用户名: 密码: 验证码:
锚碇基坑嵌岩支护结构受力特性和施工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国桥梁建设的发展,在大跨度悬索桥的施工过程中出现了一些开挖深度和平面尺寸很大的锚碇基坑,其嵌岩支护结构设计和基坑开挖施工安全性方面还存在一些需要探讨的问题。
     本文结合实际工程,通过理论分析和现场监测资料总结了嵌岩地下连续墙的受力和变形特征,并与普通地连墙进行比较。研究表明,由于基岩的约束作用,嵌岩地连墙的变形可以控制在较低水平并且在嵌岩位置变形会出现反弯点,导致墙身在该位置会出现很大的负弯矩,对其设计起控制作用;分析表明,加大墙厚可以在一定程度上减少变形但是会大大增加墙身受力特别是嵌固段的负弯矩;一定的嵌岩深度有助于提高围护结构的稳定和减少变形,但达到一定深度后再增大嵌岩深度并不能改善支护结构受力;
     针对嵌岩地下连续墙的受力特点,本文提出了其正截面设计的新方法,建议考虑地连墙轴向压力的有利作用、将截面当作偏压结构进行设计,在保证地连墙安全的前提下减少了墙体配筋量并提高了墙身在嵌岩位置的塑性转动能力,该设计方法通过结构试验进行了检验。考虑到本次试验鲜有先例报道,所以本文通过数值方法进行了验证。数值计算的结果佐证了本次试验研究和设计方法的可靠性,并通过改变基岩弹性模量模拟了各类岩石对地连墙受力性能的影响,据此确定了墙身在各类岩层的嵌入深度。
     弹性地基梁法是目前基坑支护结构设计的主要方法,但是m值的确定还是依赖经验公式,而没有考虑基坑开挖施工的动态影响和圆形围护结构的拱作用。本文基于弹性地基梁理论,通过现场实测基坑变形,基于优化方法,对土体的m值进行反分析,并利用所得参数预报下一工况的支护结构变形。以润扬北锚为算例,对本文的方法进行了验证,并探讨了基坑开挖时,被动区土体m值的变化规律和取值方法;基于薄壳弯曲理论,推导了形式类似于弹性地基梁理论的圆柱形支护结构挠曲微分方程,建议将围护结构的拱作用通过分布弹簧来模拟,考虑到地连墙槽段间接头的削弱作用,分布弹簧的刚度应该有一定折减,最后以阳逻南锚为算例验证了该计算方法。
     基于现有的有限元理论和成熟的商业软件,建立了嵌岩地下连续墙支护深基坑开挖计算模型,可以模拟支护结构与土体的摩擦和基坑的分步开挖。以黄埔北锚为工程背景用本文模型进行分析,结果表明,圆形基坑主要依靠支护结构的环向拱作用来抵抗坑外水土压力,与常规的条形基坑有较大差别。圆形基坑的变形和应力都控制在较低水平,随着开挖的进行,墙身最大变形位置开始随开挖进程下移,但是在后几层开挖时,最大变形位置受基岩的约束作用并不进一步下移,而是稳定在开挖面以上,故而随深度增加而加强支撑的传统设计经验并不适用于该类支护结构。本文针对此特点,提出了该类基坑支护设计的优化方法,并给出了具体算例。
     通过对国内代表性的已建工程进行调研,总结了嵌岩地连墙施工成套技术、监测技术和施工优化技术的进展,提出了合理的信息化施工运行架构,并以实际工程为例,探讨了嵌岩支护结构施工期间的优化问题。
     最后,对本文工作进行总结并展望了下一步的研究方向。
Anchor pit appears during the constrution of span bridge the depth and plan sizeof which exceed that of ordinary pits significantly. There are some problems in thedesign of rock-socketed retaining and construction safety for anchor pit.
     Load-bearing and deformation character of rock-socketed diaphragm isgeneralized from in-situ data of typical pits. It is different from conventionaldiaphragm that rock-socketed diaphragm resist negative moment on bedrock whichcontrols the design because of the restraint function of bedrock. The influence ofdifferent thickness and rock-socketed length on load-bearing character is given. Theresults show that thickening diaphragm can decrease deformation but increaseinternal force greatly, especially the negative moment. Proper rock-socketed length isbeneficial to stabilization of retaining structure and decrease deformation.
     According to mechanical character of rock-socketed diaphragm, new designmethod of normal section is presented in which the gravity of support system andrestraint function of bedrock are considered. Compared with traditional method, therebar ratio of diaphragm decreases obviously and plastic rotation of diaphragmsection near bedrock is guaranteed. This new design method is confirmed byexperiment and carried out in north anchor pit of Runyang bridge. Based on theappropriate material constitutive equation, failure criterion and model of cracking, thenumerical analysis is used to simulate experiment. The results justify the measureddata of experiment and compare the influent of elastic modulus of different bedrock,so proper rock-socketed length is presented.
     Elastic foundation beam method is widely used in the design of retainingstructure for foundation pit. Traditionally, the "m" of soil is determined by empiricalequation which does not consider the dynamic factors during excavation and archaction of round pit. Grounded on optimum method, the back analysis is used tocalculate the "m" of soils, which then are applied to predict the displacement of theretaining structure in next step and describe the variation of "m" during excavation. This method was carded out during the construction of north anchor of Runyangbridge; Based on the bending theory of shells, differential equation of the elasticsubgrade beam is derived which consider the arc action of retaining structure.Because of the influence of joint between diaphragm panels, the reduction factor ofring stiffness is presented through a typical round anchor pit.
     The excavation process of the south anchor pit of Huangpu bridge is simulatedby using spatial nonlinear FEM in which the interaction between soil and structure isconsidered. The stress and deformation of the support system during constructionprocess are performed and justified by measured value. The results show that thecylindrical retaining structure subjected mainly to the axial compressive anddeformation rule is different from that of strip one. Maximum lateral displacementdepth grows with excavation, and stops until it reaches a certain depth. So thetraditional design method which strength section of brace is not suited for therock-socketed cylindrical retaining structure and the optimal design is needed.
     Through investigation in several typical anchor pits, the packaged technology ofrock-socketed diaphragm is generalized, including panel construction, cut off water,observation system and joint between panels. Combined with practical engineering,the optimal method during construction is given.
     Lastly, author summarizes work of the paper and presents the further researchdirections.
引文
[1] 龚晓南,高有潮.深基坑工程设计施工手册.北京:中国建筑工业出版社,1998
    [2] 刘建航,侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997
    [3] 赵志缙,应惠清.简明深基坑工程设计施工手册.北京:中国建筑工业出版社,2000
    [4] 李钟.深基坑支护技术现状及发展趋势.岩土工程界,2001,(1):42-45
    [5] 张有光,关华.虎门大桥西锚碇基础地下连续墙的施工技术.国外公路,1998,18(5):49—51
    [6] 周建军,饶思礼.虎门大桥西锚碇大型混合基础的设计与施工.桥梁建设,1995,(2):44—47
    [7] 宋康,吕鹏,徐伟.地下连续墙嵌岩技术初探,建筑技术开发.2002,29(1):37—39
    [8] 中华人民共和国行业标准.建筑基坑工程技术规范(YBJ9258-97).北京:冶金工业出版社,1998
    [9] 中华人民共和国行业标准.建筑基坑支护技术规程(JGJ120—99).北京:中国建筑工业出版社,1999
    [10] 中华人民共和国行业标准.建筑桩基技术规范(JGJ94-94).北京:中国建筑工业出版社,1994
    [11] Jean-Louis Briaud, Nak-Kyung Kim. Beam-Column Method for Tieback Walls. Journal of Geotechnical and Geoenvironmental Engineering. ASCE, 1998,124(1): 67-79
    [12] Whittle A J, Hashash Y M, Whitman R V. Analysis of deep excavation in Boston. Journal of Geotechnical Engineering. ASCE, 1993, 119(1): 69-90
    [13] Finno R J, Harahap I S. Finite element analysis of HDR-4 Excavation. Journal of Geotechnical Engineering. ASCE, 1991, 117(10): 1590-1609
    [14] Ghabonssi J, Pecknold D A. Incremental finite element analysis of geometrically altered structures. Int. J. for Numer. Meth. in Engrg. 1984, 20:2051-2064
    [15] Arai K. Simple optimization techniques for excavation deformation moduli from field observation. Soils and. Foundations, 1983, 23:107-113
    [16] Charles W W N, Marlin L L. Effects of Modeling Soil Nonlinearity and Wall Installation on Back-Analysis of Deep Excavation in Stiff Clay. Journal of Geotechnical Engineering, ASCE, 1995, 121(10): 687-695
    [17] Youssef M, Hashash A, Andrew J. Ground Movement Prediction for Deep Excavations in Soft Clay. Journal of Geotechnical Engineering, ASCE, 1996,122(6): 474-486
    [18] 刘国彬,沈建明,侯学渊.深基坑支护结构的可靠度分析,同济大学学报,1998,26(3):260-264
    [19] 杨敏,冯又全,王瑞详.深基坑支护结构的力学分析与实测结果的比较.建筑结构学报, 1999,20(2):68-78
    [20] Michael G, Christos A. Lateral Pressure on Sheet Walls Due To Strip Load. Journal of Geotechnical Engineering, ASCE, 1998, 124(1): 95-98
    [21] Chert W F, Liu X L. Limit Analysis in Soil Mechanics. Elsevier, Amsterdam, 1990
    [22] 魏汝龙.总应力法计算土压力的几个问题.岩土工程学报,1995,17(6):120-12
    [23] 魏汝龙.开挖卸载与被动土压力计算.岩土工程学报,1997,19(6):88-9
    [24] 魏汝龙.再论总应力法及水和土压力.岩土工程学报,1999,21(4):509-51
    [25] 陈愈炯,温彦锋,基坑支护结构上的水土压力,岩土工程学报,1999,21(2):139-143
    [26] 陈愈炯,温彦锋,对“基坑支护结构上的水土压力”讨论的答复,岩土工程学报,1999,21(4):512-513
    [27] 沈珠江.基于有效固结应力理论的粘土土压力公式,岩土工程学报,2000,22(3):353-356
    [28] 陈环,吴景海.“基坑支护结构上的水和土压力”的讨论之二.岩士工程学报,1999,21(4):511-512
    [29] 杨晓军,龚晓南,基坑开挖中考虑水压力的土压力计算,土木工程学报,1997,30(4):58—62
    [30] 李广信.基坑支护结构上水土压力的分算与合算.岩土工程学报,2000,22(3):348-352
    [31] Ronaldo I, Borja. Free Boundary, Fluid Flow, and Seepage Forces in Excavations. Journal of Geotechnical Engineering, ASCE, 1992, 118(1): 125-14
    [32] Brand E.W.Benner R.P.编著,叶书麟译 软粘土工程学.北京:中国建筑工业出版社,1991
    [33] 曾宪纯,丁继青.深基坑支护结构整体空间有限元分析方法.建筑结构,1999,(12):29-31
    [34] Griffiths D V, Hicks M A, Li C O. Transient Passive Earth Pressure Analyses. Geotechnique, 1991, 41(4): 615-620
    [35] King G J W. Analysis of Cantilever Sheet-Pile Walls in Cohesionless Soil. Journal of Geotechnical Engineering, ASCE, 1995, 121(9): 629-635
    [36] Goh A T C. Empirical Design in Geotechnics Using Neural Networks. Geotechnique, 1995, 45(4): 709-714.
    [37] Shaohui Li, Min Sun, Wei Xu. Real-Time Control of Internal Force of Retaining Structure for The Deep Pit[J]. Sixth International Conference on Tall Buildings, December 2005: 229-232, Hong Kong, China
    [38] 李劭晖,徐伟.阳逻大桥南锚基坑支护结构施工阶段变形预测.地下空间与工程学报,2006(4):302~305
    [39] Ou C Y. Chiou D C, Wu T S. Three-dimensional finite element analysis of deep excavations. Journal of Geotechnical Engineering, ASCE, 1996, 122(5): 337-345
    [40] Ou C Y, Lai C H. Finite element analysis of deep excavation in layered sandy and clayey soil deposits. Canadian Geotechnical Journal, 1994, 31:204-21
    [41] Powrie W. Limit Equilibrium Analysis of Embedded Retaining Walls. Geotechnique, 1996, 46(4): 709-723.
    [42] Whittle A J, Hashash Y M, Whitman R V. Analysis of deep excavation in Boston. Journal of Geotechnical Engineering, ASCE, 1993, 119(1): 69-90
    [43] 高文华,杨林德.软土深基坑围护结构变形的三维有限元分析.工程力学,2000(2):134—141
    [44] 陆新征等,某特深基坑考虑支护结构与土体共同作用的三维有限元分析.岩土工程学报,2003(7)
    [45] 林鸣,张鸿,徐伟,润扬长江公路大桥北索塔北锚碇工程施工技术.中国建筑工业出版社,2003.
    [46] 李佳,焦苍,范鹏,徐成家.地铁深基坑支护结构变形预测分析与应用.地下空间与工程学报,2005,1(3):474-477
    [47] 阮文军,何超然.特大圆形深基坑施工技术.地下空间与工程学报,2005,1(1):125—129
    [48] 秦建设,宋丽.“m”法在基坑开挖应用中的改进.应用力学学报,2004,21(4):67-70
    [49 陈灿寿,张尚根,余有山.深基坑支护结构变形计算.岩石力学与工程学报,2004,23(12):2065-2068
    [49] Ray Clough, Joseph Penzien. Dynamics of Structures. Second edition. USA: Computers and Structures, Inc.
    [50] 郭慧光等,武汉阳逻长江公路大桥45m埋深的南锚碇圆形地下连续墙施工及受力特性分析[J].建筑施工,2004(3).
    [51] 陆新征,宋二祥,润阳长江大桥北锚特深基坑支护方案安全系数及破坏模式分析.岩石力学与工程学报,2004(6).
    [52] 董新平,郭庆海,周顺华.圆形基坑变形特点及主要影响因素分析,地下空间与工程学报,2005(2):196—199
    [53] 徐伟,刘玉涛,吕鹏.超深嵌岩地下连续墙承载力试验研究,建筑施工,2002(5):397—400
    [54] 徐伟,刘玉涛,吕鹏.以室内试验确定超深大直径地下连续墙嵌岩部分的基床系数.2002(3):185—187
    [55] 宋二祥,娄鹏,陆新征.润扬大桥北锚碇特深基坑信息化施工.工业建筑,2004增刊
    [56] 宋二祥,娄鹏,陆新征.某特深基坑支护的非线性三维有限元分析.岩土力学,2004(4).
    [57] 廖瑛,夏海力,层次分析模糊综合评判法在深基坑支护方案优选中的应用.工业建筑,2004(9)
    [58] ANSYS公司,ANSYS分析指南[R].北京:ANSYS公司北京办事处,1999.
    [59] 吕西林,金国芳,吴晓涵,钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1996
    [60] 孙钧,候学渊,地下结构.北京:科学出版社,1988
    [61] 沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限应力分析.北京:清华大学出 版社,1993
    [62] 朱伯龙主编.混凝土结构设计原理.上海:同济大学出版社,1992
    [63] 朱伯龙,董振祥.钢筋混凝土结构非线性分析.上海:同济大学出版社,1985
    [64] 张同亿.复合墙异形柱组合结构抗震性能及设计方法研究:[博士学位论文].西安:西安建筑科技大学土木工程学院,2001
    [65] 黄炜.密肋复合墙体抗震性能及设计理论研究:[博士学位论文].西安:西安建筑科技大学土木工程学院,2004
    [66] 徐伟,李劭晖,陈灿.阳逻大桥南锚碇深基坑支护结构变形计算及安全性评估.建筑技术,2005(12)
    [67] 姚谦峰,陈平.土木工程结构试验.北京:中国建筑工业出版社,2001
    [68] 李劭晖,王旭峰,徐伟.嵌岩地下连续墙基岩m值确定方法研究.第四届土木工程研究生论坛论文集 2006年9月
    [69] 徐芝纶.弹性力学.北京:高等教育出版社,1991
    [70] Park YJ, AngAHS. Mechanistic seismic damage model reinforced concret. ASCE, J of Structure Engineering. 1985
    [71] Park YJ, Ang AHS, Wen Y K. Seismic damage analysis of reinforced concrete building. ASCE, J of Structure Engineering. 1985
    [72] Shaohui Li, Wei Xu, Deformation Prediction of Rock-socketed Retaining Structure during Excavation, June 2006, geoshanghai 2006
    [73] 徐伟、李劭晖,圆形嵌岩地连墙支护结构受力分析.第一届海峡两岸通道(桥隧)工程研讨会论文集2007年4月
    [74] 李劭晖,汪琦力,徐伟.沿海软土地区深基坑工程信息化施工技术研究,建筑技术,2006(12)
    [75] 李劭晖 徐伟,嵌岩地下连续墙受力性能研究及设计建议,地下空间与工程学报
    [76] Hibbit, Karlsson & Sorensen, Inc. ABAQUS Theory manual. 2001
    [77] Hibbit, Karlsson & Sorensen, Inc. ABAQUS/Standard User's manual. 2001
    [78] Morsy M M, Chan D H, Morgenstern N R. An elective stress model for creep of clay[J]. Can Geotech, 1995(32)
    [79] Druker D C, Gibson RE, Henkel D J. Soil mechanics and work-harding theories of plasticity [J], Proc. ASCE Tran, 1957 (122)
    [80] 邓子胜.深基坑支护结构—土空间非线性共同作用研究:[博士学位论文].长沙:湖南大学土木工程学院,2004
    [81] CHUNGSIK Y, Behavior of braced and anchored walls in soil overlying rock, Journal of Geotechnical and Geoenviromental Engineering. 2001,127(3):225-233
    [82] Bridle R J. Soil nailing-analysis and design. Ground Engineering. 1989, (9): 52-56
    [83] 常红,夏明耀,傅德明.地下连续墙垂直承载力室内模拟试验研究.同济大学学报1998,26(3):279—283
    [84] 徐伟,吕凤梧.施工结构计算方法与设计手册.北京:中国建筑工业出版社,1999
    [85] 高俊合.考虑固结、土—结构相互作用的基坑开挖有限元分析.岩土工程学报,1999,21(5)
    [86] 杨志法,关于位移反分析的某些考虑.岩石力学与工程学报,1995(1)
    [87] 赵其华等.深基坑工程施工监测与信息化研究.工程地质学报,2002,10(s):672-676
    [88] 杨敏,王瑞祥,冯又全.基坑挡墙结构的设计:Ⅰ—计算方法与工程应用.水文地质工程地质.1999(5):46-50
    [89] 杨敏,王瑞祥,冯又全.基坑挡墙结构的设计:Ⅱ—计算分析与讨论.水文地质工程地质.1999(6):15—19
    [90] 杨光华.深基坑开挖中多支撑支护结构土压力问题.岩土工程学报.1998,20(6):113-115
    [91] 高文华.深基坑支护墙体受力变形分析的粘弹性地基厚板理论:[博士学位论文].上海:同济大学,1998
    [92] 魏磊.深基坑开挖中地下连续墙侧向位移的时空效应预报分析.[硕士学位论文]上海:同济大学,2000
    [93] 刘国彬,黄院雄,侯学渊.水及土压力的实测研究.岩石力学与工程学报,2000,19(2):205-210
    [94] 俞建霖,龚晓南.深基坑工程的空间性状分析,岩土工程学报,1999,21(1):21-26
    [95] 秦四清等编著.深基坑工程优化设计.北京地震出版社,1998
    [96] 吴伟强.基坑支护结构计算的位移土压力法.建筑结构,1997,(9):19-21
    [97] 杨斌,胡立强.挡土结构侧土压力与水平位移关系的试验研究.建筑科学,2000,16(2):14-20
    [98] 应宏伟,谢永利,潘秋元.深基坑挡土结构土压力数值研究.西安公路交通大学学报,1998,18(4):26-31
    [99] 张治成.大跨度钢管混凝土拱桥施工控制研究.[博士学位论文]杭州:浙江大学,2004
    [100] A.C.Ugural.Stress in plates and shells.(范钦珊译)北京:中国建筑工业出版社,1986
    [101] 李蓓.软土地区大型超深基坑工程理论的实践与研究.[博士学位论文]上海:同济大学,2003
    [102] 吕凤梧.复杂条件下深基坑嵌岩支护开挖施工过程数值模拟与分析[博士学位论文]上海:同济大学,2002
    [103] Terzaghi. K ,Peck. R. B. and Mesri. G( 1996).Soil mechanics in engineering practice, 3rd Ed, Wiley, New York
    [104] Terzaghi, K, Theoretical soil mechanics, Wiley, New York, 1943
    [105] Duncan J M, Chang C Y Nonlinear analysis of stress-strain in soils J. Proc. ASCE, 1970, 96 (SMS)
    [106] Zienkiewicz O C, ShiomiT Dynamic behaviour of saturated porous media: The generalized Blot formulation and its numerical solution. Int J Numer and Ana Methods in Geomech, 1985, (8)
    [107] Fredlund DG Rehardjo H. Soil Mechanics for Unsaturated Soils. New York: Wiley, 1993
    [108] Hsieh P.G and Ou CY, Shape of Ground Surface Settlement Profiles Caused by Excavation Canadian Geotechnical Journal, Vol. 35, No. 6, 1998.12.1004-1017
    [109] Huang, C.C. The Efect of the Bending Rigidity of a Wall on Lateral Pressure Distribution. Canadian Geotechnical Journal, Vol37, No. 2, 2000.4.1062-1077
    [110] Lei, Xiaoyan, Contact friction analysis with a simple interface element, C ompute Methods Appl. Mech. Engrg. 190(2001) 1955-1965
    [111] Goodman R E, Taylor R L, Brekke T, A Modal for the mechanics of jointed Rock, ASCE, No. SM3, 1968
    [111] Ng, C. W. W, Lings, M L An Approximate Analysis of the Three-Dimensional Effect of Diaphragm Wall Installation, Geotechnique, Vol. 45, No. 3,1995.3.497-507
    [112] Clough G W, Ducan J M, Finite element analysis of retaining wall behavior, Proc, ASCE, No. SM10,1971
    [113] 谢康和,周健.岩土工程有限元分析理论与应用,科学出版社.2000
    [114] 熊孝波,孙钧.润扬大桥北锚深基坑开挖工程实践,岩土工程学报,2003.25(2):157-162
    [115] 吴斌,吴恒立,虎门大桥嵌岩压桩试验的分析和建议,岩土工程学报,2002,24(1):56-60
    [116] 应宏伟,谢康和等,软粘土深基坑开挖时间效应的有限元分析,计算力学学报,2000,17(3)349-354
    [117] 章根德,土的本构模型及其工程应用,科学出版社,1995
    [118] 朱百里,沈珠江,计算土力学,上海科学技术出版社,1990
    [119] 朱伯芳,有限单元法原理与应用,第二版,中国水利水电出版社,199
    [120] 李云安,葛修润,基坑变形影响因素与有限元数值模拟,岩土工程技术,2001(2):63-68
    [121] 郭莉.超深开挖面地下连续墙插入深度研究:[硕士学位论文].上海:同济大学土木工程学院,2004
    [122] 沈细中.深基坑工程基本过程数值模拟及实时优化研究:[博士学位论文].武汉:武汉大学,2004
    [123] 刘玉涛.嵌岩地下连续墙支护结构施工过程受力特性分析:[博士学位论文].上海:同济大学土木工程学院,2004
    [124] 中华人民共和国国家标准.建筑地基基础设计规范(GB50007-2002).北京:中国建筑工业出版社,2002
    [125] 冯俊福,俞建霖,杨学林,龚晓南.考虑动态因素的深基坑开挖反演分析及预测.岩土力学.2005,26(3)455—460
    [126] 王旭东,黄力平,阮永平等.基坑工程中地基土水平抗力比例系数m值的反分析.南京建筑工程学院学报,1998,(2):48—54.
    [127] 汪树玉,杨德铨,刘国华等.优化原理方法与工程应用.杭州:浙江大学出版社,1991
    [128] 刘兴旺,施祖元,益德清等.基坑支护结构全过程内力及变形分析.建筑结构学报,1999,(5):58—64
    [129] 刘化图,刘明虎,徐国平.阳逻长江大桥南锚碇基坑内衬结构分析.公路.2004(3):15-17
    [130] 刘明虎,徐国平,刘化图.阳逻长江大桥南锚碇基坑支护结构计算分析.公路.2004(3):24-27
    [131] 徐芳,陈学兵.超大型圆形地连墙施工新技术.水运工程.2004(9):85-89
    [132] 上海市基坑工程设计规程(DBJ08-61-97)
    [133] 钟才根,张军,刘齐建.软土基坑围护的时效性分析及变形预测.合肥工业大学学报,2004(9):1058-1062
    [134] 徐伟、吕凤梧、唐忠德等,50m深基坑支护开挖设计和施工理论研究(鉴定材料),同济大学,2002.5
    [135] 徐伟、林鸣、吕凤梧等,超深开挖面地下连续墙受力机理和施工技术应用研究(鉴定材料),同济大学,2002,12
    [136] 常先军.预应力地下连续墙模型试验及计算理论研究:[博士学位论文].上海:同济大学土木工程学院,2003
    [137] 王闪闪,邓安福,曾鼎华.竖直荷载下单桩的受力变形性状分析.地下空间与工程学报,2006(6):402-406
    [138] 王满生,周锡元,胡聿贤.桩土动力分析中接触模型的研究.岩土工程学报,2005(6):616-620
    [139] 熊孝波,孙钧,徐伟.润扬大桥北锚深基坑施工技术,2003(8):4-6
    [140] 俞建霖,龚晓南.深基坑工程的空间性状分析.岩土工程学报,1999,21(1):21-25
    [142] 丛蔼森.地下连续墙地设计施工与应用.北京:中国水利水电出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700