavelet Applications in Signal and Image Processing X, Vol.1, pp.584-593, San Diego, USA, Aug.2003.
    [43]N.Kachouie, P.W. Fieguth. Bayes shrink ridgelets for image denoising. ICIAR, Springer, pp.163-170,2004.
    [44]B.B. Saevarsson, J.R. Sveinsson, J.A. Benediktsson. Combined wavelet and curvelet denoising of SAR images. Geoscience and Remote Sensing Symposium 2004, Vol.6, pp.4235-4238,2004.
    [45]E. Ramin, R. Hayder. Image denoising using translation-invariant Contourlet transform. International Conference on Acoustics, Speech and Signal Processing, Vol.4, pp.557-560,2005.
    [46]M.N. Do, M. Vetterli. The finite Ridgelet Transform for Image Representation. IEEE Trans. on Image Processing, Vol.12, No.l, pp.16-28,2002.
    [47]L. Granai, F. Moschetti, P. Vandergheynst. Ridgelet Transform Applied to Motion Compensated Images. Research Report, EPFL Swiss Federal Institute of Technology, Switzerland.
    [48]G. Meyer, R.R. Coifman. Brushlets:A tool for directional image analysis and image compression. J. of ACHA, No.5, pp.147-187,1997.
    [49]孙文方,赵亦工,宋蓓蓓.基于第二代Bandelets变换的静止图像压缩.西安交通大学学报,Vol.40,No.8,pp.950-954,2006.
    [50]金炜,潘英俊,魏彪,冯鹏.一种基于Contourlet的无表零树图像编码算法.电子与信息学报;No.11,2006.
    [51]焦李成,谭山,图像的多尺度几何分析:回顾和展望.电子学报,Vol.31,No.12,pp.1976-1981,2003.
    [52]李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究.光学学报,Vol.26,No.5,pp.657-662,2006.
    [53]张强,郭宝龙.应用第二代Curvelet变换的遥感图像融合.光学精密工程, Vol.15,No.7,pp.1130-1136,2007.
    [54]倪伟,郭宝龙,杨谬.基于Contourlet区域对比度的遥感图像融合算法.宇航学报,Vol.28,No.2,pp.364-369,2007.
    [55]杨谬,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法.西安交通大学学报,Vol.41,No.4,pp.448-452,2007.
    [56]尚晓清.多尺度分析在图像处理中的应用研究[博士论文].西安电子科技大学,2005.
    [57]沙宇恒,丛琳,侯彪,焦李成.基于方向纹理信息的图像融合.电子与信息学报,Vol.29,No.3,pp.593-597,2007.
    [58]F. Flusser. Image representation via a finite Monoscale ridgelets for the representation of images with edges. Tech. Rep. Dept. Statist., Stanford Univ., Stanford,1999.
    [59]M.N. Do, M. Vetterli, Orthonormal finite ridgelet transform for image compression. IEEE Int. Conf. Image Proc., Vol.2, pp.367-370, Sept.2000.
    [60]D.L. Donoho, M.R. Duncan. Digital curvelet transform:Strategy, implementation and experiment. Tech. Rep., Department of Statistics, Stanford University,1999.
    [61]M.N. Do, M. Vetterli. Contourlets:a directional multiresolution image representation. Inter. Conf. on Image Proc.2002, Vol.1, pp.357-360,2002.
    [62]P.J. Burt, E.H. Adelson. The Laplacian pyramid as acompact image code. IEEE Trans. Communication, Vol.31, No.4, pp.532-540,1983.
    [63]M.N. Do, M. Vetterli. Framing pyramids. IEEE Trans. Signal Processing, Vol.51, No.9, pp.2329-2342,2003.
    [64]R.H. Bamberger, M J. Smith. A filter bank for the directional decomposition of images:Theory and design. IEEE Trans. Signal Processing, Vol.40, No.4, pp.882-893,1992.
    [65]J.L. Starck, F. Murtagh, A. Bijaoui. Image Processing and Data Analysis. Cambridge University Press,1998.
    [66]A.L. Cunha, J. Zhou, M. Do. The nonsubsampled Contourlet transform: Theory, design and applications. IEEE Trans. Img. Proc.,2005.
    [67]J.P. Zhou, A.L. Cunha, M.N. Do. Nonsubsampled contourlet transform: Construction and application in enhancement. IEEE Int. Conf. on Image Proc., Genoa, Italy, pp.469-472,2005.
    [68]Z. Cvetkovic, M. Vetterli. Oversampled filter banks. IEEE Trans. on Signal Proc. Vol.46, No.5, pp.1245-1255,1998.
    [69]P.P. Vaidyanathan. Multirate Systems and Filterbanks. Prentice Hall,1993.
    [70]J.H. McClellan, The design of two-dimensional digital filters by transformation.7th Annual Conf. Information Sciences and Systems,1973.
    [71]S.M. Phoong, C.W. Kim. A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Trans. Signal Proc., Vol.43, No.3, pp.649-661,1995.
    [72]S. Mitra, R. Sherwood. Digital ladder networks. IEEE Trans. on Audio and Electroacoustics, Vol.2, No.1, pp.30-36,1973.
    [73]Z. Cvetkovic, M. Vetterli. Oversampled filter banks. IEEE Trans, on Signal Processing, Vol.46, No.5, pp.1245-1255,1998.
    [74]E.J. Candes, D.L. Donoho. Curvelets, Multiresolution Representation and Scaling Laws. Proc. of SPIE, Vol.4119, pp.1-12,2000.
    [75]B.K. Puri, A.J. Richardson, A. Oatridge. Cerebral ventricular asymmetry in schizophrenia:a high resolution 3D magnetic resonance imaging study. Int J Psychophysol.34,207,1999.
    [76]S.L Sailer., J.G. Rosenman, M. Soltys. Improving Treatment Planning Accuracy Through Multimodality Imaging. Int. J. Radiation Oncology, Vol. 35, pp.117-124,1996,:.
    [77]A. Siragusa. Radiosurgical treatment of brain metastasis:the experience of the department of radiation oncology. Supplement Tumor. Vol.2, No.6, pp. S36-S47,2003.
    [78]E. Waltz, J. Linas. Multisensor Data Fusion. Boston:Artech House,1990.
    [79]何友,王国宏.多传感器信息融合及应用.电子工业出版社,2000.
    [80]D.L. Hall. Mathematical Techniques in Multisensor Data Fusion. Artech House,1992.
    [81]康耀红.数据融合理论与应用.西安电子科技大学出版社,1997.
    [82]C. Pohl. Multisensor image fusion in remote sensing:concepts, methods and applications. Inter. J. of Remote Sensing, Vol.19, No.5, pp.823-854,1998.
    [83]毛士艺,赵巍.多传感器图像融合技术综述.北京航空航天大学学报,Vol.28,No.5,PP.512-518,2002.
    [84]David L. Hall, James Linas. An introduction to multisensor data fusion. Proc. of the IEEE, Vol.85, No.1, pp.6-23,1997.
    [85]李晖晖.多传感器图像融合算法研究[博士论文].西北工业大学,2006.
    [86]W.J. Carper, T.M. Lillesand. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sensing, Vol.56, No.5, pp.459-467,1990.
    [87]J.R. Harris. IHS Transform for the integration of radar imagery with other remotely sensed data. Photogammetric Engineering and Remote Sensing, No.12, pp.1631-1641,1990.
    [88]P.S. Chavez, S.C. Sides. Comparison of Three Difference Methods to Merge Multiresolution and Multispectral Data:Landsat TM and SPOT Panchromatic. Photogramm.Eng.Remote Sensing, Vol.57, No.7, pp.295-343,1991.
    [89]P.J. Burt, E.H. Adelson. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications, Vol.31, No.4, pp.532-540,1983.
    [90]A. Toet, L.J. Ruyven. J.M. Valeton. Merging themal and visual images by a contrast pyramid. Optical Engineering, Vol.28, No.7, pp.789-792,1989.
    [91]P.J. Burt. A gradient Pyramid basis for pattern-selective image fusion. Society for Information Display Digest of Technical Papers, No.16, pp.467-470,1985.
    [92]张新曼,韩九强.基于视觉特性的多尺度对比度塔图像融合及性能评价.西安交通大学学报,Vol.38,No.4,pp.380-383,2004.
    [93]H. Li, B.S. Manjunath,. Multisensor Image Fusion Using the Wavelet Transform. Graphical Models and Im. Proc., Vol.57, No.3, pp.235-245,1995.
    [94]X. Jiang, L. Zhou. Multispectral image fusion using wavelet transform. Proceedings of SPIE, Vol.2898, pp.35-42,1996.
    [95]Z. Zhang, R.S. Blum. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, Vol.2987, No.8, pp.1315-1326,1999.
    [96]晃锐,张科,李言俊.一种基于小波变换的图像融合算法.电子学报,Vol.32,No.5,pp.750-753,2004.
    [97]P.A. Van, E.D. Pol. Medical image matching -a review with classification. IEEE Engineering in Medicine and Biology, Vol.3, pp.26-38,1993.
    [98]H.H. Wang, J.X. Peng. Fusion algorithm for multisensor images based on the discrete multiwavelet transform. IEE Proceedings of Vision, Image and Signal Processing, Vol.149, No.5, pp.1243-1246,2002.
    [99]M. Unser. Texture classification and segmentation using wavelet frames. IEEE Trans. On Image Processing, Vol.11, No.4, pp.1549-1560,1995.
    [100]C.V. Kropas. Image fusion using auto associative associative neural networks. Ph.D dissertation, Airforce Institute of Technology,1999.
    [101]李振华,敬忠良,孙韶媛.基于方向金字塔变换的遥感图像融合算法.光学学报.Vol.25,No.5,pp.598-602,2005.
    [102]Z.H. Li, Z.L. Jing, S.Y. Sun. Pixel-clarity-based multifoucs image fusion. Chinese Optics Letters, No.2, pp.82-85,2004.
    [103]M. I. Sezan, G. Pavlovic, A. M. Tekalp. On modeling the focus blur in image restoration. IEEE International Conference on Acoustics, Speech, and Signal Processing, Canada, pp.2485-2488,1991.
    [104]那彦.图像融合方法研究.西安电子科技大学博士论文,西安,2005.
    [105]Z. Zhang, R. S. Blum. A categorization of multiscale decomposition based image fusion schemes with aperformance study for a digital camera application. IEEE, Vol.87, No.8, pp.1315-1316,1999.
    [106]W. B. Seales, S. Dutta. Everywhere infocus image fusion using controllable cameras. SPIE, Vol.2905, pp.227-234,1996.
    [107]H. Li, B. S. Manjunath, S. K. Mitra. Multisensor image fusion using the wavelet transform. Graphical Models and Image Proceesing, Vol.57, No.3, pp.235-245,1995.
    [108]F. Petitcolas, R. J. Anderson, M. G. Kuhn. Information hiding-asurvey. Proceedings of the IEEE, Vol.87, No.7, pp.1062-1078,1999.
    [109]F. Hartung, M. Kutter. Multimedia watermarking techniques. Proceedings of the IEEE, Vol.87, No.7, pp.1079-1107,1999.
    [110]郭磊,数字图像的稳健水印技术研究.西安电子科技大学博士学位论文,2005.
    [111]M. D. Swanson, M. Kobayashi, A. H. Tewfik. Multimedia data embedding and watermarking techniques. Proceedings of the IEEE, Vol.86, No.6, pp.1064-1087,1998.
    [112]N. Paskin. Towards unique identifiers. Proceedings of the IEEE, Vol.87, No.7, pp.1208-1227,1999.
    [113]K. Hill. A perspective:the role of identifiers in managing and protecing intellectual property in the digital age. Proceedings of the IEEE, Vol.87, No.7, pp.1228-1238,1999.
    [114]D. Augot, J. M. Boucqueau, J. F. Delaigle. Secure delivery of image over open networks. Proceedings of the IEEE, Vol.87, No.7, pp.1251-1266,1999.
    [115]孙圣和,陆哲明.数字水印处理技术.电子学报,Vol.28,No.8,pp.85-90,2000.
    [116]钟桦.数字图像信息隐藏与认证算法研究.西安电子科技大学博士学位论文,2003.
    [117]G.. Voyatzis, I. Pitas. The use of watermarks in the protection of digital multimedia products. Proceedings of the IEEE, Vol.87, No.7, pp.1197-1207, 1999.
    [118]D.G. Feng, X.Y. Wang. Progress and Prospect of Some Fundamental Research on Information Security in China. Journal of Computer Science and Technology, Vol.21, No.5, pp.740-755,2006.
    [119]C.X. Shen, H.G. Zhang, D.G. Feng. Survey of Information Security, Science in China Series F:Information Sciences, Vol.50, No.3, pp.273-289,2007.
    [120]I.J. Cox, M.L. Miller, J.A. Bloom. Digital Watermarking. Morgan Kaufmann Publishers,2002.
    [121]I.J. Cox, M.L. Miller, J.A. Bloom. Digital Watermarking and Steganography, (Second Edition), Morgan Kaufmann Publishers,2008.
    [122]王炳锡,陈琦,邓峰森.数字水印技术,西安:西安电子科技大学出版社,2003.
    [123]孙圣和,陆哲明,牛夏牧.数字水印技术及应用,北京:科学出版社,2004.
    [124]M.D. Swanson, M. Kobayashi, A.H. Tewfik. Multimedia Data Embedding and Watermarking Techniques. Proceedings of the IEEE, Vol.86, No.6, pp.1064-1087,1998.
    [125]F. Hartung, M. Kutter. Multimedia Watermarking Techniques. Proceedings of the IEEE, Vol.87, No.7, pp.1079-1107,1999.
    [126]C.I. Podilchuk, E.J. Delp. Digital watermarking:algorithms and applications, IEEE Signal Processing Magazine, Vol.18, No.4, pp.33-46,2001.
    [127]P. Bas, J.M. Chassery, B. Macq. Geometrically invariant watermarking using feature points. IEEE Transactions on Image Processing, Vol.11, No.8, pp.825-837,2002.
    [128]李雷达,郭宝龙,表金峰.基于奇偶量化的空域抗几何攻击图像水印算法.电子与信息学报,Vol.31,No.1,pp.134-138,2009.(基于该方法改进)
    [129]C.W. Tang, H.M. Hang. A Feature-based Robust Digital Image Watermarking Scheme. IEEE Transactions on Signal Processing, Vol.51, No.4, pp.950-959, 2003.
    [130]H.Y. Lee, H.S. Kim, H.K. Lee. Robust Image Watermarking Using Local Invariant Features. Optical Engineering, Vol.45, No.3, pp.1-11,2006.
    [131]H.Y. Lee, C.H. Lee, H.K. Lee. Feature-based image watermarking method using scale-invariant keypoints. Pacific Rim Conference on Multimedia, Jeju Island, South Korea, pp.312-324,2005.
    [132]D.G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, Vol.60, No.2, pp.91-110,2004.
    [133]D. Kundur, D. Hatzinakos. Digital watermarking for telltale tamper proofing and Authentication. Proceeding of the IEEE, Vol.87, No.7, pp.1167-1180, 1999.
    [134]Leida Li, Baolong Guo, Kai Shao. Geometrically robust image watermarking using scale-invariant feature transform and Zernike moments. Chinese Optics Letters, Vol.5, No.6, pp.332-335,2007.
    [135]R. Georges, Fourier. Range-gated underwater laser imaging system. Optical Engineering, Vol.32, No.9, pp.2185-2190.
    [136]L. Jerry, Gorline. Estimating the Effective Depth of Laser Imaging Systems in Various Ocean Environments. Naval Research Laboratory,1996.
    [137]E.A. Mclean, H.R. Burris. Short-pulse range-gated optical imaging in turbid water. Applied Optics, Vol.34, No.21, pp.4343-4351,1995.
    [138]R.O. Gregory, S.Y. Donald. Imaging laser radar in the near and far infrared. Proc. IEEE, Vol.84, No.2, pp.103-125,1996.
    [139]B. Andreas, K. Gunter. A laser radar for precise 2D and 3D object imaging. Microwave Conference and Exhibition,27th European,8-12 Sep 1997. 601-604
    [140]Q. Wang, L.H. Jiang, N. Li. Based on combining homomorphic and adaptive fuzzy multilevel median filtering forrestoration of images degrade by speckle noise. Chinese Joural of Lasers, Vol.28, No.7, pp.655-657,2001.
    [141]费佩燕.小波理论及其在图像去噪中的应用研究.西安电子科技大学博士学位论文,2005.
    [142]J.S. Lee, M.R. Grunes, S.A. Mango. Speckle reduction in multi-frequency and multi-polarization SAR imagery. IEEE Trans. GE, pp.535-544,1991.
    [143]J.S. Lee. Speckle Analysis and Smoothing of Synthetic Aperture Radar Images. Computer Graphics and Image Processing, Vol.17, pp.24-32,1981.
    [144]D.T. Kuan, A.A. Sawchuk. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. PAMI, Vol.7, No.2, pp.165-177,1985.
    [145]A. Lopes, R. Touzi. Adaptive speckle filters and science heterogeneity. IEEE Trans. Geosci. Remote Sensing, Vol.28, No.6, pp.992-1000,1990.
    [146]王骐,蒋立辉,李宁.基于同态滤波与自适应模糊多级中值滤波级联算法的散斑噪声污染图像恢复.中国激光,Vol.28,No.7,pp.655-657,2001.
    [147]李自勤,王骐,李琦等.激光成像雷达系统中散斑像的乘法模型及其滤除.中国激光,Vol.30,No.8,pp.717-720,2003.
    [148]S. Mallat, W. Wang. Singularity detection and processing with wavelets. IEEE Trans. Information Theory, Vol.38, No.2, pp.617-643,1992.
    [149]D.L. Donoho, I.M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, Vol.81, pp:425-455,1994.
    [150]D.L. Donoho, I.M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage, Journal of American. stat. Ass., Vol.90, pp.1200-1224,1995.
    [151]S.G. Chang, B. Yu, M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. Image Processing, Vol.9, No.9, pp.1522-1531,2000.
    [152]M. Mihcak, I. Kozintsev, K. Ramchandran. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, Vol.37, No.6,pp.300-303,1999.
    [153]L. Sender, I.W. Selesnick. Bivariate shrinkage function for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, Vol.50, No.11, pp.2744-2756,2002.
    [154]D.L. Donoho. Denoising by soft-threshoding. IEEE Trans. Information Theory, Vol.34, No.2, pp.1245-1234,1995.
    [155]M.S. Crouse, R.D. Nowak. Wavelet-based image denoising using hidden markov models. IEEE Trans. Signal Proc., Vol.46, No.4, pp.886-902,1998.
    [156]L.K. Shark, C. Yu. Denoising by optimal fuzzy thresholding in wavelet domain. Electronics Letters, Vol.36, No.6, pp.581-582,2000.
    [157]J. Liu, P. Moulin. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. IEEE Trans. on Image Processing. Vol.10, No.10, pp.1647-1658,2001.
    [158]Y. Xu, J.B. Weaver. Wavelet transform domain filters:a spatially selective noise filtration technique. IEEE Trans. IP, Vol.3, No.6, pp.747-757,1994.
    [159]J.W. Goodman. Some fundamental properties of speckle. Opt. Soc. Am., Vol.66, No.11, pp.145-115,1976.
    [160]蒋立辉,王春辉,王骐等.脉冲相干激光雷达的散斑成像模型及其散斑噪声压缩.光学学报,Vol.20,No.12,pp.1623-1628,2000.
    [161]X. Hua, L.E. Pierce, F.T. Ulaby. Despeckling SAR images using a low-complexity wavelet denoising process. Geoscience and Remote Sensing Symposium, Vol.1, pp.321-324,2002.
    [162]T. Vincent, and A.P. Tomas. On Edge Detection. IEEE Trans. Pattern analysis and Machine Intelligence,Vol.PAMI-8,No.2, pp.147-163, March 1986.
    [163]章毓晋.图像分割.北京科学出版社,2001年.
    [164]章毓晋.图像工程(上册)—图像处理和分析.北京清华大学出版社,1999.
    [165]R. Haralick. Digital Step Edges from Zero Crossings of Second Directional Derivatives. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.6, No.1,pp.58-68,1984.
    [166]S. Pal, R. King. On Edge Detection of X-ray Images Using Fuzzy Sets. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.5, No.1, pp.69-77, 1983.
    [167]M. Hueckel. A Local Visual Operator which Recognizes Edges and Lines. Journal of the Association for Computing Machinery. Vol.20, No.4, pp.634-647,1973.
    [168]L.G. Roberts. Machine Perception of Three Dimension Solids. Optical and Electro-Optimal Information Processing,Jt.Tippett,etal.,Ed. Cambridge, MA: MIT Press,1965,99-159-197
    [169]L. Sobel. Camera Models and Machine Perception. PhD theses, Stanford University, Standford, CA,1970.
    [170]J. Prewitt. Object Enhancement and Extraction. Picture Process. Psychopict, pp.75-149,1970.
    [171]R.A. Kirsch. Computer Determination of the constituent structure of Biological images. Computer sand Biomedical research, Vol.18, pp.113-125, Jan.1971.
    [172]L.S. Davis. A Survey of Edge Detection Techniques. CGIP, Vol.4, pp.248-270, 1975.
    [173]D.C. Marr, E. Hildreth. Theory of Edge Detection. Proc. Roy. Soc. London, Vol.275, pp.187-217,1980.
    [174]J. Canny, Member,IEEE.A Computational Approach to Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No.1, pp.679-697, November 1986
    [175]J. Canny. Finding edges and lines in images. MIT Artif. Intell. Lab, Cambridge, MA, Tech. Rep.AI-TR-720,1983
    [176]M. Sun, R. Sclabassi. Symmetric Wavelet Edge Detector of the Minimum Length. International Conference on Image Processing, Vol.167, No.23, pp.2177-2180,1995.
    [177]S. Mallat, S. Zhang. Characterization of signals from multiscale edges. IEEE Transaction PAMI,Vol.14, No.7,pp.710-732,1992.
    [178]M.N. Javad, A. Ali. Edge detection using directional wavelet transform. IEEE MELECON 2004.,Dubrovnik, Croatia,2004.
    [179]章国宝,叶桦,陈维南.基于正交小波变换的多尺度边缘提取.中国图形图像学报,Vol.3,No.8,pp.651-654,1998.
    [180]魏海,沈兰荪.反对称双正交小波应用于多尺度边缘提取的研究.电子学报.Vol.30,No.3,pp.313-316,2002.
    [181]连静,工珂.基于B样条小波的自适应阈值多尺度边缘检测.吉林大学学报(工学版),No.5,2005.
    [182]郦苏丹,李广侠,张翠.SAR图像的多尺度边缘检测方法.系统工程与电子技术,Vol.26,No.3,pp.307-300,2004.
    [183]岳思聪,赵荣椿,郑江滨.基于多尺度边缘响应函数的自适应阈值边缘检测算法.电子与信息学报,Vol.30,No.4,2,pp.857-960,2008.
    [184]傅一平.基于Gabor和小波的边缘检测理论、快速算法与实时应用研究.浙江大学博士论文,2004.
    [185]M.N. Do, M. Vetterli. Directional multiscale modeling of images using the Contourlet transform. IEEE Workshop on Statistical Signal Processing 2003, Vol.1, pp.262-265, Sep.2003.
    [186]J. Chen, H.X Yao, W. Gao et al. "A Robust Watermarking Method Based on Warelet and Zernike Transform," IEEE International Symposium on Circuits and Systems,2004, pp:173-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700