用户名: 密码: 验证码:
综合全无限规划方法应用于能源系统管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济的持续和快速的发展带来了工业化和城镇化的急速扩张,导致了能源消费量的不断上升,带来了越来越多的环境问题。能源系统是复杂的巨系统,其中的不确定性错综复杂、不易辨识。所以,如何表征能源系统中存在的高度不确定性因素及其互动关系,如何将这种抽象关系映射到实际的规划模型中,如何根据能源系统的特点确定规划方法等均是能源与环境系统规划面临的关键问题。针对以上问题,本文将在能源系统不确定性辨识的分析研究基础上,整合多目标、多时期、多情景、多元素的动态性和复杂性,开发一系列综合全无限规划方法应用于能源系统管理,具体包括:(1)区间全无限规划方法。该方法结合了全无限规划和区间线性规划,它可以处理存在于成本、影响因子和系统目标当中的表达为脆性区间值和函数区间的不确定问题。本方法应用于一个控制污染物排放的能源规划系统,得到了四个发电厂的能源供应、电力分配和污染物控制的决策方案。(2)区间全无限混合整数规划方法。该方法是在区间全无限规划方法的基础上,引入混合整数规划方法来处理电力系统装机扩容问题。本文以北京市能源规划为例,提出了区间全无限混合整数-城市尺度能源模型。该模型可以制定多时期、多选项环境下产能设备的容量扩充规划,同时协调经济成本、系统效率、减缓污染和能源供应安全之间的相互关系。(3)全无限模糊随机数学规划方法。该方法将模糊数学规划和随机数学规划引入全无限规划中,增加了模型对模糊集等不确定信息的表征能力。全无限模糊随机数学规划被应用到了北京市电力系统的内部碳交易建模中,以帮助系统在欧盟碳交易的框架下控制温室气体排放。(4)基于风险分析的混合整数全无限规划方法。考虑到碳交易系统的风险性,该方法直接风险区间线性规划方法引入到两阶段随机规划、全无限规划和区间参数混合整数规划中。采用北京市电力系统碳排放交易规划案例对该方法进行了验证。模型结果可以规避碳交易过程中的系统风险,有助于权衡电力供应风险、系统成本和二氧化碳减排计划之间的关系。(5)区间参数机会约束全无限规划方法。该方法整合了机会约束规划区、间数学规划,全无限规划,以及区间参数混合整数规划。以北京市能源系统为例建立的模型能够有效地处理不确定信息,得到不同概率水平下的决策方案,以此检验不确定条件下系统约束的可靠性,从而针对不同的环境、经济和能源安全条件,求得不同概率水平下的预期结果。(6)区间参数全无限联合概率混合整数规划方法。此方法援引了联合概率的理论,结合区间数学规划,全无限规划,机会约束规划以及区间参数混合整数规划方法,在处理系统不确定性的基础上,提供违背了联合概率约束的风险水平。以北京市电力系统为例建立模型,结果可以帮助管理者选取最优决策,在联合概率的约束下对系统成本,电力需求安全性和空气污染控制进行权衡折衷。(7)多阶段随机全无限整数规划方法。为应对多情景条件下的能源系统动态特性,多阶段随机全无限整数规划方法借助多阶段随机数学规划降低系统风险,用多情景树的形式反映了电能生产决策的动态特性。多阶段随机全无限整数规划方法被应用到了一个城市能源系规划模型中。MSFIP模型能够帮助制定最佳电力补救策略,降低系统故障的风险。(8)全无限区间两阶段混合整数规划方法。该方法将区间数学规划、两阶段随机规划和全无限规划方法相结合,其模型应用到了北京市电力系统的碳交易模型中。通过对多重不确定信息的表征和处理,可以得出最优碳准许排放限额和不同电厂的碳交易量。模型结果可以降低系统的碳排放量从而为电厂选择购买排放许可或者承受经济惩罚提供决策支持。
     本文开发的一系列不确定性优化模型可以更好地诠释能源系统的不确定性和风险阈值的复杂性。模型结果涵盖能源系统的各个环节,包括能源的加工和供需、电力的生产和供应、污染物的减排、碳交易的实施和运行、系统的成本和投资风险等等。可以为调节现有能源供需模式提供数据支持,从而协调经济成本、系统效益、污染排放和能源供应的关系。这不仅可以为政府部门和决策者提供现有能源政策的分析和评估,以辅助制定能源系统的相关政策,进行系统设备扩容的动态分析和今后生产模式的发展规划。值得一提的是,模型结果不仅可以为政府部门提供情景分析和决策,还可以给出能源系统分析及其环境问题的前瞻性建议,分时期逐步解决或者减缓未来能源系统所可能面临的相关问题,帮助能源系统实现经济效益、社会效益和环境效益的统一。
Based on the rapid industrialization and urbanization, economy is growing fast, which leads to increasing of energy consumption. A lot of serious environmental problems have also been created. Energy systems is a complex and huge system, with various uncertainties to identify. In that case, how to express the uncertainties and their interactions, how to reflect these interactions to a optimization model and how to determine suitable methods are all key issues which planners have to face to. To solve these problems, this paper would focus on the dynamic and complexity for multi-objective, multi-period, multi-scenario, and multi-element based on the analysis of energy systems. A series of integer full-interval programming (FIP) methods would be developed:(1) an interval full-infinite programming (IFIP) method. IFIP integrates FIPinto an interval mathematical programming (IMP) framework, which is capable of addressing multiple uncertainties existing in related costs, impact factors and system objectives expressed as determinates, crisp interval values and functional intervals. Then, IFIP is applied to an energy planning system. According to the results, the amount of energy allocation, electricity supply and pollution emission of4power plants would be generated.(2)an interval full-infinite mixed-integer programming (IFMIP) method. IFMIP is based on an integration of existing IFIP and mixed-integer linear programming (MILP) techniques. IFMIP is utilized to a real case study of energy systems planning in Beijing. It can facilitate capacity-expansion planning for energy-production facilities, and coordinate the conflict interactions among economic cost, system efficiency, pollutant mitigation and energy-supply security.(3) a full-infinite fuzzy stochastic programming (FFSP) method. FFSP combines fuzzy mathematical programming method andstochastic mathematical programming to a FIP framework, and FFSP can deal with uncertainties presented in terms of fuzzy sets, random variables, and functional interval values. FFSP is applied to a case study of Beijing for managing electric power systems (EPS), and reducing the GHG emission by introducing the European Union greenhouse gas emission trading scheme.(4) a risk-explicit mixed-integer full-infinite programming (RMFP) method. Considering high risks in carbon emission trading, RMFP is developed for risk reflection and policy analysis by introducing a risk explicit IMP and two-stage stochastic programming to a FIP framework under various uncertainties. RMFP is applied to plan carbon emission trading of EPS in Beijing. The results are useful for voiding the system-failure risk, and help gaining insight into the tradeoffs among electricity supply risk, system cost, and CO2mitigation strategy.(5) an interval-parameter chanced-constrained full-infinite mixed-integer programming (ICFMP) method. ICFMPintegrates IMP, FIP, MILP, and chanced-constrain programming in to an optimization framework. ICFMP can support the assessment of the reliability of satisfying systems constraints. ICFMP applied to energy systems planning in Beijing. The results are useful for making decisions of energy production and allocation under different probabilities as well as gaining insight into the tradeoffs between the system cost and the constraint-violation risk.(6) an interval-parameter full-infinite joint-probabilistic mixed-integer programming (IFJMP) method. By incorporation of "joint probability", IFJMPcan examine the reliability of satisfyingsystem constraints under uncertainty. IFJMP is then applied for planning EPS of Beijing. With the aid of IFJMP, tradeoffs among system costs, electricity-supply security, and air-pollution control can be obtained under joint probabilities.(7) a multistage stochastic full-infinite integer programming (MSFIP) method. For reflect the dynamics through generation of a set of representative scenarios, MSFIP is introduced to reduce the system risks, associated with multiple uncertainties. A case study for EPS is provided for demonstrating the applicability of the MSFIP, which is able to help for lowering the risk of system failure due to potential violation when determining optimal electricity remediation strategies.(8) a full-infinite interval-stochastic mixed-integer programming (FIMP) method. FIMP is applied to of EPS in Beijing for managing CO2emissions with trading scheme, and achieve optimized carbon emission permits of different power plants under uncertainty. The solutions can be used for CO2reduction and assessing the associated economic implications in purchasing emission permits or bearing economic penalties.
     In this paper, a series of integrated FIP modes are developed, and they have capacity to assist decision makers better deal with the system complicated uncertainties and possible risks. Results cover all aspects of energy systems, includingenergy supply and demand, electricity production and supply, pollutant emission control, carbon trading's implementation, minimize of system cost, etc. These solutions can support the adjustment of the existing plans and policies, and facilitation of dynamic analysis for decisions of capacity expansion and development plans. It is worth to mention that the solutions not only can provide scenario analysis for government departments and decision-makers, but also could offer forward-looking policies of energy systems, and gradually resolve problems which decision maker may encounter in the future. It would realize the unification of economic gains, social improvements and environmental benefits.
引文
[1]习近平,在沙特吉达举行的国际能源会议上的讲话[N],新华月报.2008-6-22(7).
    [2]IEA.世界能源关键数据统计[R].2007.
    [3]Pekala LM, Tan RR, Foo DCY, Jezowski JM. Optimal energy planning models with carbon footprint constraints [J]. Applied Energy 2010,86:1903-1910.
    [4]中华人民共和国统计局.2013年国民经济和社会发展统计公报[EB/OL], http://www.gov.cn/gzdt/2014-02/24/content_2619733.htm.20140224/20140316.
    [5]中华人民共和国环境保护部.2012年全国环境统计公报[EB/OL], http://big5.mep.gov.cn/gate/big5/zls.mep.gov.cn/hjtj/qghjtjgb/201311/t2013110 4_262805.htm,2012.
    [6]张茉楠.根治雾霾要从经济与人口空间失衡入手[N].上海证券报.2014.
    [7]章轲.迈向环境可持续的未来一中华人民共和国国家环境分析[N]第一财经日报.2013-01-15.
    [8]Swain DK, Thomas D. Climate change impact assessment and evaluation of agro-adaptation measures for rice production in eastern India [J]. Journal of Environmental Informatics 2010,16:94-101.
    [9]Earth System Research Laboratory. Trends in Atmospheric Carbon Dioxide[R]. 2011.
    [10]英国石油(BP). BP世界能源展望2030[R].亚洲新能源.2012.
    [11]中华人民共和国国民经济和社会发展第十二个五年规划纲要[R],中共十七届中央委员会第五次全会,2010.
    [12]刘贞,张希良,高虎,于智为,张达,齐天宇,唐纯,樊京春.区域可再生能源规划基本框架研究[J].中国能源2010,2,38-41.
    [13]Mavrotas G, Diakoulaki D, Florios K, Georgiou P. A mathematical programming framework for energy planning in services'sector buildings under uncertainty in load demand:the case of a hospital in Athens [J]. Energy Policy 2008,36(7): 2415-2429.
    [14]Dimopoulos GG, Frangopoulos AC. Optimization of energy systems based on evolutionary and social metaphors [J]. Energy 2008; 33:171-179.
    [15]Ma T, Nakamori Y. Modeling technological change in energy systems-from optimization to agent-based modeling [J]. Energy 2009,34:873-879.
    [16]Lv Y, Huang GH, Li YP, Yang ZF, Sun W. A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty [J]. Journal of Environmental Management2011,92(3):813-826.
    [17]Mu T, Xia Q, Kang CQ. Inputeoutput table of electricity demand and its application [J]. Energy 2010,1(35):326-331.
    [18]Huang GH, Cao MF. Analysis of solution methods for interval linear programming [J]. Journal of Environmental Informatics 2011,17(2):54-64.
    [19]Ryden B, Johnsson J, Wene CO. CHP production in integrated energy systems examples from five Swedish communities [J]. Energy Policy 1993,21:176-190.
    [20]Lin QG, Huang GH, Bass B, Qin XS. IFTEM:An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty [J]. Energy Policy 2009,37(3),868-878.
    [21]Hiremath RB, Kumar B, Balachandra P, Ravindranath NH. Bottom-up approach for decentralised energy planning:Case study of Tumkur district in India [J]. Energy Policy 2010,38(2):862-874.
    [22]Liu HY, Wu SD. An assessment on the planning and construction of an island renewable energy system-A case study of Kinmen Island [J]. Renewable Energy 2010,35:2723-2731.
    [23]EIA. The National Energy Modelling System:An overview 2000-Overview of NEMS [R]. Washington, DC, USA, DOE/EIA-0581.2000.
    [24]Naughten. Top-down and Bottom-up models:bridging the Gap'Canberra [M], ETSAP seminar, Canberra, Australia.2002.
    [25]Carlson DA, Haurie A, Vial JP, Zachary DS. Large-scale convex optimization methods for air quality policy assessment [J]. Automatica 2004,40(3):385-395.
    [26]Haurie AB. MARKAL-LITE:an energy/environment model to assess urban sustainable development policies, LOGILAB-HEC. University of Geneva, Switzerland.2001.
    [27]Richter S, Hamacher T. URBS-an integral model for investigations on future urban energy systems [J]. http://www.richter-info.de/files/Paper_Power-Gen_2003_Richter.pdf; (cited in June 2007).
    [28]Lin QG, Huang GH. Planning of energy system management and GHG-emission control in the Municipality of Beijing-An inexact-dynamic stochastic programming model [J]. Energy Policy 2009,37(11):4463-4473.
    [29]Klaassen G, Miketa A, Larsen K, Sundqvist T. The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom [J]. Ecological Economics 2005,54(2-3):227-240.
    [30]Messner S, Schrattenholzer L. MESSAGE-MACRO:linking an energy supply model with a macroeconomic module and solving it iteratively [J]. Energy 2000, 25(3):267-282.
    [31]Cao MF, Huang GH. Scenario-based methods for interval linear programming problems [J]. Journal of Environmental Informatics 2011,17(2):65-74.
    [32]Messner S, Strubegger M. User's guide for MESSAGE III [M], WP-95-69. International Institute for Applied Systems Analysis. Laxenburg, Austria.1995.
    [33]Musgrove ARL. A linear programming analysis of liquid-fuel production and use options for Australia, Energy 1984,9:281-302.
    [34]Mackay RM, Probert SD. Forecasting the United Kingdom's supplies and demands for fluid fossil-fuels [J]. Energy 2001,69(3):161-189.
    [35]Henning D. MODEST-An energy system optimisation model applicable to local utilities and countries [J]. Energy 1998,22:1135-1150.
    [36]Persaud AJ. Kumar U. An eclectic approach in energy forecasting:a case of natural resources Canada's (NRCan's) oil and gas outlook [J]. Energy Policy 2001,29(4):303-313.
    [37]Cormio C, Dicorato M, Minoia A, Trovato M. A regional energy planning methodology including renewable energy sources and environmental constraints [J]. Renewable and Sustainable Energy Reviews 2003,7:99-130.
    [38]Grohnheit PE, Mortensen BOG. Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies [J]. Energy Policy 2003,31(9):817-826.
    [39]Vaillancourt K, Labriet M, Loulou R, Waaub JP. The role of nuclear energy in long-term climate scenarios:An analysis with the World-TIMES model [J]. Energy Policy 2008,36:2296-2307.
    [40]Sadeghi M, Hosseini HM. Integrated energy planning for transportation sector-A case study for Iran with techno-economic approach. Energy Policy 2008,36(1): 850-866.
    [41]Kanudia A, Loulou R. Robust responses to climate change via stochastic MARKAL:The case of Quebec. European Journal of Operational Research 1998. 106(1):15-30.
    [42]Geoffrey K, Patrick H, Miguel B. Estimating the Emission Reduction Benefits of Renewable Electricity and Energy Efficiency in North America:Experience and Methods [J]. Energy 2003. http://nuclearweb.info/archive/2012/10/08/ML12276A487.pdf
    [43]Lin QG, Huang GH, Bass B, Chen B, Zhang BY, Zhang XD. CCEM:A City-cluster Energy Systems Planning Model [J]. Energy Sources, Part A 2009,31: 273-286.
    [44]Lin QG, Huang GH, Bass B, Huang YF. Optimization of energy systems under changing policies of greenhouse-gas emission control:A study for the province of Saskatchewan, Canada. Energy Sources, Part A 2010,32(17):1587-1602.
    [45]Lin QG, Huang GH, Bass B, X. H. Nie, X. D. Zhang, and X. S. Qin. EMDSS: An optimization-based decision support system for energy systems management under changing climate conditions-An application to the Toronto-Niagara Region, Canada [J]. Expert Systems with Applications 2010,37:5040-5051.
    [46]Cai YP, Huang GH, Yang ZF, Lin QG, Bass B, Tan Q. Development of an optimization model for energy systems planning in the Region of Waterloo [J]. International Journal of Energy Research 2008,32(11):988-1005.
    [47]李广斌,王勇,杨新海,黄耀志.小城镇能源优化配置研究[J].中国人口,资源与环境2005,15(6):80-84.
    [48]王晓雨,张旭.北方两典型村镇能源系统分析及优化[J].可再生能源.2007,25(6).
    [49]侯红岩,张旭,王婧.上海典型村镇生态发展与能源系统优化[J].太阳能.2006,(6).
    [50]管春,徐南孙.王禾丘农村能源系统生态工程DSS开发的研究[J].南昌水专学报,1998,(03).
    [51]王婧,张旭.典型村镇能源系统的LCA模型建立及案例研究[J].2008年全国博士生学术论坛—能源与环境领域.2008.
    [52]Cai YP, Huang GH, Yang ZF, Sun W, Chen B. Investigation of public's perception towards rural sustainable development based on a two-level expert system. Expert Systems with Applications 2009,36(5):8910-8924.
    [53]胡鹏山,徐济鋆,吴健中.能源消费地区的实用能源模型[J].上海交通大学学报.1985,(2).
    [54]刘娜.天津市能源系统和居民住宅建筑节能研究[J].清华大学学位论文.2002.
    [55]陈长虹.MARKAL模型在上海市能源结构调整与大气污染物排放中的应用[J].上海环境科学.2002,(09).
    [56]佟庆,白泉,刘滨,吕应运.MARKAL模型在北京中远期能源发展研究中的应用[J].中国能源.2004,26(6),
    [56]余岳峰,胡建一,章树荣,罗永浩.上海能源系统MARKAL模型与情景分析[J].上海交通大学学报.2008,42(3).
    [57]Chen B, Guo HC, Huang G.H, Yin YY, Zhang BY. IFMEP:an interval fuzzy multi-objective environmental planning model for urban systems [J]. Civil Engineering and Environmental Systems 2008,25(2):99-125.
    [58]姜磊,季民河.中国区域能源压力的空间差异分析—基于STIRPAT模型[J].区域经济2011,4:64-70.
    [59]许瑞林,黄福荃.江苏省能源模型研究[J].能源研究与利用1992,(3).
    [60]许光中.优化青海能源产业结构的路径分析[J].青海师范大学学报:哲学 社会科学版2008,(5).
    [61]黄了如.节能减排背景下的吉林省可持续发展协调性研究[J].东北师范大学2009.
    [62]陈文颖,高鹏飞,何建冲.用MARKAL-MACRO模型研究碳减排对中国能源系统的影响[J].清华大学学报2004,44(3):342-346.
    [63]陈荣,张希良,何建坤,岳立.基于MESSAGE模型的省级可再生能源规划方法[J].清华大学学报(自然科学版)2008,48(9):145-148.
    [64]姜磊,季民河.基于STRIPAT模型的上海市能源消费影响因素研究[J].上海环境科学2011,30(6):240-244.
    [65]薛黎明,侯运炳,闫旭,何广.基于ARIMA模型的我国能源消费结构趋势分析与预测[J].中国矿业2011,20(4):24-35.
    [66]宋佩珊,计军平,马晓明.基于经济投入产出生命周期评价模型的广东省能源消费C02排放分析[J].环境污染与防治2012,34(1):105-110.
    [67]Covarrubias AJ, Expansion Planning for Electric Power Systems. IAEA Bulletin 1979,21:55-64.
    [68]Datta R, Dutt GS. Producer Gas Engines in Villages of Less-Developed Countries. Science Magazine 1981,14:731-736.
    [69]Nie SL, Hu Z, Li YP, Huang GH. Non-linear programming for filter management in a fluid power system with uncertainty [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2010,224(2):185-201.
    [70]Singh A, Tuladhara B, Bajracharya K, Pillarisetti A. Assessment of effectiveness of improved cook stoves in reducing indoor air pollution and improving health in Nepal [J]. Energy for Sustainable Development 2012,16:406-414.
    [71]Dehghanian P, Hosseini SH, Moeini-Aghtaie M, Arabali A. Optimal siting of DG units in power systems from a probabilistic multi-objective optimization perspective[J]. International Journal of Electrical Power & Energy Systems 2013, 51:14-26.
    [72]Mollersten K, Yan J, Westermark M. Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills[J]. Energy 2003,28:691-710.
    [73]Lin QG, Huang GH. IPEM:An interval-parameter energy systems planning model [J]. Energy Sources, Part A 2008,30:1382-1399.
    [74]Gnanambala K, Babulalb CK. Maximum loadability limit of power system using hybrid differential evolution with particle swarm optimization[J] International Journal of Electrical Power & Energy Systems2012,43:150-155.
    [75]Swain DK, Thomas D. Climate change impact assessment and evaluation of Agro-adaptation measures for rice production in eastern India [J]. Journal of Environmental Informatics 2010,16:94-101.
    [76]Birant D. Comparison of decision tree algorithms for predicting potential air pollutant emissions with data mining models [J]. Journal of Environmental Informatics 2011,17:46-53.
    [77]Wang X, Wang T. Energy conversion analysis of hydrogen and electricity co-production coupled with in situ CO2 capture [J]. Energy for Sustainable Development 2012,16:421-429.
    [78]Ahmadi H, Akbari Foroud A. A stochastic framework for reactive power procurement market, based on nodal price model [J]. International Journal of Electrical Power & Energy Systems 2013,49:104-133.
    [79]Refsgaard JC, van der Sluijs JP, H(?)jberg AL, Vanrolleghem PA. Uncertainty in the environmental modelling process--a framework and guidance [J]. Environmental Modelling & Software 2007,22:1543-1556.
    [80]Cai YP, Huang GH, Tan Q. An inexact optimization model for regional energy systems planning in the mixed stochastic and fuzzy environment [J]. Internal Journal Energy Research 2009,33(5):443-468.
    [81]Karakosta C, Askounis D. Developing countries' energy needs and priorities under a sustainable development perspective:A linguistic decision support approach [J]. Energy for Sustainable Development 2010,14,330-338.
    [82]Yang ZF, Li SS, Zhang Y, Huang GH. Emergy Synthesis for Three Main Industries in Wuyishan City, China. Journal of Environmental Informatics 2011, 17:25-35.
    [83]Santos HL, Legey LFL. A model for long-term electricity expansion planning with endogenous environmental costs [J]. International Journal of Electrical Power & Energy Systems 2013,51:98-105.
    [84]Crousillat E. Risk and uncertainty in power planning [M]. UNDP General Review Seminar, Tunis.1988.
    [85]Gorenstin BG, Campodonico NM, Costa JP, Pereira MVF. Power system expansion planning under uncertainty [J]. Transactions on Power Systems 1993, 8:129-135.
    [86]Murto P. Models of capacity investment in deregulated electricity markets [J]. Energy Economics 2000,22:121-133.
    [87]Lucas N, Papaconstantinou D. Energy planning under uncertainty Implications for coal processing and oil stocking policy [J]. Energy Policy 1983,11:204-216.
    [88]Nowak MP, Romisch W. Stochastic Lagrangian Relaxation applied to power scheduling in a hydro-thermal system under uncertainty [J]. Annals of Operations Research 2000,100:251-272.
    [89]Liu L, Huang GH, Fuller GA, Chakma A, Guo HC. A dynamic optimization approach for nonrenewable energy resources management under uncertainty [J]. Journal of Petroleum Science and Engineering 2000,26:301-309.
    [90]Niirnberg R, Romisch W. A two-stage planning model for power scheduling in a hydro-thermal system under uncertainty. Optimization and Engineering 2002,3: 355-378.
    [91]Mavrotas G, Demertzis H, Meintani A, Diakoulaki D. Energy planning in buildings under uncertainty in fuel costs:The case of a hotel unit in Greece [J]. Energy Conversion and Management 2003,44(8):1303-1321.
    [92]Chinese D, Meneghetti A, Nardin G. Waste-to-energy based greenhouse heating: Exploring viability conditions through optimization models [J]. Renewable Energy 2005,30(10):1573-1586.
    [93]Antunes CH, Gomes A. Operational research models and methods in the energy sector-introduction to the special issue [J]. Energy Policy 2008,36(7):2293-2295.
    [94]Pousinho HMI, Mendes VMF, Catalao JPS. A risk-averse optimization model for trading wind energy in a market environment under uncertainty [J]. Energy 2011, 36(8):4935-4942.
    [95]Azadeh A, Saberi M, Asadzadeh SM, Khakestani M. A hybrid fuzzy mathematical programming-design of experiment framework for improvement of energy consumption estimation with small data sets and uncertainty:The cases of USA, Canada, Singapore, Pakistan and Iran [J]. Energy 2011,36:6981-6992.
    [96]Li YP, Huang GH, Nie SL. Optimization of regional economic and environmental systems under fuzzy and random uncertainties [J]. Journal of Environmental Management 2011,92:2010-2020.
    [97]Cai YP, Huang GH, Tan Q, Liu L. An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part Ⅱ. Case study [J]. Renewable and Sustainable Energy Reviews 2011,15(7):3051-3073.
    [98]Kavgic M, Mumovic D, Summerfield A, Stevanovic Z, Ecim-Djuric O. Uncertainty and modeling energy consumption:Sensitivity analysis for a city-scale domestic energy model [J]. Energy and Buildings 2013,60:1-11.
    [99]Osleeb JP, Ratick SJ. A mixed integer and multiple objective programming model to analyze coal handling in New England [J]. European Journal of Operational Research 1983,3:302-323.
    [100]Dong C, Huang GH, Cai YP, Liu Y. An inexact optimization mode ling approach for supporting energy systems planning and air pollution mitigation in Beijing city [J]. Energy 2012,37:673-688.
    [101]Li YF, Huang GH, Li YP, Xu Y, and Chen WT. Regional-scale electric power system planning under uncertainty-A multistage interval-stochastic integer linear programming approach [J]. Energy Policy 2010,38(1):475-490.
    [102]Carta JA, Velazquez S. A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site [J]. Energy 2011,36(5):2671-2685.
    [103]Li MW, Li YP, Huang GH. An interval-fuzzy two-stage stochastic programming model for planning carbon dioxide trading under uncertainty [J]. Energy 2011, 36(9):5677-5689.
    [104]Xydis G. Development of an integrated methodology for the energy needs of a major urban city:The case study of Athens, Greece [J]. Renewable and Sustainable Energy Reviews 2012,16(9):6705-6716.
    [105]Fan YR, Huang GH. A robust two-step method for solving interval linear programming problems within an environmental management context [J]. Journal of Environmental Informatics 2012,19(1):1-12.
    [106]Cucchiell F, D'Adamo I, Gastaldi M. A multi-objective optimization strategy for energy plants in Italy [J]. Science of the Total Environment 2013,443:955-964.
    [107]Moradi M H, Hajinazari M, Jamasb S, Paripourc M. An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming [J]. Energy 2013,49: 86-101.
    [108]Kosugi T. Integrated assessment for setting greenhouse gas emission targets under the condition of great uncertainty about the probability and impact of abrupt climate change [J]. Journal of Environmental Informatics 2009,14:89-99.
    [109]Yan XP, Ma XF, Huang GH, Wu CZ. An inexact transportation planning model for supporting vehicle emissions management [J]. Journal of Environmental Informatics 2010,15:87-98.
    [110]Liu H, Liu T, Liu L, Guo HC, Yu YJ, Wang Z. Integrated simulation and optimization approach for studying urban transportation-environment systems in Beijing [J]. Journal of Environmental Informatics 2010,15:99-110.
    [111]NRCAN. Climate change impacts and adaptations:A Canadian perspective. Climate change impacts and adaptation directorate [R]. Natural Resources Canada,2004.Cat. No.M174-2/2004E.
    [112]Nasiri F, Huang GH. Integrated capacity planning for electricity generation:a fuzzy environmental policy analysis approach [J]. Energy Sources, Part B 2008, 3:259-279.
    [113]Nfaoui H, Essiarab H, Sayigh AAM. A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco [J] Renewable Energy 2004,29:1407-1418.
    [114]Chaabene M, Ammar MB, Elhajjaji A. Fuzzy approach for optimal energy management of a domestic photovoltaic panel [J]. Applied Energy 2007,84:992-1001.
    [115]Albrecht J. The future role of photovoltaics:a learning curve versus portfolio perspective [J]. Energy Policy 2007,35(4):2296-2304.
    [116]Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies [J]. Renewable and Sustainable Energy Reviews 2007, 11(7):1388-1413.
    [117]Nfah EM, Ngundam JM, Tchinda R. Modeling of solar/diesel/battery hybrid power systems for far-north Cameroon [J]. Renewable Energy 2007,32(5):832-844.
    [118]Zoulias EI, Lymberopoulas N. Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-along power system [J]. Renewable Energy 2007,32(4):680-696.
    [119]Yoshida Y, Kikushige T, Matsuhashi R, Nomura Y. Consumer preferences for small-lot greenhouse gas emission credits attached to automobile insurance [J]. Journal of Environmental Informatics 2009,14(1):25-30.
    [120]Tessmer RG, Hoffman KC, Marcuse W, Behling DJ. Coupled energy systems-economic model sand strategic planning [J]. Computer and Operations Research 1975,2(3):213-224.
    [121]Beniston M, Stephenson, DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Koffi B, Palutikof J, Scholl R, Semmler T, Woth K. Future extreme events in European climate:an exploration of regional climate model projections. Climatic Change 2007,81:71-95.
    [122]Wene CO. Energy-economy analysis:linking the macroeconomic and system engineering approaches [J]. Energy 1996,21(9):809-824.
    [123]Khella AFA. Egypt:energy planning policies with environmental considerations [J]. Energy Policy 1997,25(1):105-115.
    [124]Lee M. Potential cost savings from internal/external CO2 emissions trading in the Korean electric power industry [J]. Energy Policy 2011,39:6162-6167.
    [125]Huang GH, Chang NB. The perspectives of environmental informatics and systems analysis [J]. Journal of Environmental Informatics 2003,1:1-7.
    [126]Lin QG, Huang GH, Bass B. Power challenge for a cleaner energy future in Saskatchewan, Canada [J]. International Journal of Computer Applications in Technology 2004,22:151-159.
    [127]Albrecht J. The future role of photovoltaics:a learning curve versus portfolio perspective [J]. Energy Policy 2007,5:2296-2304.
    [128]Cai YP, Huang GH, Nie XH, Li YP, Tan Q. Municipal solid waste management under uncertainty:a mixed interval parameter fuzzy-stochastic robust programming approach[J]. Environmental Engineering Science 2007,24(3): 338-352.
    [129]Athanasiadis, IN,& Mitkas, PA. Knowledge discovery for operational decision support in air quality management [J]. Journal of Environmental Informatics 2007,9(2):100-107.
    [130]Cai YP, Huang GH, Tan Q. An inexact optimization model for regional energy systems planning in the mixed stochastic and fuzzy environment [J]. International Journal Energy Research 2008,33(5):433-468.
    [131]Gul T, Kypreos S, Turton H, Barreto L. An energy-economic scenario analysis of alternative fuels for personal transport using the global multi-regional Markal model (GMM) [J]. Energy 2009,34:1423-1437.
    [132]Kuo CC. Reactive energy scheduling using bi-objective programming with modified particle swarm optimization [J]. Energy 2009,34:804-815.
    [133]Lin QG, Huang GH. Interval-fuzzy stochastic optimization for regional energy systems planning and greenhouse-gas emission management under uncertainty: A case study for the Province of Ontario, Canada [J]. Climatic Chang 2011, 104(2):353-378.
    [134]J. Whalley. Trade liberalization among major world trading areas MIT Press [C], Cambridge 1985.
    [135]Fuss S, Reuter WH, Szolgayova J, Obersteiner M. Optimal mitigation strategies with negative emission technologies and carbon sinks under uncertainty[J]. Climatic Change 2013,118:73-87.
    [136]Eory V, Topp CFE, Moran D Multiple-pollutant cost-effectiveness of greenhouse gas mitigation measures in the UK agriculture [J]. Environmental Science & Policy 2013,27:55-67.
    [137]Li YP, Huang GH, Chen X. Planning regional energy system in association with greenhouse gas mitigation under uncertainty, Applied Energy 2011,88(3):599-611.
    [138]King F, Fu M, Andrew Kelly J. A practical approach for the assessment and illustration of uncertainty in emissions modelling:a case study using GAINS Ireland [J]. Environmental Science & Policy 2011,14:1018-1027.
    [139]Manne A, Richels R. Buying greenhouse insurance:the economic costs of CO2 emission limitsMIT Press[C], Cambridge (USA) 1992.
    [140]Deroover M, Jimenez I. EFOM Study of the Mexican Electrical System[C], Systems-Europe, Brussels, Belgium,1988.
    [141]SEI-B. Long-range energy alternative planning system [M]. User guide for LEAP version 2000, Boston, USA. (http://www.seib.org) 2001.
    [142]Matsuoka Y, Kainuma M, Morita T. Scenario analysis of global w arming using the Asian Pacific Integrated Model (AIM) [J]. Energy Policy 1995,23(4-5):357-371.
    [143]Messner S, Golodnikov A, Gritsevskii A. A stochastic version of the dynamic linear programming model MESSAGE III [J]. Energy 1996,21(9):775-784.
    [144]Larson ED, Wu ZX, DeLaquil P, Chen WY, Gao PR Future implications of China's Energy-technology Choices[J]. Energy Policy 2003,31(12):1189-1204.
    [145]Ermolieva T, Ermoliev Y, Fischer G, Jonas M, Makowski M, Wagner F. Carbon emission trading and carbon taxes under uncertainties[J]. Climatic Change 2010, 103:277-289.
    [146]Shin HC, Park JW, Kim HS. Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model [J]. Energy Policy 2005, 33(10):1261-1270.
    [147]吉平,周孝信,宋云亭,马世英,李柏青.区域可再生能源规划模型述评与展望[J].电网技术2013,37(8):2071-2079.
    [148]Cooke RM. Uncertainty analysis comes to integrated assessment models for climate change...and conversely [J]. Climatic Change 2013,117(3):467-479.
    [149]Mayeres I, Regemorter DV. The introduction of the external effects of air pollution in AGE models:towards the endogenous determination of damage valuation and its application to GEM-E3[C]. In the Final Report of the GEM-E3 Elite Project of the EU Joule Research Program.1999.
    [150]Kumbaroglu GS. Environmental taxation and economic effects:a computable general equilibrium analysis for Turkey [J]. Journal of Policy Modeling 2003, 25(8):795-810.
    [151]Capros P. The PRIMES energy system model summary description [J]. http://www.e3mlab.ntua.gr/manuals/PRIMsd.pdf.2004.
    [152]Fishbone LG, Abilock H. MARKAL-A linear programming model for energy systems analysis:Technical description of the BNL version. International Journal of Energy Research 1981,5:353-375.
    [153]杨宏伟.应用AIM/Local中国模型定量分析减排技术协同效应对气候变化政策的影响[J].能源环境保护2004,18(2):1-4.
    [154]中国社会科学院城市与环境研究所新能源与可再生能源经济研究中心,2012.
    [155]武亚非,包毅,杨丽徙.含双馈风电机组的配电网运行模拟[J].郑州大学学报工学版2011,32(4):64-67.
    [156]Homer Energy.Energy modeling software for hybrid renewable energy systems [EB/OL].2012-02-01 [2013]. http://homer energy.com/index.html.
    [157]杜涛,蔡九菊,程吉宏,张玉明.城市能源消耗和结构对大气环境的影响[J].黄金学报2001,3(4):313-316.
    [158]赵延德,张慧.城市能源消费结构变动的环境效应探析[J].水土保持研究2007,14(2):327-332.
    [159]卢彦凝,陈志斌,田标.能源消费与大气环境变迁的关联性分析[J].甘肃科学学报2010,22(2):76-79.
    [160]郑玉歆,樊明太.中国CGE模型及其政策分析[M].北京:社会文献出版社.1999.
    [161]Guo BL, Wang YJ, Zhang AL. China's energy future:LEAP tool application in China. East Asia Energy Futures (EAEF)/Asia Energy Security Project Energy Paths Analysis/Methods Training Workshop.2003.
    [162]Chen WY. The costs of mitigating carbon emissions in China:findings from China MARKAL-MACRO modeling [J]. Energy Policy 2005,33(7):885-896.
    [163]杨永华,黄晓芬,宋静,王辰.资源生产率视角的能源使用与环境质量关系模型研究[J].中国能源2007,29(1):39-42.
    [164]郭小哲.能源经济环境系统综合模型研究[C].中国环境科学学会2009年学术年会论文集.2009.
    [165]焦文献,陈兴鹏.基于STIRTAP模型的甘肃省环境影响分析以1991-2009年能源消费为例[J].长江流域资源与环境2012,21(1):105-110.
    [166]谢元博,李巍.基于能源-环境情景模拟的北京市大气污染对居民健康风险评价研究[J].环境科学学报2013,33(6):1763-1770.
    [167]王锋,冯根福.基于DEA窗口模型的中国省际能源与环境效率评估[J].中国工业经济2013,756-68.
    [168]EPA. Recent climate change:atmosphere changes. Climate change science program[R]. United States Environmental Protection Agency.2007.
    [169]Swain DK, Thomas D. Climate change impact assessment and evaluation of agro-adaptation measures for rice production in eastern India [J]. Journal of Environmental Informatics 2010,16:94-101.
    [170]Halicioglu F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey [J]. Energy Policy 2009,37:1156-1164.
    [171]IPCC. Summary for Policymakers, Concentrations of atmospheric greenhouse gases[C]. IPCC TAR WG1.2001.
    [172]Kosugi T. Integrated assessment for setting greenhouse gas emission targets under the condition of great uncertainty about the probability and impact of abrupt climate change, Journal of Environmental Informatics 2009,14 89-99.
    [173]Linares P, Javier Santos F, Ventosa M, Lapiedra L. Incorporating oligopoly, CO2 emissions trading and green certificates into a power generation expansion model[J]. Automatica 2008,44:1608-1620.
    [174]Crook JA, Jones LA. Forster PM, Crook R. Climate change impacts on future photovoltaic and concentrated solar power energy output[J]. Energy & Environmental Science 2011,4(9):3101-3109.
    [175]Ward DJ, Inderwildi OR. Global and local impacts of UK renewable energy policy [J]. Energy & Environmental Science 2013,6(1):18-24.
    [176]Chen ZM, Chen GQ, Chen B. Embodied carbon dioxide emission by the globalized economy:a systems ecological input-output simulation [J]. Journal of Environmental Informatics 2013,21(1):35-44.
    [177]Boyce JK, Riddle M. Cap and dividend:how to curb global warming while protecting the incomes of American families. Amherst, Massachusetts:Political Economy Research Institute [D]. University of Massachusetts, Amherst.2007.
    [178]赵文会.初始排污权分配的若干问题研究[D],上海理工大学,2006.
    [179]Ellerman AD, Buchner BK. The European Union emissions trading scheme: origins, allocation, and early results [J]. Review of Environmental Economics and Policy 2007,1:66-87.
    [180]The United Nations Climate Change conference, Copenhagen.2009.
    [181]Wei YM, Liu LC, Fan Y, Wu G. China Energy Report 2008:CO2 Emissions Research [J]. Beijing, China:Kexue Chubanshe,2008.
    [182]Raufer R, Li S. Emissions trading in China:a conceptual 'leapfrog' approach [J]? Energy 2009,34:904-912.
    [183]Zhang FW, Guo Y, Chen XP. Research on China's power sector carbon emissions trading mechanism [J]. Energy Procedia 2011,12:127-132.
    [184]Bonacina M, Guli'F. Electricity pricing under carbon emissions trading:a dominant firm with competitive fringe model [J]. Energy Policy 2007,35(8): 4200-4220.
    [185]Bernard A, Haurie A, Vielle M, Viguier L. A two-level dynamic game of carbon emission trading between Russia, China, and Annex B countries [J]. Journal of Economic Dynamics & Control 2008,32:1830-1856.
    [186]Chappin EJL, Dijkema GPJ. On the impact of CO2 emission-trading on power generation emissions. Technological Forecasting and Social Change 2009,76: 358-370.
    [187]Sadegheih A. Optimal design methodologies under the carbon emission trading program using MIP, GA, SA, and TS[J]. Renewable and Sustainable Energy Reviews 2011,15:504-513.
    [188]Koo J, Han K, Yoon ES. Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization [J]. Renewable and Sustainable Energy Reviews 2011,15(1):665-672.
    [189]Haurie A, Viguier L. A stochastic dynamic game of carbon emissions trading [J]. Environmental Modeling and Assessment 2003,8:239-248.
    [190]Considine T, Larson DF. Short term electric production technology switching under carbon cap and trade [J]. Energies 2012,5(10):4165-4185.
    [191]Chapple L, Clarkson P.M, Gold DL. The cost of carbon:capital market effects of the proposed emission trading scheme (ETS) [J]. Abacus 2013,49(1):1-33.
    [192]Bosello F, Roson R. Carbon emissions trading and equity in international agreements [J]. Environmental Modeling and Assessment 2002,7:29-37.
    [193]Holtsmark B, Maestad O. Emission trading under the Kyoto Protocol effects on fossil fuel markets under alternative regimes[J]. Energy Policy 2002,30:207-218.
    [194]Haurie A, Viguier L. A stochastic dynamic game of carbon emissions trading. Environmental Modeling and Assessment 2003,8:239-248.
    [195]Rehdanz K, Tol RSJ. Unilateral regulation of bilateral trade in greenhouse gas emission permits. Ecological Economics 2005,54:397-416.
    [196]Bristow AL, Wardman M, Zanni AM, Chintakayala PK. Public acceptability of personal carbon trading and carbon tax. Ecological Economics 2010,69:1824-1837.
    [197]Cong RG, Wei YM. Potential impact of (CET) carbon emissions trading on China's power sector:A perspective from different allowance allocation options. Energy2010,353921-3931.
    [198]Yi WJ, Zou LL, Guo J, Wang K, Wei YM. How can China reach its CO2 intensity reduction targets by 2020[J]? A regional allocation based on equity and development [J]. Energy Policy 2011,39(5):2407-2415.
    [199]杨雨薇,林淑芬.碳税和碳交易条件下的物流配送中心选址模型[J].物流工程与管理2011,4:119-122.
    [200]朱跃钊,陈红喜,赵智敏.基于B-S定价模型的碳排放权交易定价研究[J].科技进步与对策2013,5:27-30.
    [201]Frei CW, Haldi PA, Sarlos G. Dynamic formulation of a top-down and bottom-up merging energy-policy model[J]. Energy Policy 2003,31:1071-1031.
    [202]Uraikul V, Chan CW, Tontiwachwuthikul P. A mixed-integer optimization model for compressor selection in natural gas pipeline network system operations [J]. Journal of Environmental Informatics 2004,3(1):33-41.
    [203]Kannan R, Strachan N. Modelling the UK residential energy sector under long-term decarbonisation scenarios:comparison between energy systems and sectoral modelling approaches [J]. Applied Energy 2009,86:416-28.
    [204]Linares P, Santos FJ, Ventosa M, Lapiedra L. Incorporating oligopoly, CO2 emissions trading and green certificates into a power generation expansion model. Automatica2008,44:1608-1620.
    [205]Kanudia A, Loulou R. Advanced bottom-up modeling for national and regional energy planning in response to climate change[J]. International Journal of Environment and Pollution 1999,12:191-216.
    [206]Aydinalp-Koksal M, Ugursal VI. Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector [J]. Applied Energy 2008,85:271-296.
    [207]Cormio C, Dicorato M, Minoia A, Trovato M. A regional energy planning methodology including renewable energy sources and environmental constraints [J]. Renewable Sustainable Energy Reviews 2003,7:99-130.
    [208]Mudhoo A, Mohee R. Sensitivity analysis and parameter optimization of a heat loss model for a composting system [J]. Journal of Environmental Informatics 2006,8:100-110.
    [209]Rong A, Lahdelm R. CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization. European Journal of Operational Research 2007,176:1874-1895.
    [210]Kosugi T. Integrated assessment for setting greenhouse gas emission targets under the condition of great uncertainty about the probability and impact of abrupt climate change [J]. Journal of Environmental Informatics 2009,14:89-99.
    [211]Nahorski Z, Horabik J. Greenhouse gas emission permit trading with different uncertainties in emission sources [J]. Journal of Energy Engineering 2008,134: 47-52.
    [212]Gorenstin BG, Campodonico NM, Costa JP, Pereira MVF. Power system expansion planning under uncertainty [J]. IEEE Transactions on Power Systems 1993,81:129-136.
    [213]Zhang LZ, Huang GH, He L, Zhu Y. Integrated Regional Renewable and Non-Renewable Energy Policies Identified through Interval Stochastic Semi-Infinite Programming [J]. Journal of Energy Engineering 2013,139:80-90.
    [214]Huang GH, Baetz BW, and Patry GG. Grey dynamic programming for solid waste management planning under uncertainty [J]. Journal of Urban Planning and Development-ASCE 1994,120(3):132-156.
    [215]Huang GH, Baetz BW, and Patry GG. Grey integer programming:an application to waste management planning under uncertainty [J]. European Journal of Operational Research 1995,83:594-620.
    [216]Huang GH, Baetz BW, and Patry GG. Capacity planning for an integrated waste management system under uncertainty:A North American case study [J]. Waste Management and Research 1997,15(5):523-546.
    [217]Huang GH, Moore RD. Grey linear programming, its solving approach, and its application to water pollution control [J]. International Journal of Systems Sciences 1993,24(1):159-172.
    [218]Huang GH, Moore RD. Grey linear programming, its solving approach, and its application to water pollution control [J]. International Journal of Systems Sciences 1993,24(1).
    [219]Huang GH, Cao MF. Analysis of solution methods for interval linear programming [J]. Journal of Environmental Informatics 2011,17(2):54-64.
    [220]Fang SC, Hu CF, Wang HF, Wu SY. Linear programming with fuzzy coefficients in constraints [J]. Computers and Mathematics with Applications 1999,37:63-76.
    [221]Sailor DJ. Climate change feedback to the energy sector:developing integrated assessments [J]. World Resource Review 1997,9:301-316.
    [222]Muela E, Schweickardtb G, Garces F. Fuzzy possibilistic model for medium-term power generation planning with environmental criteria[J]. Energy policy 2007,35:5643-5655.
    [223]Cao MF, Huang GH, Lin QG, Integer programming with random-boundary intervals for planning municipal power systems [J]. Applied Energy 2010,87(8): 2506-2516.
    [224]Lin QG, Huang GH. An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level [J]. Energy 2010,35(5):2270-2280.
    [225]Liu L, Huang GH, Liu Y. A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Engineering Optimization 2003; 35(2):177-199.
    [226]张晓萱.考虑环境约束的不确定性城市能源系统优化模型[D].华北电力大学博士学位论文2010.分析
    [227]曹明飞.能源与环境系统规划的不确定性及风险分析[D].华北电力大学博士学位论文2011.
    [228]Cai YP, Huang GH, Tan Q, Yang ZF. An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties-Part I: Methodology [J]. Renewable & Sustainable Energy Reviews 2011,15(6):2779-2790.
    [229]牛彦涛.不确定城市能源系统规划模型研究及应用[D].华北电力大学博士学位论文2011.
    [230]王兴伟.基于不确定性的区域电力—环境系统规划研究[D].华北电力大学硕士学位论文2012.
    [231]He L, Huang GH, Lu HW. Bivariate interval semi-infinite programming with an application to environmental decision-making analysis [J]. European Journal of Operational Research 2011,211(3):452-465.
    [232]Geletu A, Hoffmann A. A conceptual method for solving generalized semiinfinite problems via global optimization by exact discontinuous penalization [J]. Europe Journal Operation Research 2004,157(1):3-15.
    [233]Vaz AIF, Fernandes EMGP, Gomes MPSF. Robot trajectory planning with semi-infinite programming [J]. European Journal of Operational Research 2004, 153(3):607-617.
    [234]Zhu Y, Li YP, Huang GH. Development of an optimization model for agricultural irrigation management under uncertainty in Zhangweinan River Basin, China [J]. Journal of Stochastic Environmental Research & Risk Assessment 2013,27(3): 693-704.
    [235]Zhu Y, Huang GH, Li YP, He L, Zhang XX. An interval full-infinite mixed-integer programming method for planning municipal energy systems-A case study of Beijing [J]. Applied Energy 2011,88:2846-2862.
    [236]He L, Huang GH, Tan Q, Liu ZF. An interval full-infinite programming method to supporting environmental decision-making [J]. Engineering Optimization 2008,40(8):709-728.
    [237]Weber R. Decision making under uncertainty:a semi-infinite programming approach [J]. European Journal Operational Research 1985,19:104-113.
    [238]Zhu Y, Huang GH, He L, Zhang LZ. An interval full-infinite programming approach for energy systems planning under multiple uncertainties [J]. International Journal of Electrical Power and Energy Systems 2012,43:375-383.
    [239]Zhu Y, Li YP, Huang GH, Fu DZ. Planning electric power systems in association with air pollution control under uncertainty [J]. Energy 2013,60:168-186.
    [240]Niimberg R, Romisch W. A two-stage planning model for power scheduling in a hydro-thermal system under uncertainty. Optimization and Engineering 2002, 3(4):355-378.
    [241]Iniyan S, Sumathy K, Suganthi L, Anand A S. Samuel. Sensitivity analysis of optimal renewable energy mathematical model on demand variations [J]. Energy Conversion and Management 2000.41:199-211.
    [242]Fleten SE, Kristoffersen TK. Short-term hydropower production planning by stochastic programming [J]. Computers and Operations Research 2008,35: 2656-2671.
    [243]Morgan DR, Eheart JW, Valocchi AJ. Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resources Research 1993,29:551-568.
    [244]Roubens M, Teghem J. Comparison of methodologies for fuzzy and stochastic multi-objective programming [J]. Fuzzy Sets and Systems 1991,42:119-132.
    [245]苏婧,席北斗,刘鸿亮,陈祥荣,姜永海,纪丹凤.杨天学北京市生活垃圾管理的多重不确定性长期规划模型[J].中国环境科学2009,10:1105-1110.
    [246]Zimmermann HJ. Applications of fuzzy set theory to mathematical programming [J]. Information Sciences 1985,36:9-58.
    [247]Wang MH, Kuo YE. A perturbation method for solving linear semi-infinite programming problems [J]. Computers and Mathematics with Applications 1999, 37:181-198.
    [248]Leon T, Vercher E. Solving a class of fuzzy linear programs by using semi-infinit programming techniques [J]. Fuzzy Sets and Systems 2003,146:235-253.
    [249]Wang CY, Yang XQ, Yang XM. Optimal value functions of generalized semi-infinite min-max programming on a noncompact set. Science in China Series A [J]:Mathematics 2005,48(2):261-276.
    [250]Guo P, Huang GH, He L, Li HL. ISMISIP:an inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty [J]. Stochastic Environmental Research and Risk Assessment 2008,14(4):521-537.
    [251]张丽志.不确定性条件下的能源系统优化模型研究[J].华北电力大学硕士毕业论文2010.
    [252]Inuiguchi M, IchihashiHI, Tanaka H.Fuzzy programming:a survey ofrecentdevelopment, in Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty [A]. Slowinski R, Teghem J. Kluwer Academic Publishers[C] 1990:45-70.
    [253]Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning [J]. Information Sciences 1975,8:199-249
    [254]Huang GH, Baetz BW, Patry GG. A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty [J]. Civil Engineering System 1993,10:123-146.
    [255]Schouten NJ, Salman MA, Kheir NA. Energy management strategies for parallel hybrid vehicles using fuzzy logic [J]. Control Engineering Practice 2003,11(2): 171-177.
    [256]Sadeghi M, Hosseini HM. Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs). Energy Policy 2006; 34:993-1003.
    [257]Azouz M, Shaltout A, Elshafei MAL, Abdel-Rahim N, Hagras H, Zaher M, Ibrahim M. Fuzzy logic control of wind energy systems[C]. Proceedings of the 14th International Middle East Power Systems Conference (MEPCON'10), Cairo University, Egypt, December 19-21,2010.
    [258]Li YP, Huang GH. A stochastic-fuzzy programming model with soften constraints for electricity generation planning with greenhouse-gas abatement [J]. International Journal of Energy Research 2013,37(8):843-856.
    [259]费忠华,徐辉,李博.优化电力能源结构的数学模型[J].数学的实践与认识2005,35(3).
    [260]B. Luo, I. Maqsood, G. H. Huang, Y. Y. Yin, and D. J. Han. (2005).An inexact fuzzy two-stage stochastic model for quantifying the efficiency of nonpoint source effluent trading under uncertainty [J]. Science of the Total Environment, 347(1-3):21-34.
    [261]Zhang XD, Huang GH, Chan CW, Liu ZF, Lin QG. A fuzzy-robust stochastic multiobjective programming approach for petroleum waste management planning [J]. Applied Mathematical Modelling 2010,34(10):2778-2788.
    [262]Zhang YM, Huang GH, Lin QG, Lu HW. Integer fuzzy credibility constrained programming for power system management [J]. Energy 2012,38(1):398-405.
    [263]胡情.模糊不确定性优化理论在能源规划中的应用[D].华北电力大学硕士学位论文2013.
    [264]DattaB, Dhiman SD. Chance-constrained optimal monitoring network design for pollutants in groundwater [J]. Journal of Water Resources Planning and Management (1996),122(3):180-188.
    [265]Gali VJ, Brown CG. Assisting decision-making in Queensland barley production through chance constrained programming [J]. The Australian Journal of Agricultural and Resources Economics 2000,44 (2):267-287.
    [266]Chakraborty D. Redefining chance-constrained programming in fuzzy environment [J]. Fuzzy Sets and System 2002,125:327-333.
    [267]Yang N, Wen F. A chance constrained programming approach to transmission system expansion planning. Electric Power Systems Research 2005,75:171-177.
    [268]Cristobal J, Guillen-Gosalbez G, Kraslawski A, Irabien A. Stochastic MILP model for optimal timing of investments in CO2 capture technologies under uncertainty in prices[J]. Energy 2013; 1-9.
    [269]Qin XS. Huang GH. An inexact chance-constrained quadratic programming model for stream water quality management [J]. Water Resources Management 2009,23(4):661-695.
    [270]陈祥荣,席北斗,孙春宝,苏婧,宋波,姜永海,纪丹凤.不确定性城市生活垃圾管理规划及其应用[J].环境科学研究2009,12:1489-1494.
    [271]Tan Q, Huang GH, Cai YP. Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty [J]. Agricultural Water Management 2011,98(10):1595-1606.
    [272]杨宁,文福拴.基于机会约束规划的输电系统规划方法[J].电力系统自动化2004,14:23-27.
    [273]雷亚洲,王伟胜,印永华,戴慧珠.基于机会约束规划的风电穿透功率极限计算[J].中国电机工程学报2002,5:32-35.
    [274]Ono M, Williams BC. Iterative Risk Allocation:A new approach to robust model predictive control with a joint chance constraint[C]. Decision and Control,2008. CDC 2008.47th IEEE Conference on.2008,3427-3432.
    [275]Guo L, Li YP, Huang GH, Wang XW, Dai C. Development of an interval-based evacuation management model in response to nuclear-power plant accident[J]. Journal of Environmental Informatics 2012,20(2):58-66.
    [276]Takyi AK, Lence BJ. Surface water quality management using a multiple-realization chance constraint method [J]. Water Resources Research 1999,35(5): 1657-1670.
    [277]Loucks DP, Stedinger JR, Haith DA. Water resource systems planning and analysis [J]. PrenticeHall, Englewood Cliffs, NJ; 1981.
    [278]Miller BL, Wager HM. Chance constrained programming with joint constraints [J]. Operation Research 1965,13(6):930-945.
    [279]Zhang Y, Monder D, Forbes JF. Real-time optimization under parametric uncertainty:a probability constrained approach [J]. Journal of Process Control 2002,12:373-389.
    [280]Kindler J. Rationalizing water requirements with aid of fuzzy allocation model. Journal of Water Resources Planning and Management-ASCE 1992,118 (3): 308-318.
    [281]Qin XS, Huang GH, Jiang XY, Xi BD, Liang ZW, Liu HL. Fuzzy approach for dynamic simulation of composting process under uncertainty [J]. Transactions of Nonferrous Metals Society of China 2004,14(1):18-24.
    [282]Cooper WW, Deng H, Huang Z, Li SX. Chance constrained programming approaches to congestion in stochastic data envelopment analysis [J]. European Journal Operational Research 2004,155:487-501.
    [283]Sun Y, Huang GH, Li YP. ICQSWM:An inexact chance-constrained quadratic solid waste management model. Resources [J]. Conservation and Recycling 2010, 54(10):641-657.
    [284]Huang GH. A hybrid inexact-stochastic water management model [J]. European Journal of Operational Research 1998,107:137-158.
    [285]Sreenivasan KR, Vedula S. Reservoir operation for hydropower optimization:A chance-constrained approach [J]. Sadhana 1996,21(4):503-510.
    [286]Yang N, Yu CW, Wen F, Chung CY. An investigation of reactive power planning based on chance constrained programming [J]. International Journal of Electrical Power & Energy Systems 2007,29(9):650-656.
    [287]Cai YP, Huang GH, Yang ZF, Tan Q. Identification of optimal strategies for energy management systems planning under multiple uncertainties. Applied Energy 2009,86:480-495.
    [288]Guo P, Huang GH, He L, Cai YP. ICCSIP:An inexact chance-constrained semi-infinite programming approach for energy systems planning under uncertainty [J]. Energy Sources 2008,30(14-15):1345-1366.
    [289]Niu YT, Huang GH, Lin QG, Zhang XX, An interval-parameter chance-constraint mixed-integer programming for energy systems planning under uncertainty, Energy Sources, Part B 2011,6(2):192-205.
    [290]张晓萱,黄国和,席北斗,徐鸿,牛彦涛,刘烨.电厂优化配煤的不确定性机会约束非线性规划方法[J].中国电机工程学报2009,5:11-15.
    [291]于晗,钟志勇,黄杰波,张建华.考虑负荷和风电出力不确定性的输电系统机会约束规划[J].电力系统自动化2009,33(2):20-24.
    [292]于佳,任建文,周明.基于机会约束规划的风-蓄联合动态经济调度[J].电网技术2013,37(8):2126-2122.
    [293]赵书强,刘晨亮,王明雨,胡永强.基于机会约束规划的储能日前优化调度[J].电网技术2013,37(11):3055-3059.
    [294]Li P, Arellano-Garcia H, Wozny G. Chance constrained programming approach to process optimization under uncertainty [J]. Computers & Chemical Engineering 2008,32(1-2):25-45.
    [295]Ferrero RW, Rivera JF, Shahidehpour SM. A dynamic programming two-stage algorithm for long-term hydrothermal scheduling of multireservoir systems [J]. IEEE Transactions on Power Systems 1998,13:1534-1540.
    [296]Kanudia A, Loulou R. Robust responses to climate change via stochastic MARKAL:The case of Quebec [J]. European Journal of Operational Research 1998,106(1):15-30.
    [297]Beraldi P, Grandinetti L, Musmanno R, Triki C. Parallel algorithms to solve two-stage stochastic linear programs with robustness constrains [J]. Parallel Computing 2000,26:1889-1908.
    [298]Zhao G. A log-barrier method with benders decomposition for solving two-stage stochastic linear programs. Mathematical Programming 2001,90:507-536.
    [299]Ling B. An interval stochastic two-stage linear programming approach for managing CO2 emission quota in power generation sector [A]. Dissertation MS. Faculty of graduate studies and research[C], Regina, Saskatchewan, Canada. 2006.
    [300]Zhang H, Huang GH. Development of climate change projections for small watersheds using multi-model ensemble simulation and stochastic weather generation [J]. Climate Dynamics 2013,40(3-4):805-821.
    [301]Suo MQ, Li YP. Huang GH. An inventory-theory-based interval-parameter two-stage stochastic programming model for water resources management [J]. Engineering Optimization 2011,43(9):999-1018.
    [302]Ahmed S, Tawarmalani M, Sahinidis NV. Afinite branch-and-bound algorithm for two-stage stochastic integer programs [J]. Mathematical Programming Series A 2004,100:355-377.
    [303]Huang GH, Loucks DP. An inexact two-stage stochastic programming model for water resources management under uncertainty [J]. Civil Engineering and Environmental Systems 2000,17:95-118.
    [304]Maqsood I, Huang GH, Yeomans JS. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty [J]. European Journal of Operational Research 2005,167:208-225.
    [305]Luo B, Li JB, Huang GH. Li HL. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement. Science of the Total Environment 2006,361:38-56.
    [306]陈文婷.不确定性优化方法在温室气体减排规划中的应用[D].华北电力大学硕士学位论文2010.
    [307]Lv Y, Huang GH, Li YP, Yang ZF, Sun W. A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty, Journal of Environmental Management 2011,92(3):813-826.
    [308]Li YP, Huang GH, Nie XH, Nie SL. An inexact fuzzy-robust two-stage programming model for managing sulfur dioxide abatement under uncertainty. Environ Model Assess 2008,13:77-91.
    [309]周婷婷.热力电厂用水优化调度以及膜处理其排污水的模型和仿真研究[D].华北电力大学硕士学位论文2012.
    [310]谢石骁,杨莉,李丽娜.基于机会约束规划的混合储能优化配置方法[J].电网技术2012,36(5):79-84.
    [311]雷宇,陈红.含风电场的机组组合的两阶段随机规划模型[J].机电一体化2013,10:30-35.
    [312]李薇,周肖楠,解玉磊,李亚楼,张宏亮.不同排污收费情景下的发电企业减排模型研究[J].中国环境科学2013,8:1529-1535.
    [313]刘烨.不确定条件下的煤电一体化能源系统规划与管理研究.华北电力大学硕士学位论文.2013.
    [314]Zou Y, Huang GH, He L, Li HL. Multi-stage optimal design for groundwater remediation:A hybrid bi-level programming approach, Journal of Contaminant Hydrology 2009,108(1-2):64-76.
    [315]Mirzaesmaeeli H, Elkamela A, Douglasa PL, Croiseta E, Gupta M. A multi-period optimization model for energy planning with CO2 emission consideration [J]. Journal of Environmental Management 2010,91(5):1063-1070.
    [316]Li GC, Huang GH, Lin QG, Cai YP, Chen YM, Zhang XD. Development of an interval multi-stage stochastic programming model for regional energy systems planning and GHG emission control under uncertainty [J]. International Journal of Energy Research 2012,36(12):1161-1174.
    [317]Fleten SE, Kristoffersen TK. Short-term hydropower production planning by stochastic programming [J]. Computers and Operations Research 2008,35: 2656-2671.
    [318]杨文宇,刘健.配电网架的多阶段不确定性规划[J].电工技术学报2006,689-95.
    [319]Y. P. Li, G. H. Huang, and S. L. Nie, An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty, Advances in Water Resources (Elsevier),29(5),776-789 (2006)
    [320]李延峰.不确定优化方法在能源规划中的应用[D].华北电力大学硕士学位论文2010.
    [321]Brauneis A, Mestel L, Poland M, Stefan P. Inducing low-carbon investment in the electric power industry through a price floor for emissions trading[J]. Energy Policy 2013,53:190-204.
    [322]Suo MQ, Li YP, Huang GH, Deng DL, Li YF. Electric power system planning under uncertainty using inexact inventory nonlinear programming method [J]. Journal of Environmental Informatics 2013,22(1):49-67.
    [323]Hyman L. America's Electric Utilities:Part, present and future, fourth edition, Arlington VA:Public Utilities Reports 1992:120-154.
    [324]Andrews CJ. Evaluating risk management strategies in resource planning [J]. IEEE Transrctions on Power Systems 1995,1:420-426.
    [325]Douglas AP, Breipahl AM, Lee FN, Adapa R. Risk due to load forecast uncertainty in short term power system planning [J]. IEEE Transactions on Power Systems 1998,13(4):1493-1499.
    [326]Pinson P, Kariniotakis GN. Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment [J]. IEEE Bologna Power Tech Conference Proceedings 2003,2:23-26.
    [327]Khor CS, Elkamel A, Ponnambalam K, Douglas PL. Two-stage stochastic programming with fixed recourse via scenario planning with economic and operational risk management for petroleum refinery planning under uncertainty[J]. Chemical Engineering and Processing:Process Intensification 2008,47(9-10):1744-1764.
    [328]Vespucci M, Bertocchi M, Zigrino S, Escudero LF. Stochastic optimization models for power generation capacity expansion with risk management [J]. European Energy Market 2013,1-8.
    [329]Fan L, Hobbs BF, Norman CS. Corresponding author contact information, E-mail the corresponding author Risk aversion and CO2 regulatory uncertainty in power generation investment:Policy and modeling implications[J]. Journal of Environmental Economics and Management 2010,60(3):193-208.
    [330]He Y, Dai A, Zhu J, He H, Li F. Risk assessment of urban network planning in china based on the matter-element model and extension analysis[J]. International Journal of Electrical Power & Energy Systems 2011,33(3):775-782.
    [331]朱燕婷.新能源产业投资风险分析与评估体系的构建[D].浙江大学硕士学位论文2011.
    [332]邓祥征,刘纪远.中国西部生态脆弱区产业结构调整的污染风险分析-以青海省为例[J].中国人口、资源与环境2012,22(5):55-62.
    [333]熊尚飞,邹小燕.电力市场价格风险价值与波动预测研究综述[J].电力系统保护与控制2014,2.
    [334]Wang S, Huang GH. Interactive two-stage stochastic fuzzy programming for water resources management [J]. Journal of Environmental Management 2011, 92(8):1986-1995.
    [335]Li YP, Huang GH, Nie SL, Qin XS. ITCLP:an inexact two-stage chance-constrained program for planning waste management systems [J]. Resources Conservation and Recycling 2007,4:284-307.
    [336]Li YP, Huang GH, Sun W. Management of uncertain information for environmental systems using a multistage fuzzy-stochastic programming model with soft constraints [J]. Journal of Environmental Informatics 2011,18:28-37.
    [337]Li YP, Huang GH, Li MW. An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty [J]. Renewable Energy 2014,62:31-46.
    [338]Li YP, Huang GH. Two-stage planning for sustainable water-quality management under uncertainty [J]. Journal of Environmental Management 2009,90(8):2402-2413.
    [339]Zou R, Liu Y, Liu L, Guo H. RFIMP Approach for uncertainty-based decision making in civil engineering. Journal of Computing in Civil Engineering 2010, 24:357-364.
    [340]Liu Y, Huang GH, Cai YP, Dong C. An inexact mix-integer two-stage linear programming model for supporting the management of a low-carbon energy system in China. Energies 2011,4(10):1657-1685.
    [341]梁宇希.不确定条件下的城市能源优化模型[C].华北电力大学硕士学位论文2010.
    [342]Lotfi MM, Ghaderi SF. A compromised multi-objective solution using fuzzy mixed integer goal programming for market-based short-term unit commitment problem [J]. Journal of the Operational Research Society 2014:65:23-36.
    [343]Huang GH, Baetz BW, Patry GG. A grey linear programming approach for municipal solid waste management planning under uncertainty [J]. Civil Engineering and Environmental System 1992,9:319-335.
    [344]BMDRC. Beijing municipality's eleventh-five-year electricity development plan (in Chinese). Beijing Municipal Development and Reform Commission, Beijing, China.2009.
    [345]北京市统计局.北京市统计年鉴2009 [EB/OL]. http://www.bjstats.gov.cn/tjnj/2009-tjnj/,20101015/20140316.
    [346]NDRC. China's national medium- and long-term planning of energy efficiency improvement and environmental-emission reduction (in Chinese). National Development and Reform Commission, China,2009.
    [347]Zhang Y, Yang Z, Yu X. Evaluation of urban metabolism based on emergy synthesis:A case study for Beijing [J]. Ecological Modelling 2009,220:1690-1696.
    [348]Chang NB, Chen YL, Wang SF. A fuzzy interval multiobjective mixed integer programming approach for the optimal planning of solid waste management systems. Fuzzy Sets and Systems 1997,89:35-59.
    [349]Zimmermann HJ. Applications of fuzzy set theory to mathematical programming. Information Sciences 1985,36:9-58.
    [350]Li YP, Huang GH. Interval-parameter robust optimization for environmental management under uncertainty [J]. Canadian Journal of Civil Engineering 2009, 36(4):592-606.
    [351]Huang GH, Baetz BW, Patry GG. Grey integer programming:an application to waste management planning under uncertainty [J]. European Journal of Operational Research 1995,83:594-620.
    [352]北京市统计局.北京市统计年鉴2010[EB/OL]. http://www.bjstats.gov.cn/nj/main/2010-tjnj/index.htm,20111015/20140316.
    [353]中华人民共和国中央人民政府.2012年北京市人民政府工作报告[EB/OL].北京日报.http://www.gov.cn/test/2012-01/30/content_2054148_2.htm. 20120130/20140316
    [354]北京市发展和改革委员会.北京市“十一五”时期电力发展规划[EB/OL] http://www.bjpc.gov.cn/fzgh_1/guihua/11_5/11_5_zx/11_5_yb/200612/t148053_2.htm,20061230/20140316.
    [355]Zhu Y, Li YP, Huang GH. Planning carbon emission trading for Beijing's electric power systems under dual uncertainties [J]. Renewable and Sustainable Energy Reviews 2013,23:113-128.
    [356]Birge JR, Louveaux FV. Introduction to stochastic programming [M]. New York, NY:Springer.1997.
    [357]Lu HW, Huang GH, He L. A semi-infinite analysis-based inexact two-stage stochastic fuzzy linear programming approach for water resources management [J]. Engineering Optimization 2009,41(1):73-85.
    [358]Li YP, Huang GH, Nie SL, Qin XS. ITCLP:an inexact two-stage chance constrained program for planning waste management systems [J]. Resources Conservation and Recycling 2007,4:284-307.
    [359]Li YP, Huang GH, Nie XH, Nie SL. A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems [J]. European Journal of Operational Research2008,189(2):399-420.
    [360]Li YP, Huang GH. An inexact multistage stochastic quadratic programming method for planning water resources systems under uncertainty [J]. Environmental Engineering Science 2007,24(10):1377-1393.
    [361]Li W, Li YP, Li CH, Huang GH. An inexact two-stage water management model for planning agricultural irrigation under uncertainty [J]. Agricultural Water Management 2010,97(11):1905-1914.
    [362]Li YP, Huang GH. Interval-parameter two-stage stochastic nonlinear programming for water resources management under uncertainty [J]. Water Resources Management 2008,22(6):681-698.
    [363]Dai C, Li YP, Huang GH. A two-stage support-vector-regression optimization model for municipal solid waste management-A case study of Beijing, China. Journal of Environmental Management 2011,92:3023-3037.
    [364]Grubb M, Brewer TL, Sato M, Heilmayr R, Fazekas D. Climate policy and industrial competitiveness:ten insights from Europe on the EU emissions trading system[J]. The German Marshall Fund of the United States-Climate & Energy Paper Series.2009.
    [365]Stavin RN. Market-based environmental policies:what can we learn from U.S. experience (and related research) [J]? Resources for the Future 2003; 03-43.
    [366]Zhu Y, Li YP, Huang GH. Planning municipal-scale energy systems under functional interval uncertainties [J]. Renewable Energy 2012,39:71-84.
    [367]Xie YL, Li YP, Huang GH, Li YF, Chen LR. An inexact chance-constrained programming model for water quality management in Binhai New Area of Tianjin, China [J]. Science of the Total Environment 2011,409(10):1757-1773.
    [368]Xu Y, Huang GH, Qin XS. An inexact fuzzy-chance-constrained air quality management model [J]. Journal of the Air & Waste Management Association 2010,60(7):805-819.
    [369]Cao MF, Huang GH, Sun Y, Xu Y, Yao Y. DIFCCP:Dual inexact fuzzy chance-constrained programming for planning waste management systems [J]. Stochastic Environmental Research & Risk Assessment 2010,24(8):1163-1174.
    [370]NDRC. China's national medium- and long-term planning of energy efficiency improvement and environmental-emission reduction (in Chinese) [R]. National Development and Reform Commission, China 2010.
    [371]BMDRC. Beijing municipality's Eleventh Five-Year electricity development plan (in Chinese) [R]. Beijing Municipal Development and Reform Commission, Beijing, China 2010.
    [372]国家环境保护局.环境空气质量标准[S].1996-10-01.
    [373]中华人民共和国环境保护局.锅炉污染物排放标准[S].2002-01-01.
    [374]Purvins A, Papaioannou IT, Oleinikova I, Tzimas, E. Effects of variable renewable power on a country-scale electricity system:High penetration of hydro power plants and wind farms in electricity generation[J]. Energy 2012, 43(1):225-236.
    [375]北京市统计局. 北京市统计年鉴2011[EB/OL]. http://www.bjstats.gov.cn/nj/main/2011-tjnj/index.htm,20111013/20140316.
    [376]BTFYP. Beijing Twelfth Five-Year Plan (in Chinese) [R]. Beijing Municipal Development and Reform Commission, Beijing, China 2011.
    [377]Lejeune MA, Prekopa A. Approximations for and convexity of probabilistic constrained problems with random right-hand sides [J]. RRR-Rutcor Research Report 2005(17).
    [378]Huang GH, Loucks DP. An inexact two-stage stochastic programming model for water resources management under uncertainty [J]. Civil Engineering and Environmental Systems 2000,17(2):95-118.
    [379]Li YP, Huang GH, Nie SL, Liu L. Inexact multistage stochastic integer programming for water resources management under uncertainty [J]. Journal of Environmental Management2008,88:93-107.
    [380]Li YP, Huang GH, Liu YY, Zhang YM, Nie SL. Interval-parameter quadratic two-stage stochastic programming method for municipal solid waste management. Civil Engineering and Environmental Systems 2008,25(2):139-155.
    [381]Sturges HA. The choice of a class interval [J]. Journal of the American Statistical Association 1926:65-66.
    [382]David WS. On optimal and data-based histograms [J]. Biometrika 1979.
    [383]David RA. Statistics for business and economics [M] 2010:32-33.
    [384]Murphy FH. Advances in sensitivity analysis and parametric programming [J]. Interfaces 1999.
    [385]Wang HF, Liao YC. Fuzzy non-linear integer program by parametric programming approach. Fuzzy Sets and Systems 2001,122:245-251.
    [386]Bansal V, Perkins JD, Pistikopoulos EN. Flexibility analysis and design using a parametric programming framework [J]. AIChE Journal 2002,48:2851-2868.
    [387]Teles J, Castro P, Matos H. Parametric programming technique for global optimization of wastewater treatment systems [J]. Computer Aided Chemical Engineering 2010,28:1093-1098.
    [388]Li YP, Huang, G.H. Integrated modeling for optimal strategies under uncertainty-A case study of municipal solid waste management [J]. Journal of Environmental Engineering 2011,137(9):842-853.
    [389]Birge JR, Louveaux FV. Introduction to stochastic programming. New York, NY: Springer 1997.
    [390]Zhao G. A log-barrier method with benders decomposition for solving two-stage stochastic linear programs [J]. Mathematical Programming 2001,90:507-536.
    [391]Li YP, Huang GH. Nie SL. Mixed interval-fuzzy two-stage integer programming and its application to flood-diversion planning [J]. Engineering Optimization 2007,39(2):163-183.
    [392]Li YP, Huang GH, Yang ZF. Nie SL. An integrated two-stage optimization approach for the development of long-term waste management strategies. Science of the Total Environment 2008,392:175-186.
    [393]Fan YR, Huang GH. A robust two-step method for solving interval linear programming problems within an environmental management context [J]. Journal of Environmental Informatics 2012,19(1):1-12.
    [394]Gunalay Y, Yeomans JS, Huang GH. Modelling to generate alternative policies in highly uncertain environments:an application to municipal solid waste management planning [J]. Journal of Environmental Informatics 2012,19:58-69.
    [395]徐炜旋.火电“低碳突围”路线图中国40%的二氧化碳排放来源于火电[N].21世纪经济报道.2009-12-08.
    [396]Li YF, Li YP, Huang GH, Chen X. Energy and environmental systems planning under uncertainty-An inexact fuzzy-stochastic programming approach[J]. Applied Energy 2010,87(10):3189-3211.
    [397]Weng SQ, Huang GH, Li YP. An integrated scenario-based multi-criteria decision support system for water resources management and planning-A case study in the Haihe River Basin. Expert Systems with Applications 2010,37(12): 8242-8254.
    [398]Chi GF. Integrated planning of a solid waste management system in the city of Regina. Thesis, program of environmental systems [D]. University of Regina, Regina, Saskatchewan, Canada 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700