用户名: 密码: 验证码:
慢病毒介导的PDE4DmiRNA对抑郁症和认知损伤的调节作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:磷酸二酯酶(phosphodiesterases, PDEs)是体内唯一负责水解第二信使环磷酸腺苷(cAMP)和环磷酸鸟苷(cGMP)的酶类。磷酸二酯酶4(phosphodiesterases4, PDE4)是PDEs家族成员之一,PDE4抑制剂的研究主要集中在呼吸系统和中枢神经系统疾病上,在临床上主要用于治疗慢性阻塞性肺疾病(COPD)、哮喘及银屑病。近年来,越来越多的研究表明,PDE4可以通过多种途径改善神经系统疾病,例如抑郁症、老年痴呆、脑卒中等。相应的抑制剂能够通过调控细胞内cAMP水平从而改善疾病所致的抑郁症状和学习记忆障碍。但是几乎所有的非选择性抑制剂都会产生严重的胃肠道反应,限制了该类药物的临床使用。PDE4家族包含20多种亚亚型(由于mRNA初级产物经酶的不同剪接形成,亦称为剪接变异体),分布在细胞不同的区域从而发挥不同的作用。因此本课题的研究目的是利用慢病毒介导的PDE4DmiRNA沉默长链PDE4D的表达,在小鼠慢性不可预知性温和刺激引起的抑郁症模型和Aβ42海马DG区微量注射诱导的认知损伤模型上阐明长链PDE4D(尤其是PDE4D4/5)对小鼠抑郁症状和学习记忆障碍的调节作用。课题分为三大部分:第一部分是构建并鉴定携带PDE4DmiRNA的慢病毒载体。第二部分是初步观察慢病毒介导的PDE4DmiRNA对慢性不可预知性温和刺激引起的小鼠抑郁行为的调节作用,检测海马组织cAMP通路的水平。第三部分是研究慢病毒介导的PDE4DmiRNA对正常小鼠学习记忆能力的影响,并进一步阐明慢病毒介导的PDE4DmiRNA对Aβ42诱导的学习记忆损伤模型中小鼠认知行为的调节作用及其对cAMP信号通路和促炎因子的影响。该研究为进一步阐明长链PDE4D在抑郁症和认知障碍疾病中的作用提供实验依据。
     研究方法:(1)首先构建能转录产生PDE4D4miRNA的重组质粒,与慢病毒包装质粒共转染293T细胞产生高滴度慢病毒。体外感染培养的293T细胞检测其转染效率。采用脑立体定位技术在小鼠海马DG区微量注射慢病毒介导的PDE4DmiRNA引起目的基因表达沉默,14天后取海马组织检测PDE4DmiRNA对PDE4A/B/D以及PDE4D3/4/5的mRNA水平的影响。
     (2)采用慢性不可预知性温和刺激使小鼠接受应激67天,诱导产生小鼠抑郁样症状,糖水偏爱实验检测小鼠抑郁程度。抑郁模型建立后,采用脑立体定位技术在小鼠海马DG区微量注射慢病毒,14天后进行行为学实验。强迫游泳实验,悬尾实验和糖水偏爱实验反应小鼠抑郁状态;高架十字迷宫实验和旷场实验反应小鼠的焦虑状态;高效液相质谱联用技术检测小鼠海马中cAMP水平;PCR技术和Western Blot技术分别检测了小鼠海马cAMP-PKA-CREB通路的变化。
     (3)采用Morris水迷宫实验,新物体识别实验和跳台实验评价小鼠的学习记忆能力。小鼠双侧海马DG区注射老化的Aβ42(0.5μg/side)诱导小鼠学习记忆损伤,24小时后注射慢病毒在同一位点,14天后采用水迷宫和新物体识别用来评价小鼠的学习记忆能力;高效液相质谱联用技术检测小鼠海马中cAMP水平;PCR技术和Western Blot技术分别检测了小鼠海马cAMP-PKA-CREB通路以及炎症因子的变化。
     研究结果:(1)慢病毒转染293T细胞72小时后,在荧光显微镜下观察绿色荧光蛋白的表达。无论携带阴性对照还是PDE4D基因序列的慢病毒均表现出强烈的荧光。在动物体内实验中亦发现了相同的结果。而且,PDE4DmiRNA能显著降低PDE4D, PDE4D4和PDE4D5的表达水平,而对PDE4A/B和PDE4D3的表达没有显著性影响。
     (2)在小鼠经历慢性不可预知性温和刺激过程中,应激小鼠在糖水偏爱实验中的糖水偏爱度和小鼠体重与非应激组小鼠相比均明显降低。给予慢病毒治疗后,CUMS组小鼠在强迫游泳实验和悬尾实验中,不动时间显著降低,且糖水偏爱率依然处于低态,微量注射慢病毒后能够逆转CUMS引起的不动时间的减少,提高糖水偏爱率,改善小鼠抑郁样症状。同时慢病毒逆转CUMS引起的海马cAMP水平的下降,增强海马pCREB蛋白表达,增加BDNF mRNA水平,而不影响CREB的mRNA水平。
     (3)小鼠持续给予rolipram或单次注射慢病毒14天后,rolipram显著性减少小鼠到达平台的潜伏期,增加跳台实验中的逃避潜伏期,起到增强记忆的作用。而且慢病毒介导的PDE4DmiRNA对学习记忆的增强作用不如rolipram效果明显。慢病毒介导的PDE4DmiRNA可以逆转Aβ42诱导的小鼠认知障碍。研究发现小鼠双侧海马DG区注射老化的Aβ42(0.5μg/side)可以显著减少小鼠水迷宫探索实中在平台象限的停留时间和穿越次数,新物体实验训练24小时后,Aβ42小鼠的识别指数与对照组相比显著降低,说明Aβ42诱导小鼠产生学习记忆损伤。微量注射慢病毒后小鼠探索实验中平台象限的停留时间和穿越次数以及物体识别实验中识别指数均显著增加,表明慢病毒介导的PDE4DmiRNA能够逆转Aβ42引起的认知障碍,同时可以增强海马pCREB和BDNF蛋白表达,减少IL-1β, TNF-α和NF-κB的水平。
     结论:本课题从提高抑制PDE4靶点的特异性为出发点,构建了慢病毒介导的发夹结构的PDE4DmiRNA,特异性抑制PDE4D4/5的表达,微量注射小鼠海马DG区后,慢病毒可以与宿主细胞整合并持续高表达,且PCR技术验证了miRNA的沉默效率,为目的基因的沉默提供了可靠的实验依据。继而我们发现,长链PDE4D表达降低可以增加海马内第二信使cAMP水平,激活cAMP/PKA/CREB信号通路,进一步增加下游BDNF蛋白的表达,同时减少凋亡因子和促炎症因子的产生,从而起到逆转慢性不可预知性刺激引起的小鼠抑郁样症状和改善Aβ42诱导的小鼠学习记忆损伤的作用。这些结果为治疗抑郁症和AD引起的抑郁症状和学习记忆障碍提供了新的治疗靶点,有望通过抑制PDE4D4/5亚亚型来对抗抑郁症状和认知损伤。同时为阐明PDE4D亚亚型的情绪和认知调节作用提供了可靠的实验依据,也为开发PDE4亚型抑制剂提供了理论基础。
Objective:Phosphodiesterase (PDE) is an enzyme responsible for the hydrolysis of second messenger cAMP and cGMP in various biological systems, particularly in the central nervous system (CNS). Phosphodiesterase4(PDE4) is a member of the PDE superfamily and its inhibitors are mainly used for the treatment of chronic obstructive pulmonary disease, asthma and psoriasis. In the CNS, an increasing number of researches have shown that PDE4plays a key role in neurodegenerative diseases (e.g. Alzheimer's disease), mental disorders (such as depression and schizophrenia) and stroke as well. Previous research showed the selectively PDE4inhibitor (rolipram) can improve neurodegenerative disorders by regulating the level of intracellular cAMP. However, the serious adversed reaction hinders its clinical application because of the lack of selectivity for PDE4subtype and splice variants. The PDE4family consists of four subtypes (PDE4A-D) and more than20splice variants, and distributes in the distinct microdomains of the cell. PDE4D is one of the subtypes and enriched in the CNS. It was reported that this subtype of PDE4appears to be involved in the process of neurological diseases. So far, its roles in depression and cognitive impairment are only beginning to be unveiled and the possible mechanisms are still need to be investigated in detail. In current project, we constructed the lentiviral vector containing a specific microRNA/miRNA-mir hairpin structure (4DshR) and confirmed the efficiency of gene knockdown. And then, we investigated whether long-form PDE4D knockdown by lentivirus can reverse memory impairment caused by Aβ1-42(Aβ42) and improve depressive-like behaviours induced by chronic unpredictable mild stress (CUMS) in mice. Furthermore, the influence of cAMP/PKA/CREB/BDNF signal pathway was also determined. The content of this thesis includes three parts:first, we constructed lentivirus vector containing a specific miRNA with hairpin structure and identified its silencing efficiency. We then investigated the role of PDE4DmiRNA on depressive behaviors by forced swimming test and tail suspension test in mice suffered from chronic unpredictable mild stress and the possible involvement of signaling cascades includes the cAMP-PKA-CREB pathway. Finally, we investigated the role of lentivirus-mediated PDE4DmiRNA on memory by MWM test, and the novel object recognition test in normal mice, lentivirus-mediated PDE4DmiRNA against Aβ42-induced cognitive impairment and changes in cAMP-PKA-CREB pathway and proinflammatory cytokines were also clarified. The studies further elucidate the role of long-form PDE4D subtype in regulation of depression and cognitive disorders.
     Methods:(1) Stereotactic technique was used to perform microinjection of lentivirus-mediated PDE4DmiRNA in the DG region of hippocampus. Hippocampal tissue was dissected for the detection of mRNA levels of PDE4A/PDE4B/PDE4D and PDE4D3/4/5.
     (2) Fourteen days after the microinjection of lentivirus-mediated PDE4DmiRNA in the DG region of hippocampus, depressive-like behaviors were evaluated by the forced swimming test, tail suspension test and sucrose preference test in mice. Chronic unpredictable mild stress was used to establish the model of depression. Animals received CUMS displayed decreased body weight and sucrose preference. The forced swimming test, tail suspension test and sucrose preference test were used to evaluate the depressive-like behaviors in mice. High performance liquid chromatography mass spectrometry (HPLC-MS/MS) was used to detect the level of cAMP of hippocampus in mice. RT-PCR and Western Bloting were used to detect the changes of related mRNA and proteins in mice, respectively.
     (3) Stereotactic technique was used to perform microinjection of lentivirus-mediated PDE4DmiRNA in the DG region of hippocampus. After fourteen days, the ability of learning and memory was measured by Morris water maze test and novel object recognition test. We examined whether long-form PDE4D knockdown by lentiviral reversed memory impairment caused by Aβ42in mice using the Morris water maze (MWM) and novelty object recognition tests. Western blotting analysis was used to assess protein levels of cAMP response element-binding protein (CREB, unphosphorylated and phosphorylated [pCREB]), brain-derived neurotrophic factor (BDNF), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nuclear factor-KB (NF-κB) to explore the neurochemical mechanisms.
     Results:(1) Seventy-two hours after lentivirus transfection in293T cells, the expression of green fluorescent protein (GFP) was observed by the fluorescence microscope in the hippocampi whether carried negative control or PDE4DmiRNA lentivirus vector, and the GFP expression shows strong fluorescence. Microinfusions of lentiviruses resulted in downregulated expression of PDE4D, PDE4D4and PDE4D5without changing the expression of PDE4A/B and PDE4D3.
     (2) We found that chronic unpredictable mild stress decreased body weight and sucrose preference rate in the sucrose preference compared with non-stressed mice and induced depressive-like symtoms, and also decreased immobility time in the forced swimming test and the tail suspension test, PDE4DmiRNA reversed CUMS induced depressive-like symptoms and cAMP decline. Meanwhile, CUMS procedure decreased the level of cAMP and reduced the expression of pCREB protein, and BDNF mRNA levels without affecting the CREB mRNA level which was reversed by lentivirus-mediated PDE4DmiRNA.
     (3) Rrolipram significantly reduced the latency to reach the platform in MWM, and increased escape latency in passive avoidance test, that suggest the function of learning and memory enhancement. Lentivirus-mediated PDE4DmiRNA also significantly reduced the latency to reach the platform in water maze test and increased the escape latency in passive avoidance test. Aggregated AP42(0.5μg/side) bilaterally infused into the dentate gyrus decreased cAMP levels, and produced memory deficits in the MWM and object recognition tests. Microinfusions of lentiviruses resulted in downregulated expression of PDE4D4and4D5proteins and reversed Aβ42-induced cAMP decline and memory deficits. Treatment also concomitantly increased pCREB and BDNF and reduced IL-1β, TNF-α, and NF-κB (p65) in the hippocampus of Aβ42-challenged mice. These results suggest that long-form PDE4D knockdown may offer a promising treatment for memory loss associated with Alzheimer's disease (AD).
     Conclusion:PDE4inhibitors have mainly focused on the treatment of respiratory and central nervous system diseases. But almost all of the non-selective PDE4inhibitors have severe nausea and vomiting and other gastrointestinal side effects, which limited the clinical use of these drugs. Many PDE4D splice variants distribute in the emetic central, including last Polar Regions and the solitary tract nucleus, it may be one of the explanations that why nausea and vomiting occurred when administrated with rolipram. Therefore, we constructed a lentiviral vectors for PDE4DmiRNA which specifically inhibited the expression of PDE4D4/5and improved the target specificity of PDE4D inhibitor. We found that reduced expression of long PDE4D could increase the level of cAMP in the hippocampus and activate cAMP/PKA/CREB signaling pathway, phosphorylated CREB further increased the expression of BDNF, and reduced the production of apoptotic factors and proinflammatory cytokines. These results provide a new target for the treatment of depression and memory disorders such as AD, and also provided a theoretical basis for the development of inhibitors of PDE4isoforms.
引文
[1]Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation:hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab.2012,303(1):E1-E17.
    [2]Kandel E R. The molecular biology of memory:cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain.2012,5:14.
    [3]Sutherland E W, Rall T W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles [J]. J Biol Chem.1958,232(2):1077-1091.
    [4]Jin S L, Ding S L, Lin S C. Phosphodiesterase 4 and its inhibitors in inflammatory diseases [J]. Chang Gung Med J.2012,35(3):197-210.
    [5]Francis S H, Turko Ⅳ, Corbin J D. Cyclic nucleotide phosphodiesterases:relating structure and function [J]. Prog Nucleic Acid Res Mol Biol.2001,65:1-52.
    [6]Schudt C, Hatzelmann A, Beume R, et al. Phosphodiesterase inhibitors:history of pharmacology [J]. Handb Exp Pharmacol.2011(204):1-46.
    [7]Wardle A J, Tulloh R M. Evolving management of pediatric pulmonary arterial hypertension: impact of phosphodiesterase inhibitors [J]. Pediatr Cardiol.2013,34(2):213-219.
    [8]Mokry J, Mokra D. Immunological aspects of phosphodiesterase inhibition in the respiratory system [J].Respir Physiol Neurobiol.2013,187(1):11-17.
    [9]Filippov V, Song M A, Zhang K, et al. Increased ceramide in brains with Alzheimer's and other neurodegenerative diseases [J]. J Alzheimers Dis.2012,29(3):537-547.
    [10]Bollen E, Prickaerts J. Phosphodiesterases in neurodegenerative disorders [J]. IUBMB Life. 2012,64(12):965-970.
    [11]Rutten K, Prickaerts J, Blokland A. Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action [J]. Neurobiol Learn Mem.2006,85(2):132-138.
    [12]Gong B, Vitolo O V, Trinchese F, et al. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment [J]. J Clin Invest.2004,114(11): 1624-1634.
    [13]Davis J A, Gould T J. Rolipram attenuates MK-801-induced deficits in latent inhibition [J]. Behav Neurosci.2005,119(2):595-602.
    [14]Yu T, Fain K, Boyd C M, et al. Benefits and harms of roflumilast in moderate to severe COPD[J]. Thorax.2013.
    [15]Robichaud A, Stamatiou P B, Jin S L, et al. Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis [J]. J Clin Invest.2002,110(7):1045-1052.
    [16]Dreyer J L. Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions [J]. Mol Biotechnol.2011,47(2):169-187.
    [17]Couto L B, High K A. Viral vector-mediated RNA interference [J]. Curr Opin Pharmacol. 2010,10(5):534-542.
    [18]Korhonen R, Hommo T, Keranen T, et al. Attenuation of TNF production and experimentally induced inflammation by PDE4 inhibitor rolipram is mediated by MAPK phosphatase-1[J].Br J Pharmacol.2013,169(7):1525-1536.
    [19]Moon E Y, Lerner A. PDE4 inhibitors activate a mitochondrial apoptotic pathway in chronic lymphocytic leukemia cells that is regulated by protein phosphatase 2A [J]. Blood:2003,101(10): 4122-4130.
    [20]Wang C, Yang X M, Zhuo Y Y, et al. The phosphodiesterase-4 inhibitor rolipram reverses Abeta-induced cognitive impairment and neuroinflammatory and apoptotic responses in rats [J]. Int J Neuropsychopharmacol.2012,15(6):749-766.
    [21]Sierksma A S, van den Hove D L, Pfau F, et al. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D Neuropharmacology.2014,77:120-130.
    [22]Garcia-Osta A, Cuadrado-Tejedor M, Garcia-Barroso C, et al. Phosphodiesterases as therapeutic targets for Alzheimer's disease. ACS Chem Neurosci.2012,3(11):832-844.
    [23]Casey G. Antidepressants:their role in treating depression. Nurs N Z.2013,19(8):20-24.
    [24]Stuber J P, Rocha A, Christian A, et al. Conceptions of Mental Illness:Attitudes of Mental Health Professionals and the General Public. Psychiatr Serv.2014.
    [25]Platenik J, Fisar Z, Buchal R, et al. GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer's disease and depression [J]. Prog Neuropsychopharmacol Biol Psychiatry. 2014,50:83-93.
    [26]Tomita H, Ziegler M E, Kim H B, et al. G protein-linked signaling pathways in bipolar and major depressive disorders [J]. Front Genet.2013,4:297.
    [27]O'Donnell. William Harvey Research Conference on PDE inhibitors:drugs with an expanding range of therapeutic uses. Expert Opin Investig Drugs.2000,9(3):621-625.
    [28]O'Donnell J M, Frith S, Wilkins J. Involvement of beta-1 and beta-2 adrenergic receptors in the antidepressant-like effects of centrally administered isoproterenol. J Pharmacol Exp Ther. 1994,271(1):246-254.
    [29]Zhang H T, Huang Y, Jin S L, et al. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacology. 2002,27(4):587-595.
    [30]Cote M, Payet M D, Rousseau E, et al. Comparative involvement of cyclic nucleotide phosphodiesterases and adenylyl cyclase on adrenocorticotropin-induced increase of cyclic adenosine monophosphate in rat and human glomerulosa cells. Endocrinology.1999,140(8): 3594-3601.
    [31]Beavo J A. Cyclic nucleotide phosphodiesterases:functional implications of multiple isoforms. Physiol Rev.1995,75(4):725-748.
    [32]Li Y F, Cheng Y F, Huang Y, et al. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling [J]. J Neurosci.2011,31(1):172-183.
    [33]Li Y F, Huang Y, Amsdell S L, et al. Antidepressant-and anxiolytic-like effects of the phosphodiesterase-4 inhibitor rolipram on behavior depend on cyclic AMP response element binding protein-mediated neurogenesis in the hippocampus [J]. Neuropsychopharmacology.2009, 34(11):2404-2419.
    [34]Nakagawa S, Kim J E, Lee R, et al. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein [J]. J Neurosci.2002, 22(9):3673-3682.
    [35]Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily:a new target for the development of specific therapeutic agents [J]. Pharmacol Ther.2006,109(3):366-398.
    [36]Uckert S, Stief C G, Mayer M, et al. Distribution and functional significance of phosphodiesterase isoenzymes in the human lower urinary tract [J]. World J Urol.2005,23(6): 368-373.
    [37]Palacios J M, Beleta J, Segarra V. Second messenger systems as targets for new therapeutic agents:focus on selective phosphodiesterase inhibitors [J]. Farmaco.1995,50(12):819-827.
    [38]Mironov S L, Skorova E Y, Kugler S. Epac-mediated cAMP-signalling in the mouse model of Rett Syndrome [J]. Neuropharmacology.2011,60(6):869-877.
    [39]Zhong P, Wang W, Yu F, et al. Phosphodiesterase 4 inhibition impairs cocaine-induced inhibitory synaptic plasticity and conditioned place preference [J]. Neuropsychopharmacology. 2012,37(11):2377-2387.
    [40]Li Y F, Cheng Y F, Huang Y, et al. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling [J]. J Neurosci.2011,31(1):172-183.
    [41]O'Donnell J M, Xu Y. Evidence for global reduction in brain cyclic adenosine monophosphate signaling in depression [J]. Biol Psychiatry.2012,72(7):524-525.
    [42]Bobon D, Breulet M, Gerard-Vandenhove M A, et al. Is phosphodiesterase inhibition a new mechanism of antidepressant action? A double blind double-dummy study between rolipram and desipramine in hospitalized major and/or endogenous depressives [J]. Eur Arch Psychiatry Neurol Sci.1988,238(1):2-6.
    [43]Bertolino A, Crippa D, di Dio S, et al. Rolipram versus imipramine in inpatients with major, "minor" or atypical depressive disorder:a double-blind double-dummy study aimed at testing a novel therapeutic approach [J]. Int Clin Psychopharmacol.1988,3(3):245-253.
    [44]Hebenstreit G F, Fellerer K, Fichte K, et al. Rolipram in major depressive disorder:results of a double-blind comparative study with imipramine [J]. Pharmacopsychiatry.1989,22(4): 156-160.
    [45]Molina V A, Heyser C J, Spear L P. Chronic variable stress enhances the stimulatory action of a low dose of morphine:reversal by desipramine [J]. Eur J Pharmacol.1994,260(1):57-64.
    [46]Molina V A, Heyser C J, Spear L P. Chronic variable stress or chronic morphine facilitates immobility in a forced swim test:reversal by naloxone. Psychopharmacology (Berl).1994, 114(3):433-440.
    [47]Murua V S, Gomez R A, Andrea M E, et al. Shuttle-box deficits induced by chronic variable stress:reversal by imipramine administration. Pharmacol Biochem Behav.1991,38(1):125-130.
    [48]Ossowska G, Danilczuk Z, Klenk-Majewska B, et al. Antidepressants in chronic unpredictable mild stress (CUMS)-induced deficit of fighting behavior [J]. Pol J Pharmacol.2004, 56(3):305-311.
    [49]Nosanchuk J S, Gottmann A W. CUMS and delta checks. A systematic approach to quality control. Am J Clin Pathol.1974,62(5):707-712.
    [50]Miller F. Anger, anhedonia, and the borderline syndrome. Am J Psychoanal.1975,35(2): 157-161.
    [51]Campbell M M. Treatment of anhedonia and certain other neurologic states [J]. Northwest Med.1946,45:253-256.
    [52]Studer H M. A rare cause of unintentional weight loss, anhedonia, and cognitive decline[J]. JAAPA.2013,26(12):36-39.
    [53]Gaillard R, Gourion D, Llorca P M. [Anhedonia in depression][J]. Encephale.2013,39(4): 296-305.
    [54]Wiborg O. Chronic mild stress for modeling anhedonia[J]. Cell Tissue Res.2013,354(1): 155-169.
    [55]Svenningsson P, Tzavara E T, Witkin J M, et al. Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac)[J]. Proc Natl Acad Sci U S A.2002,99(5):3182-3187.
    [56]Sleight A J, Carolo C, Petit N, et al. Identification of 5-hydroxytryptamine7 receptor binding sites in rat hypothalamus:sensitivity to chronic antidepressant treatment[J]. Mol Pharmacol.1995,47(1):99-103.
    [57]Conkright M D, Canettieri G, Screaton R, et al. TORCs:transducers of regulated CREB activity [J]. Mol Cell.2003,12(2):413-423.
    [58]Screaton R A, Conkright M D, Katoh Y, et al. The CREB coactivator TORC2 functions as a calcium-and cAMP-sensitive coincidence detector [J]. Cell.2004,119(1):61-74.
    [59]Blendy J A. The role of CREB in depression and antidepressant treatment [J]. Biol Psychiatry.2006,59(12):1144-1150.
    [60]Guo J, Lin P, Zhao X, et al. Etazolate abrogates the lipopolysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signaling, neuroinflammatory response and depressive-like behavior in mice [J]. Neuroscience.2014,263C:1-14.
    [61]Sierksma A S, van den Hove D L, Pfau F, et al. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D [J]. Neuropharmacology.2014,77:120-130.
    [62]Schmidt A L, de Farias C B, Abujamra A L, et al. BDNF and PDE4, but not the GRPR, regulate viability of human medulloblastoma cells [J]. J Mol Neurosci.2010,40(3):303-310.
    [63]Rosa A R, Singh N, Whitaker E, et al. Altered plasma glutathione levels in bipolar disorder indicates higher oxidative stress; a possible risk factor for illness onset despite normal brain-derived neurotrophic factor (BDNF) levels[J]. Psychol Med.2014:1-10.
    [64]Gersner R, Gal R, Levit O, et al. Inherited behaviors, BDNF expression and response to treatment in a novel multifactorial rat model for depression. Int J Neuropsychopharmacol.2014: 1-11.
    [65]Adlam J, Zaman R. The role of BDNF and memory in major depressive disorder. Psychiatr Danub.2013,25 Suppl 2:S368-S369.
    [66]Ladea M, Bran M. Brain derived neurotrophic factor (BDNF) levels in depressed women treated with open-label escitalopram[J]. Psychiatr Danub.2013,25(2):128-132.
    [67]Palm U, Fintescu Z, Obermeier M, et al. Serum levels of brain-derived neurotrophic factor are unchanged after transcranial direct current stimulation in treatment-resistant depression. J Affect Disord.2013,150(2):659-663.
    [68]Adlam J, Zaman R. The role of BDNF and memory in major depressive disorder. Psychiatr Danub.2013,25 Suppl 2:S368-S369.
    [69]Ladea M, Bran M. Brain derived neurotrophic factor (BDNF) levels in depressed women treated with open-label escitalopram. Psychiatr Danub.2013,25(2):128-132.
    [70]Palm U, Fintescu Z, Obermeier M, et al. Serum levels of brain-derived neurotrophic factor are unchanged after transcranial direct current stimulation in treatment-resistant depression. J Affect Disord.2013,150(2):659-663.
    [71]Adlam J, Zaman R. The role of BDNF and memory in major depressive disorder. Psychiatr Danub.2013,25 Suppl 2:S368-S369.
    [72]Ladea M, Bran M. Brain derived neurotrophic factor (BDNF) levels in depressed women treated with open-label escitalopram[J]. Psychiatr Danub.2013,25(2):128-132.
    [73]Palm U, Fintescu Z, Obermeier M, et al. Serum levels of brain-derived neurotrophic factor are unchanged after transcranial direct current stimulation in treatment-resistant depression. J Affect Disord.2013,150(2):659-663.
    [74]Guo J, Lin P, Zhao X, et al. Etazolate abrogates the lipopolysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signaling, neuroinflammatory response and depressive-like behavior in mice. Neuroscience.2014,263C:1-14.
    [75]Wang Z Z, Zhang Y, Liu Y Q, et al. RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. Br J Pharmacol.2013,168(4):1001-1014.
    [76]Zhang H T, Huang Y, Jin S L, et al. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme [J]. Neuropsychopharmacology.2002,27(4):587-595.
    [77]Korff S, Stein D J, Harvey B H. Cortico-striatal cyclic AMP-phosphodiesterase-4 signalling and stereotypy in the deer mouse:attenuation after chronic fluoxetine treatment[J]. Pharmacol Biochem Behav.2009,92(3):514-520.
    [78]Miro X, Perez-Torres S, Artigas F, et al. Regulation of cAMP phosphodiesterase mRNAs expression in rat brain by acute and chronic fluoxetine treatment. An in situ hybridization study [J]. Neuropharmacology.2002,43(7):1148-1157.
    [79]Pessoa R N, Reis H J, Vanden B P, et al. Depression and cognitive impairment in Parkinson's disease:a role for inflammation and immunomodulation? Neuroimmunomodulation [J].2014,21(2-3):88-94.
    [80]Lee M J, Seo S W, Na D L, et al. Synergistic Effects of Ischemia and beta-Amyloid Burden on Cognitive Decline in Patients With Subcortical Vascular Mild Cognitive Impairment[J]. JAMA Psychiatry.2014.
    [81]Dong Y, Slavin M J, Chan B P, et al. Improving screening for vascular cognitive impairment at three to six months after mild ischemic stroke and transient ischemic attack[J]. Int Psychogeriatr.2014:1-7.
    [82]Chertkow H, Feldman H H, Jacova C, et al. Definitions of dementia and predementia states in Alzheimer's disease and vascular cognitive impairment:consensus from the Canadian conference on diagnosis of dementia[J]. Alzheimers Res Ther.2013,5(Suppl 1):S2.
    [83]Kim J, Kwon J T, Kim H S, et al. Memory recall and modifications by activating neurons with elevated CREB [J]. Nat Neurosci.2014,17(1):65-72.
    [84]Sargin D, Mercaldo V, Yiu A P, et al. CREB regulates spine density of lateral amygdala neurons:implications for memory allocation[J]. Front Behav Neurosci.2013,7:209.
    [85]Wang B, Zhao J, Yu M, et al. Disturbance of Intracellular Calcium Homeostasis and CaMKII/CREB Signaling is Associated with Learning and Memory Impairments Induced by Chronic Aluminum Exposure[J]. Neurotox Res.2013.
    [86]Zhang H T, O'Donnell J M. Effects of rolipram on scopolamine-induced impairment of working and reference memory in the radial-arm maze tests in rats. Psychopharmacology (Berl). 2000,150(3):311-316.
    [87]Kraft P, Schwarz T, Gob E, et al. The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis[J]. Exp Neurol.2013,247:80-90.
    [88]Rutten K, Prickaerts J, Blokland A. Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action[J]. Neurobiol Learn Mem.2006,85(2):132-138.
    [89]Davis J A, Gould T J. Rolipram attenuates MK-801-induced deficits in latent inhibition[J]. Behav Neurosci.2005,119(2):595-602.
    [90]Gong B, Vitolo O V, Trinchese F, et al. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest.2004,114(11): 1624-1634.
    [91]Tralau-Stewart C J, Williamson R A, Nials A T, et al. GSK256066, an exceptionally high-affinity and selective inhibitor of phosphodiesterase 4 suitable for administration by inhalation:in vitro, kinetic, and in vivo characterization[J]. J Pharmacol Exp Ther.2011,337(1): 145-154.
    [92]Navakkode S, Sajikumar S, Frey J U. Mitogen-activated protein kinase-mediated reinforcement of hippocampal early long-term depression by the type Ⅳ-specific phosphodiesterase inhibitor rolipram and its effect on synaptic tagging[J]. J Neurosci.2005, 25(46):10664-10670.
    [93]Gong B, Vitolo O V, Trinchese F, et al. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment[J]. J Clin Invest.2004,114(11): 1624-1634.
    [94]Navakkode S, Sajikumar S, Frey J U. The type IV-specific phosphodiesterase inhibitor rolipram and its effect on hippocampal long-term potentiation and synaptic tagging[J]. J Neurosci. 2004,24(35):7740-7744.
    [95]Panja D, Bramham C R. BDNF mechanisms in late LTP formation:A synthesis and breakdown [J]. Neuropharmacology.2014,76 Pt C:664-676.
    [96]Alzoubi K H, Alkadhi K A. Chronic Nicotine Treatment Reverses Hypothyroidism-Induced Impairment of L-LTP Induction Phase:Critical Role of CREB[J]. Mol Neurobiol.2013.
    [97]Middei S, Houeland G, Cavallucci V, et al. CREB is necessary for synaptic maintenance and learning-induced changes of the AMPA receptor GluA1 subunit[J]. Hippocampus.2013,23(6): 488-499.
    [98]Kida S. A Functional Role for CREB as a Positive Regulator of Memory Formation and LTP. Exp Neurobiol.2012,21(4):136-140.
    [99]Wang Z Z, Zhang Y, Liu Y Q, et al. RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects[J]. Br J Pharmacol.2013,168(4):1001-1014.
    [100]Li Y F, Cheng Y F, Huang Y, et al. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling[J]. J Neurosci.2011,31(1):172-183.
    [101]Rutten K, Misner D L, Works M, et al. Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D) mice[J]. Eur J Neurosci.2008,28(3): 625-632.
    [102]Zhang H T, Huang Y, Jin S L, et al. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme [J]. Neuropsychopharmacology.2002,27(4):587-595.
    [103]Rutten K, Wallace T L, Works M, et al. Enhanced long-term depression and impaired reversal learning in phosphodiesterase 4B-knockout (PDE4B-/-) mice[J]. Neuropharmacology. 2011,61(1-2):138-147.
    [104]Siuciak J A, Mccarthy S A, Chapin D S, et al. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme[J]. Psychopharmacology (Berl).2008,197(1):115-126.
    [105]Siuciak J A, Chapin D S, Mccarthy S A, et al. Antipsychotic profile of rolipram:efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme[J]. Psychopharmacology (Berl).2007,192(3):415-424.
    [106]Du H, Guo L, Wu X, et al. Cyclophilin D deficiency rescues Abeta-impaired PKA/CREB signaling and alleviates synaptic degeneration[J]. Biochim Biophys Acta.2013.
    [107]Chen Y, Huang X, Zhang Y W, et al. Alzheimer's beta-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of beta-amyloid[J]. J Neurosci.2012,32(33): 11390-11395.
    [108]Miners J S, Jones R, Love S. Differential Changes in Abeta42 and Abeta40 with Age[J]. J Alzheimers Dis.2014.
    [109]Nagarathinam A, Hoflinger P, Buhler A, et al. Membrane-anchored Abeta accelerates amyloid formation and exacerbates amyloid-associated toxicity in mice. J Neurosci.2013,33(49): 19284-19294.
    [110]Perez-Gonzalez R, Alvira-Botero M X, Robayo O, et al. Leptin gene therapy attenuates neuronal damages evoked by amyloid-beta and rescues memory deficits in APP/PS1 mice[J]. Gene Ther.2014.
    [111]Kitazawa M, Green K N, Caccamo A, et al. Genetically augmenting Abeta42 levels in skeletal muscle exacerbates inclusion body myositis-like pathology and motor deficits in transgenic mice[J]. Am J Pathol.2006,168(6):1986-1997.
    [112]Wirths O, Weis J, Szczygielski J, et al. Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer's disease[J]. Acta Neuropathol.2006,111(4):312-319.
    [113]Nagpure B V, Bian J S. Hydrogen Sulfide Inhibits A2A Adenosine Receptor Agonist Induced beta-Amyloid Production in SH-SY5Y Neuroblastoma Cells via a cAMP Dependent Pathway[J]. PLoS One.2014,9(2):e88508.
    [114]Coffey E E, Beckel J M, Laties A M, et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP[J]. Neuroscience.2014,263C:111-124.
    [115]Platenik J, Fisar Z, Buchal R, et al. GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer's disease and depression[J]. Prog Neuropsychopharmacol Biol Psychiatry. 2014,50:83-93.
    [116]Chen Y, Huang X, Zhang Y W, et al. Alzheimer's beta-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of beta-amyloid[J]. J Neurosci.2012,32(33): 11390-11395.
    [117]Mcgeer P L, Mcgeer E G. The amyloid cascade-inflammatory hypothesis of Alzheimer disease:implications for therapy[J]. Acta Neuropathol.2013,126(4):479-497.
    [118]Takeda S, Sato N, Ikimura K, et al. Increased blood-brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model[J]. Neurobiol Aging.2013,34(8):2064-2070.
    [119]Wood H. Alzheimer disease:Prostaglandin E(2) signalling is implicated in inflammation early in the Alzheimer disease course[J]. Nat Rev Neurol.2012,8(8):411.
    [120]Tweedie D, Ferguson R A, Fishman K, et al. Tumor necrosis factor-alpha synthesis inhibitor 3,6'-dithiothalidomide attenuates markers of inflammation, Alzheimer pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer's disease[J]. J Neuroinflammation. 2012,9:106.
    [121]Barber R. Inflammatory signaling in Alzheimer disease and depression[J]. Cleve Clin J Med. 2011,78 Suppl 1:S47-S49.
    [122]Deniz-Naranjo M C, Munoz-Fernandez C, Alemany-Rodriguez M J, et al. Cytokine IL-1 beta but not IL-1 alpha promoter polymorphism is associated with Alzheimer disease in a population from the Canary Islands, Spain[J]. Eur J Neurol.2008,15(10):1080-1084.
    [123]Shaftel S S, Kyrkanides S, Olschowka J A, et al. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology[J]. J Clin Invest.2007,117(6):1595-1604.
    [124]Alvarez X A, Franco A, Fernandez-Novoa L, et al. Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease[J]. Mol Chem Neuropathol.1996, 29(2-3):237-252.
    [125]Jun Z, Li Z, Fang W, et al. Melatonin decreases levels of S100beta and NFKappaB, increases levels of synaptophysinina rat model of Alzheimer's disease[J]. Curr Aging Sci.2013, 6(2):142-149.
    [126]Lambert J C, Ferreira S, Gussekloo J, et al. Evidence for the association of the S100beta gene with low cognitive performance and dementia in the elderly [J]. Mol Psychiatry.2007, 12(9):870-880.
    [127]Yu W H, Fraser P E. S100beta interaction with tau is promoted by zinc and inhibited by hyperphosphorylation in Alzheimer's disease[J]. J Neurosci.2001,21(7):2240-2246.
    [128]Breuillaud L, Rossetti C, Meylan E M, et al. Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice[J]. Biol Psychiatry.2012,72(7):528-536.
    [129]Patki G, Solanki N, Atrooz F, et al. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress[J]. Brain Res.2013,1539:73-86.
    [130]Marsden W N. Synaptic plasticity in depression:molecular, cellular and functional correlates[J]. Prog Neuropsychopharmacol Biol Psychiatry.2013,43:168-184.
    [131]Koch J M, Hinze-Selch D, Stingele K, et al. Changes in CREB phosphorylation and BDNF plasma levels during psychotherapy of depression[J]. Psychother Psychosom.2009,78(3): 187-192.
    [132]Yamada S, Yamamoto M, Ozawa H, et al. Reduced phosphorylation of cyclic AMP-responsive element binding protein in the postmortem orbitofrontal cortex of patients with major depressive disorder[J]. J Neural Transm.2003,110(6):671-680.
    [133]Vecsey C G, Baillie G S, Jaganath D, et al. Sleep deprivation impairs cAMP signalling in the hippocampus[J], Nature.2009,461(7267):1122-1125.
    [134]Zeller E, Stief H J, Pflug B, et al. Results of a phase II study of the antidepressant effect of rolipram[J]. Pharmacopsychiatry.1984, T7(6):188-190.
    [135]Bertolino A, Crippa D, di Dio S, et al. Rolipram versus imipramine in inpatients with major, "minor" or atypical depressive disorder:a double-blind double-dummy study aimed at testing a novel therapeutic approach[J]. Int Clin Psychopharmacol.1988,3(3):245-253.
    [136]Day J P, Dow J A, Houslay M D, et al. Cyclic nucleotide phosphodiesterases in Drosophila melanogaster[J]. Biochem J.2005,388(Pt 1):333-342.
    [137]Bolger G B, Rodgers L, Riggs M. Differential CNS expression of alternative mRNA isoforms of the mammalian genes encoding cAMP-specific phosphodiesterases[J]. Gene.1994, 149(2):237-244.
    [138]Duman R S, Li N. A neurotrophic hypothesis of depression:role of synaptogenesis in the actions of NMDA receptor antagonists[J]. Philos Trans R Soc Lond B Biol Sci.2012,367(1601): 2475-2484.
    [139]Duman R S. Depression:a case of neuronal life and death?[J]. Biol Psychiatry.2004,56(3): 140-145.
    [140]Cole J, Costafreda S G, Mcguffin P, et al. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies[J]. J Affect Disord.2011,134(1-3): 483-487.
    [141]Sheline Y I, Wang P W, Gado M H, et al. Hippocampal atrophy in recurrent major depression[J]. Proc Natl Acad Sci U S A.1996,93(9):3908-3913.
    [142]Wu L M, Hu M H, Tong X H, et al. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF) in mouse ovaries:relationship to oocytes developmental potential[J]. PLoS One.2012,7(12):e52331.
    [143]Guilloux J P, Douillard-Guilloux G, Kota R, et al. Molecular evidence for BDNF-and GABA-related dysfunctions in the amygdala of female subjects with major depression[J]. Mol Psychiatry.2012,17(11):1130-1142.
    [144]Bliss T V, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path[J]. J Physiol.1973,232(2): 331-356.
    [145]Bliss T V, Gardner-Medwin A R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path[J]. J Physiol. 1973,232(2):357-374.
    [146]Sajikumar S, Navakkode S, Frey J U. Distinct single but not necessarily repeated tetanization is required to induce hippocampal late-LTP in the rat CA1[J]. Learn Mem.2008, 15(2):46-49.
    [147]Navakkode S, Sajikumar S, Frey J U. Synergistic requirements for the induction of dopaminergic D1/D5-receptor-mediated LTP in hippocampal slices of rat CA1 in vitro [J]. Neuropharmacology.2007,52(7):1547-1554.
    [148]Rutten K, Lieben C, Smits L, et al. The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat[J]. Psychopharmacology (Berl).2007, 192(2):275-282.
    [149]Yin J C, Del V M, Zhou H, et al. CREB as a memory modulator:induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila[J]. Cell.1995,81(1): 107-115.
    [150]Yin J C, Wallach J S, Del V M, et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila[J]. Cell.1994,79(1):49-58.
    [1].Astakhova, L.A., et al., [cAMP as a regulator of the phototransduction cascade]. Ross Fiziol Zh Im IM Sechenova,2012.98(11):p.1273-85.
    [2].Antoni, F.A., New paradigms in cAMP signalling. Mol Cell Endocrinol,2012.353(1-2):p. 3-9.
    [3].Willoughby, D., Organization of cAMP signalling microdomains for optimal regulation by Ca2+entry. Biochem Soc Trans,2012.40(1):p.246-50.
    [4].Gupta, R., G. Kumar and R.S. Kumar, An update on cyclic nucleotide phosphodiesterase (PDE) inhibitors:phosphodiesterases and drug selectivity. Methods Find Exp Clin Pharmacol, 2005.27(2):p.101-18.
    [5].Blokland, A., F.S. Menniti and J. Prickaerts, PDE inhibition and cognition enhancement. Expert Opin Ther Pat,2012.22(4):p.349-54.
    [6].Lugnier, C, PDE inhibitors:a new approach to treat metabolic syndrome? Curr Opin Pharmacol,2011.11(6):p.698-706.
    [7].Keravis, T. and C. Lugnier, Cyclic nucleotide phosphodiesterases (PDE) and peptide motifs. Curr Pharm Des,2010.16(9):p.1114-25.
    [8].Pareja-Galeano, H., et al., Impact of exercise training on neuroplasticity-related growth factors in adolescents. J Musculoskelet Neuronal Interact,2013.13(3):p.368-71.
    [9].Calabrese, F., et al., Reduced neuroplasticity in aged rats:a role for the neurotrophin brain-derived neurotrophic factor. Neurobiol Aging,2013.34(12):p.2768-76.
    [10].Breuillaud, L., et al., Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice. Biol Psychiatry,2012.72(7):p.528-36.
    [11].Gallo, E.F. and C. Iadecola, Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. J Neurosci,2011.31(19):p.6947-55.
    [12].Tardito, D., et al., Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants:a critical overview. Pharmacol Rev, 2006.58(1):p.115-34.
    [13].Czeh, B. and M. Simon, [Neuroplasticity and depression]. Psychiatr Hung,2005.20(1):p. 4-17.
    [14].Musazzi, L., et al., Changes in signaling pathways regulating neuroplasticity induced by neurokinin 1 receptor knockout. Eur J Neurosci,2005.21(5):p.1370-8.
    [15].D'Sa, C. and R.S. Duman, Antidepressants and neuroplasticity. Bipolar Disord,2002.4(3):p. 183-94.
    [16].Chen, R.W., et al., Broad spectrum neuroprotection profile of phosphodiesterase inhibitors as related to modulation of cell-cycle elements and caspase-3 activation. Neurosci Lett,2007.418(2): p.165-9.
    [17].Tanaka, Y., et al., Cilostazol attenuates ischemic brain injury and enhances neurogenesis in the subventricular zone of adult mice after transient focal cerebral ischemia. Neuroscience,2010. 171(4):p.1367-76.
    [18].Zhang, R., et al., Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke.2002.33(11):p.2675-80.
    [19].Reierson, G.W., et al., Repeated antidepressant therapy increases cyclic GMP signaling in rat hippocampus. Neurosci Lett,2009.466(3):p.149-53.
    [20]. Stuart, S., et al., Are personality assessments valid in acute major depression? J Affect Disord,1992.24(4):p.281-9.
    [21].Luo, H.R., et al., Association of PDE11A global haplotype with major depression and antidepressant drug response. Neuropsychiatr Dis Treat,2009.5:p.163-70.
    [22].Chen, Y., et al., Alzheimer's beta-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of beta-amyloid. J Neurosci.2012.32(33):p.11390-5.
    [23]. Wood, H., Alzheimer disease:Prostaglandin E (2) signalling is implicated in inflammation early in the Alzheimer disease course. Nat Rev Neurol,2012.8(8):p.411.
    [24]. Gong, B., et al., Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest,2004.114(11):p.1624-34.
    [25].McLachlan, C.S., et al., Changes in PDE4D isoforms in the hippocampus of a patient with advanced Alzheimer disease. Arch Neurol,2007.64(3):p.456-7.
    [26].Domek-Lopacinska, K.U. and J.B. Strosznajder, Cyclic GMP and nitric oxide synthase in aging and Alzheimer's disease. Mol Neurobiol,2010.41(2-3):p.129-37.
    [27].Blokland, A., R. Schreiber and J. Prickaerts, Improving memory:a role for phosphodiesterases. Curr Pharm Des,2006.12(20):p.2511-23.
    [28].Ciani, E., et al., Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons:implication for a survival role of nitric oxide. J Neurochem,2002.82(5):p.1282-9.
    [29].Polli, J.W. and R.L. Kincaid, Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. J Neurosci,1994.14(3 Pt 1):p.1251-61.
    [30]. Van Donkelaar EL, Prickaerts J, Akkerman S, Rutten K, Steinbusch HW, Blokland A. No effect of acute tryptophan depletion on phosphodiesterase inhibition-related improvements of short-term object memory in male Wistar rats. Acta Psychiatr Scand.2013.128(2):107-13.
    [31].Li, Y.F., et al., Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. J Neurosci,2011.31(1):p.172-83.
    [32].Rutten K, Wallace TL, Works M, Prickaerts J, Blokland A, Novak TJ, Santarelli L, Misner DL. Enhanced long-term depression and impaired reversal learning in phosphodiesterase 4B-knockout (PDE4B-/-) mice. Neuropharmacology.2011.61(1-2):138-47.
    [33].Jin F, Gong QH, Xu YS, Wang LN, Jin H, Li F, Li LS, Ma YM, Shi JS. Icariin, a phoshphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int J Neuropsychopharmacol.2014.11:1-11.
    [34].Zhang J, Guo J, Zhao X, Chen Z, Wang G, Liu A, Wang Q, Zhou W, Xu Y, Wang C. Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav Brain Res.2013. 250:230-7.
    [35].Boccia MM, Blake MG, Krawczyk MC, Baratti CM. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice. Behav Brain Res.2011.7; 220(2):319-24.
    [36].Puzzo D, Sapienza S, Arancio O, Palmeri A. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat.2008.4(2):371-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700