用户名: 密码: 验证码:
硬盘磁头/图案化盘面瞬态接触的热力场耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于磁记录介质的超顺磁效应,传统的磁记录方式已经达到理论极限。为了实现硬盘面存储密度达到1Tb/in2的目标,各种磁记录方案正在探索之中,其中图案化(bit patterned media, BPM)存储技术被认为是最有发展潜力的方向之一。
     在硬盘正常工作过程中,磁头与盘面间的间歇性瞬态接触是不可避免的,瞬态接触造成的塑性破损和盘面温升被认为是造成硬盘数据丢失的主要原因之一,由于BPM的磁记录层是由离散化的磁岛构成,因而在瞬态接触过程中更易损坏,但目前关于磁头/BPM盘面瞬态接触的研究还很少,本文采用有限元方法对磁头/BPM盘面瞬态接触的热力场规律进行了较为全面的研究,具体研究内容包括以下几个方面:
     由于BPM盘面尚在实验研究阶段,构成BPM的磁岛形状还没有确定,因此本文选取了四种常见的几何形状:立方体、圆柱、圆台、斜置的立方体,根据实际工况和理论模型进行合理简化,分别建立有限元模型,分析对比各磁岛形状在瞬态接触过程中的力学性能,以确定在瞬态接触过程中力学性能最佳的磁岛形状。
     为充分揭示瞬态接触的热力场规律,本文以立方体磁岛为例,建立了磁头/BPM盘面瞬态接触的三维有限元模型,在此基础上,分别选取两种基体材料、两种BPM材料进行组合,得到四种盘面构成,研究各盘面构成对瞬态接触热力场的影响规律,得出最佳的盘面构成方式;并在最佳的盘面构成基础上,研究了接触条件(包括磁头冲击速度,盘面切向速度和摩擦系数)对热力场的影响规律,最终提出减小BPM塑性变形区域和降低盘面温升的措施。
     平整化BPM盘面方法被认为是能显著提高BPM盘面性能的方法,本文通过与平整化之前盘面的热力场规律进行对比分析,验证了这种方法的有效性,并研究了不同填充介质对热力场的影响规律;最后又与文献中磁头/普通盘面瞬态接触的热力场规律进行对比,验证了本文所用模型的正确性。
Because of the superparamagnetic effect of magnetic recording media, the traditional theory of magnetic recording has reached the limit. In order to increase the storage density to 1Tb/in2, many recording methods are being explored. And BPM (bit patterned media, BPM) storage technology is considered as one of the most promising directions.
     When the hard disk works, the intermittent contacts between head and disk are inevitable. The contacts can cause large plastic deformation and high temperature rise which will induce demagnetization and instability of the head/disk interface. Due to the fact that the recording layer of BPM is patterned into an array of discrete, nanometer-sized island-like bit cells, the intermittent contact between BPM disk and slider is more serious than normal disk. But there are only few research on head/BPM transient contact. This paper uses the finite element method to analyze the thermomechanical field caused by head/BPM transient contact. The research contents are as follows:
     Because the geometric style of the island-like bit cell has not been finalized, this paper selected four common geometric styles: cuboid, cylinder, frustum and oblique cuboid. According to the working condition and theoretical model, three-dimensional finite element model has been developed for each geometric style respectively to investigate which is the best style.
     In order to reveal the discipline of the thermomechanical field caused by transient contact, a three-dimensional finite element model of head/BPM transient contact has been performed. This paper chooses two substrate materials and two BPM materials to form four disk constitutes and analyzed the effect of them on the thermomechanical field respectively to investigate which disk constitute is best. The effect of contact conditions has also been researched.
     Planarization of BPM is considered to be an effective approach to significantly improve the performance of the BPM. This paper has verified the effectiveness of this approach by comparing the discipline of the thermomechanical field with the case that BPM is not planarized. The effect of filler material properties has also been analyzed. And the correctness of the model used in this paper has been verified with the conclusions in the reference.
引文
[1]王辉,黄致新,张峰,刘敏.硬盘磁记录介质的发展与展望. Information recording materials, 2006, 7(3): 28-31.
    [2]李隆球.硬盘悬架窝点与挠臂的接触力学及微动磨损机理研究.哈尔滨工业大学博士学位论文,2010: 1-158.
    [3]孙维平.磁记录技术的新发展. Information Recording Materials, 2004, 5(1): 34-44.
    [4]钟智勇,荆玉兰,唐晓莉,张怀武.图案化磁记录介质.材料导报,2005, 19(6): 88-98.
    [5] Wood R W, Miles J and Olson T, Recording Technologies for Terabit Per Square Inch Systems. North American Perpendicular Magnetic Recording Conference (NAPMRC) IEEE Trans. Magn. 38(4): 1711–1718.
    [6]唐可,张怀武.超高密度图案化磁记录介质中偶极作用于热辅助磁化研究.电子元件与材料,2008, 27(4): 73-74.
    [7] H. N. Bertram. Theory of Magnetic Recording. Cambridge University Press. 1994.
    [8] Andrey Ovcharenko, Min Yang, Kaynam Chun, and Frank E. Talke. Simulation of Magnetic Erasure Due to Transient Slider-Disk Contacts. IEEE Trans. Magn., 2010, 46(3): 770–777.
    [9]谢建全.硬盘磁头碰撞原因及设计改进研究.信息记录材料,2007, 8(3): 57-60.
    [10]段传林,王玉娟,阮海林.采用模拟退火算法对皮米磁头进行形状优化.机械工程学报,2007, 43(12): 217-221.
    [11]孙华莹.硬盘的结构和原理.电脑界,2005: 27-29.
    [12] Toshiya Shiramatsu, Takenori Atsumi, Masayuki Kurita, Yuki Shimizu, and Hideaki Tanaka. Dynamically Controlled Thermal Flying-Height Control Slider. IEEE Trans. Magn. 2008, 11(44): 3695-3697.
    [13]郭伟,赵争强,王非.超高密度磁记录的课题与展望.记录与介质,2004, 5(3): 49-54.
    [14] Neil Robertson. Magnetic Data Storage With Patterned Media. Hitachi Global Storage Technologies, 2010: 1-28.
    [15] H. N. Bertram and M. Williams. SNR and Density Limit Estimates: A Comparison of Longitudinal and Perpendicular Recording. IEEE Trans. Magn.2000, 36(1): 4–9.
    [16] P. L. Lu and S. Charap, Thermal-instability at 10-Gbit/in2 Magnetic Recording. IEEE Trans. Magn. 1994, 30(6): 4230–4232.
    [17] S. H. Charap, P. L. Lu, and Y. J. He, Thermal Stability of Secorded Information at High Densities. IEEE Trans. Magn. 1997, 33(1): 978–983.
    [18] S. Khizroev and D. Litvinov. Perpendicular Magnetic Recording. Dordrecht, The Netherlands: Kluwer, 2004.
    [19] M. Mallary, A. Torabi, and M. Benakli. One Terabit per Square inch Perpendicular Recording Conceptual Design. IEEE Trans. Magn. 2002, 38(4): 1719–1724.
    [20] RH Victora, J Xue, and M Patwari. Areal Density Limits for Perpendicular Magnetic Recording. IEEE Trans. Magn. 2002, 38(1):1886-1991.
    [21] H.N Bertram, and M. Williams. SNR and Density Limits Estimates: A Comparison of Longitudinal and Perpendicular Recording, 2003.
    [22] B. Bhushan. Tribology and Mechanics of Magnetic Storage Devices. Second.
    [23] Edition, Springer. 1996.
    [24] R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, L. Li, B.
    [25] Ria Esterina, S. Si. Physics. Commercialization of Bit-Patterned Media. Degree of Master of Engineering in Materials Science and Engineering, 2009.
    [26] D.Weller and A. Moser, Thermal Effect Limits in Ultrahigh-density Magnetic Recording. IEEE Trans. Magn.. 1999, 35(6): 4423–4439.
    [27] Kral, E. R., and Komvopoulos, K. Three-Dimensional Finite Element Analysis of Subsurface Stress and Strain Fields Due to Sliding Contact on an Elastic-Plastic Layered Medium. ASME J. Tribol. 1997, 119: 332-341.
    [28] Tao, Q., Lee, H. P., and Lim, S. P. Contact Analysis of Impact in Magnetic Head Disk Interfaces. Tribol. Int. 2003, 36(1): 49-56.
    [29] Chen, W. W., and Wang, Q. J. Thermomechanical Analysis of Elastoplastic Bodies in a Sliding Spherical Contact and the Effect of Sliding Speed, Heat Partition, and Thermal Softening. ASME J. Tribol. 2008, 130(4): 041402.
    [30] Katta, R. R., Nunez, E. E., Polycarpou, A. A., and Lee, S.-C. Plane Strain Sliding Contact of Multilayerd Magnetic Storage Thin-Films Using the Finite Element Method. Microsyst. Technol. 2009, 15: 1097-1110.
    [31] Katta, R. R., Polycarpou, A. A., Hanchi, J. V., and Crone, R. M. High Velocity Oblique Impact and Coefficient of Restitution for Head Disk Interface Operational Shock. ASME J. Tribol. 2007, 131(2): 1903-1912.
    [32] Katta, R. R., Polycarpou, A. A., Hanchi, J. V., and Roy, M. Analytical and Experimental Elastic-Plastic Impact Analysis of a Magnetic Storage Head-Disk Interface. ASME J. Tribol. 2009, 131(1): 011902.
    [33] X. Tian and F. E. Kennedy. Maximum and Average Flash Temperatures in Sliding Contacts. ASME J. Tribol. 1994, 116: 167–174.
    [34] Bos, J., and Moes, H. Frictional Heating of Tribological Contacts. ASME J. Tribol. 1995, 117 (1): 171-177.
    [35] Gao, J., Lee, S. C., Ai, X., and Nixon, H. An FFT-Based Transient Flash Temperature Model for General Three-Dimensional Rough Surface Contacts. ASME J. Tribol. 2002, 122(3): 519-523.
    [36] Laraqi, N. An Exact Explicit Analytical Solution of the Steady-State Temperature in a Half Space Subjected to a Moving Circular Heat Source. ASME J. Tribol. 2003, 125(4): 859-862.
    [37] Wen, J., and Khonsari, M. M. On the Temperature Rise of Bodies Subjected to Unidirectional or Oscillating Frictional Heating and Surface Convective Cooling. Tribol. Trans.2009, 52(3): 310-322.
    [38] Bansal G. D., and Streator J. L. A Method for Obtaining the Temperature Distribution at the Interface of Sliding Bodies. Wear. 2009, 266(7/8): 721-732.
    [39] Kulkarni, S. M., Rubin C. A., and Hahn, G. T. Elastoplastic Coupled Temperature Displacement Finite-Element Analysis of 2-Dimensional Rolling-Sliding Contact With a Translating Heat-Source. ASME J. Tribol.1991, 113: 93-101.
    [40] Gupta, V., Bastias, P., Hahn, G. T., and Rubin, C. A. Elasto-Plastic Finite-Element Analysis of 2D Rolling-Plus-Sliding Contact With Temperature-Dependent Bearing Steel Material Properties. Wear. 1993, 169: 251-256.
    [41] Wang, Q. J., and Liu, G. A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer. Tribol. Trans.1999, 42(4): 763-770.
    [42] Liu, G., Wang, Q., and Liu, S. A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact. ASME J. Tribol. 2001, 123(3): 595-602.
    [43] Liu, S., and Wang, Q. A Three-Dimensional Thermomechanical Model of Contact between Non-Conforming Rough Surfaces. ASME J. Tribol. 2001, 123(1), pp. 17-26.
    [44] Liu, S., Wang, Q., and Harris, S. J. Surface Normal Thermoelastic Displacement in Moving Rough Contacts. ASME J. Tribol.2003, 125(4): 862-870.
    [45] Yu, H., Liu, S., Wang, Q. J., and Chung Y. W. Influence of Temperature-Dependent Yield Strength on Thermomechanical Asperity Contacts. Tribology Letters. 2004, 17(2): 155-163.
    [46] Liu, S., and Wang, Q. Transient Thermoelastic Stress Fields in a Half-Space.ASME J. Tribol. 2003, 125(1): 33-43.
    [47] Ye, N., and Komvopoulos, K. Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media under Thermomechanical Surface Loading. ASME J. Tribol. 2003, 125(1): 52-59.
    [48] Gong, Z. -Q., and Komvopoulos, K. Mechanical and Thermomechanical Elastic-Plastic Contact Analysis of Layered Media with Patterned Surfaces. ASME J. Tribol. 2004, 126(1): 9-17.
    [49] C.-D. Yeo and A. A. Polycarpou. Elastic Contact Behavior of Patterned Media Accounting for Softer Magnetic Layer Stack Deformation. Proc. EHDR INSIC Quart. Meet. 2007.
    [50] Shengnan Shen, Bo Liu, Shengkai Yu, and Hejun Du. Mechanical Performance Study of Pattern Media-Based Head-Disk Systems. IEEE Trans. Magn., 2009, 11(45): 5002-5005.
    [51] B. Liu and Y. Ma,“Visualization and Characterization of Slider-Disk interactions in Dynamic Load/unload Process,”IEEE Trans. Magn., 2003, 39: 743-748.
    [52] N. Yu, A. A. Polycarpou and J. V. Hanchi. Elastic Contact Mechanics-based Contact and Flash Temperature Analysis of Impact-induced Head Disk Interface Damage. Microsyst Technol, 2008, 14: 215-227.
    [53] K. L. Johnson. Contact mechanics. Cambridge University Press, Great Britain, 1985.
    [54] J. O. Hallquist. LS-DYNA Theoretical Manual. Livermore, CA: Livermore Software Technology Corporation, 2006.
    [55]郑正德,钟金环,郑华均,王醒东. FePt纳米材料的性能、制备及应用前景.磁性材料及器件,2008, 39(5): 4-8.
    [56] Block, H.. Theoretical Study of Temperature Rise at Surfaces of Actual Contact under Oiliness Conditions. Proc. Inst, of Mechanical Engineers General Discussion of Lubrication. Institution of Mechanical Engineers, London. 1937, 2: 222-235.
    [57] Block, H. The Flash Temperature Concept. Wear. 1963, 6:483-493.
    [58] Hui Li, Kensuke Amemiya and Frank E Talke. Finite Element Simulation of Static Contact of a Slider with Patterned Media. Journal of Advanced Mechanical Design, Systems, and Manufacturing., 2010, 4(1): 42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700