用户名: 密码: 验证码:
多频电磁超材料关键技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁超材料(Electromagnetic Metamaterial)是一种自然界不存在的、具有奇异电磁特性(包括负折射、逆多普勒频移、逆切伦科夫辐射等)的人工合成结构型材料,其在电磁学、光学、材料学等物理领域以及无线通信、电子工程等工程领域具有极其重要的应用前景,从2000年始首个微波频段电磁超材料实现后至今,已受到国内外研究学者的广泛关注。近十年已报道的合成电磁超材料的方法主要有平面传输线结构、金属谐振结构、全介质结构等实现方式,光子晶体由于具有电磁超材料的一些独特性质(如负折射现象)而被视为电磁超材料的一个研究分支。其中,金属谐振结构电磁超材料的设计方法简单、制备方便、易于构成三维结构,因此具有重大研究价值。然而,金属谐振结构电磁超材料具有窄带谐振工作的固有缺点,限制了其实际应用推广。为解决此问题,国内外研究学者提出了众多实现方法,如利用多个谐振单元实现双频、三频及多频工作的电磁超材料,以及采用液晶、二极管、超导体、MEMS等加载技术实现工作频段可调谐的电磁超材料合成设计思想。
     本论文亦针对上述金属谐振结构电磁超材料设计中存在的问题,提出一种单金属谐振单元实现单频/双频可转换工作特性的电磁超材料;并以亚铁磁性材料为基体,嵌入到典型单频、双频金属谐振单元中,实现可调谐的多频电磁超材料;进一步探索了基于多频电磁超材料的微波吸波器应用途径。主要内容为:
     1.提出了一种新型的十字交叉圆形环结构单频/双频可转换的单负介电常数电磁超材料的设计方法。采用等效电路分析方法以及电磁仿真方法,研究了这种电磁超材料的物理实现机理、单频/双频控制途径,探索了这种电磁超材料的测试方法,实验测试研究了其电磁波传输/反射特性。获得了这种电磁超材料的设计、仿真、实验等系统分析方法和材料样品,实现了对电磁超材料的工作模式/频率的有效控制。这种电磁超材料的一个基本谐振单元即可实现单频/双频工作状态的转换,具有结构紧凑,控制方便的特点。
     2.研究了基于亚铁磁性材料的双频可调谐双负电磁超材料的物理实现机理,采用电磁仿真方法研究了这类电磁超材料的电磁波传输/反射特性及可调谐特性,利用电磁参数反演算法提取得出了这种电磁超材料的等效电磁参数特性。获得了基于亚铁磁性材料的调谐型双频电磁超材料的系统研究方法以及对双频电磁超材料的有效控制途径。这种电磁超材料的双频传输工作频段可随外加直流磁场强度的变化按需调节,有效地解决了常规电磁超材料窄带工作的缺点。
     3.研究了基于亚铁磁性材料的三频可调谐单负磁导率电磁超材料的物理实现机理,采用电磁仿真方法研究了这类电磁超材料的电磁传输/反射特性及可调谐特性,利用电磁参数反演算法提取得出了这种电磁超材料的等效电磁参数特性。获得了基于亚铁磁性材料的调谐型多频电磁超材料的系统研究方法以及对多频电磁超材料的有效控制途径,进一步拓宽了金属谐振结构电磁超材料的工作频带。
     4.基于十字交叉圆形环谐振单元结构,提出了单频/双频可转换的电磁超材料吸波器设计方法。采用电磁仿真与物理实验相结合的方法,探索了这种电磁吸波器闭场测试方法,研究获得了这种电磁吸波器的吸波机理、单频/双频吸波的控制途径。这种电磁吸波器的吸波频率可通过调节金属谐振单元中短路金属线的位置按需调节,有效地拓宽了电磁超材料吸波器的工作频段。
     5.研究了基于亚铁磁性材料以及金属线阵列的宽带可调谐电磁超材料吸波器的实现机理及电磁仿真方法,获得了这种电磁吸波器的阻抗匹配特性、吸波损耗机理、以及可控调谐方法。这种吸波器的吸波带宽远大于典型电磁超材料吸波器的带宽,具有重要应用价值。
     6.采用矩形波导闭场测试方法,系统地实验测试研究了多种电磁超材料吸波器的电磁波传播、反射、吸收特性,并探讨了电磁超材料吸波器加载的新型矩形波导匹配终端实现方法。
Electromagnetic Metamaterial (EMM), which cannot be found in nature andpossesses the novel electromagnetic properties, e.g. negative refraction, reversals ofboth Doppler shift and Cherenkov radiation, is a kind of artificial composed material. Ithas very important potential applications in the physical areas of includingelectromagnetics, optics, and materials, and also the engineering areas of such aswireless communications and electronic engneerings. Recently, it has excited highlyresearch interests in the world, since the first experimental realization of such EMM in2000. The realization methods of such EMM developed in recent years include thetransmission-line structure, metallic resonance structure, and full dielectric structure.Also, the Photonic Crystals can also lead to some novel electromagnetic properties asnegative refraction, and therefore it can be considered as a kind of EMM. Among theabove mentioned design methods, the metallic resonance structure has huge researchmerit due to the advantages such as simple structure, easy fabrication method, andflexibility to constructe3D realization. However, for the metallic resonance EMM, themajor drawback is that the operating bandwidth is fixed and very narrow. To deal withthe problem, researchers proposed some dual-band and multiband EMMs and integratedliquid crystal, varactor, superconductor, and MEMS as the supplementary elements intoconventional EMM to achieve the band tunable characteristics.
     In this dissertation, the main problem of the metallic resonance EMM is alsodiscussed by (1) designing a single metallic resonator to achieve single/dual bandswitchable EMM,(2) integrating ferrite materials into the conventional single band anddual band EMM to achieve tunable dual band and triple band EMM, respectively. Theband controllable and tunable electromagnetic absorbers and rectangular waveguideterminal based on the above designed EMM are also discussed in this dissertation. Thenovel research aspects are proposed as follows in details:
     1. Propose a novel kind of metallic resonator (cross-circular-loop resonator) whichhas single/dual band resoancne characteristics. By using the effective circuit method andelectromagnetic simulation method, the physical realization mechanism and thecontrolling method of single/dual band operation are researched. The fabricationtechnics and measurement method are investigated, and the transmission/reflection characteristics of the proposed EMM are analyzed. After the above investigations, weget the systemic analysis method including design, simulation and measurement, andalso achieve the band controllable EMM samples.
     2. The physical realization mechanism of dual band tunable EMM based on theferrite materials are researched. By using the electromagnetic simulation method, thedual band and tunable transmission/reflection charactereistics are investigated. Theeffective electromagnetic media parameters are also retrieved from the simulated scatterparameters by using retrieved method. After the above investigations, the systemicanalysis method and controlling approach are obtained. Such EMM can conquer thedisadvantages of conventional EMM such as the narrow and fixed frequency band.
     3. The physical realization mechanism of triple band tunable EMM based on theferrite materials are researched. By using the electromagnetic simulation method, thetriple band and tunable transmission/reflection charactereistics are investigated. Theeffective electromagnetic media parameters are also retrieved from the simulated scatterparameters by using retrieved method. After the above investigations, the systemicanalysis method and controlling approach are obtained and the operating frequencyband is further extended.
     4. Based on the cross-circular-loop resonator, the single/dual band controllablemetamaterial absorber is proposed. By using both numerical simulation andexperimental investigations, the fabrication and closed measurement methods areanalyzed. After the above investigations, we obtain the absorbing mechanism andcontrolling approach of such metamaterial absorber.
     5. The realization mechanism and simulation method of the broadband tunablemetamaterial absorber based on the ferrite materials and wire array is analyzed. Theimpedance matching and absorbing loss mechanism and also tunable controllingmethod are obtained after analyzing the above mentioned research topics. Such kind ofmetamaterial absorber can be used to enlarge the operating band effectively.
     6. By using the closed measurement system, some kinds of metamaterial absorbersare analyzed experimentally. The realization method of rectangular waveguide terminalbased on the EMM absorbers is also investigated in this paper.
引文
[1] A. Schuster. An introduction to the theory of optics[M]. London: Edward Arnold,1904,313-318
    [2] H. Lamb. Hydrodynamics[M]. UK: Cambridge University Press,1916
    [3] A. D. Boardman, N. King, L. Velasco. Negative refraction in perspective[J]. Electromagnetics,2005,25(5):365-389
    [4] L. I. Mandelshtam. Group velocity in crystal lattice[J]. Zhurn. Eksp. Teor. Fiz.,1945,15:475-478
    [5] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of εand μ[J]. Sov. Phys. Uspekhi,1968,10(4):509-514
    [6] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely low frequency plasmons in metallicmesostructures[J]. Phys. Rev. Lett.,76(25):4773-4776
    [7] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhancednonlinear phenomena[J]. IEEE T. Microw. Theory,1999,47(11):2075-2084
    [8] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negativepermeability and permittivity[J]. Phys. Rev. Lett.,2000,84(18):4184-4187
    [9] J. B. Pendry. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett.,2000,85(18):3966-3969
    [10] R. W. Ziolkowski, E. Heynman[J]. Wave propagation in media having negative permeabilityand permittivity. Phys. Rev. E,2001,64:056625-1-15
    [11] D. R. Smith, D. Schurig, J. B. Pendry[J]. Negative refraction of modulated electromagneticwaves. Appl. Phys. Lett.,2002,81:2713-2715
    [12] C. G. Parazzoli, R. B. McGregor, K. Li, et al. Experimental verification and simulation ofnegative index of refraction using Snell’s law[J]. Phys. Rev. Lett.,2003,90(10):107401-1-4
    [13]徐耿钊,张伟华,朱星.奇妙的左手材料[J].物理,2004,33(11):801-808
    [14] T. Gregorczyk, M. Nikku, X. Chen, et al. Refraction laws for anisotropic media and theirapplication to left-handed metamaterials[J]. IEEE Trans. Microwave Theory Tech.,2005,53:1443-1450
    [15] Y. Feng, X. Teng, Y. Chen, et al. Electromagnetic wave propagation in anisotropicmetamaterials created by a set of periodic inductor-capacitor circuit networks[J]. Phys. Rev. B,2005,72:245107-1-9
    [16]郑晴,赵晓鹏,李明明,等.缺陷对左手材料负折射的调控行为[J].物理学报,2006,55(12):6441-6446
    [17] L. Peng, L. Ran, H. Chen, et al. Experimental observation of left-handed behavior in an arrayof standard dielectric resonators[J]. Phys. Rev. Lett.,2007,98:157403-1-4
    [18]崔万照,马伟,邱乐德,等.电磁超介质及其应用[M].北京,国防工业出版社,2008
    [19]王甲富,屈绍波,徐卓,等.基于双环开口谐振环对的平面周期结构左手超材料[J].物理学报,2009,58(5):3224-3229
    [20] T. J. Cui, D. R. Smith, R. Liu. Metamaterials: Theory, design, and applications[M]. New York,Springer Science+Business Media,2010
    [21]郑志恒,宣益民.常规材料与超材料间的近场辐射换热分析[J].科学通报,2011,56(20):1579-1604
    [22] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nature Materials,2012,11,917-924
    [23]司黎明,侯吉旋,刘埇,等.基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取[J].物理学报,2013,62(3):037806-1-9
    [24] D. H. Kwon, D. H. Werner, A. V. Kildishev, et al. Near-infrared metamaterials withdual-band negative-index characteristics[J]. Opt. Express,2007,15:1647-1652
    [25] C. Sabah. Novel, dual-band, single and double negative metamaterials: Nonconcentric deltaloop resonators[J]. PIER B,2010,25:225-239
    [26] C. Huang, Z. Zhao, Q. Feng, et al. Metamaterial composed of wire pairs exhibiting dual bandnegative refraction[J]. Appl. Phys. B,2010,98:365-370
    [27] T. F. Gündo du, K. Güven, M. G kkavas, et al. A planar metamaterial with dual-banddouble-negative response at EHF[J]. IEEE J. Sel. Top. Quantum Electron.,2010,16:376-379
    [28] W. Zhu, X. Zhao, N. Ji. Double bands of negative refractive index in the left-handedmetamaterials with asymmetric defects[J]. Appl. Phys. Lett.,2007,90:011911-1-3
    [29] Y. Yuan, C. Bingham, T. Tyler, et al. Dual-band planar electric metamaterial in the terahertzregime. Opt. Express,2008,16:9746-9752
    [30] Y. Yuan, C. Bingham, T. Tyler, et al. A dual-resonant terahertz metamaterial based onsingle-particle electric-field-coupled resonators[J]. Appl. Phys. Lett.,2008,93:191110-1-3
    [31] M. Li, Z. Wen, J. Fu, et al. Composite metamaterials with dual-band magnetic resonances inthe terahertz frequency regime. J. Phys. D, Appl. Phys.2009,42:115420-1-4
    [32] E. Ekmekci, G. Turhan-Sayan. Single loop resonator: dual-band magnetic metamaterialstructure[J]. Electron. Lett.,2010,46:324-325
    [33] W. Zhu, X. Zhao, J. Guo. Multibands of negative refractive indexes in the left-handedmetamaterials with multiple dendritic structures[J]. Appl. Phys. Lett.,2008,92:241116-1-3
    [34] E. Ekmekci, K. Topalli, T. Akin, et al. A tunable multi-band metamaterial design usingmicro-split SRR structures[J]. Opti. Express,2009,17:16046-16058
    [35] C. Zhu, J. J. Ma, L. Li, et al. Multiresonant metamaterial based on asymmetric triangularelectromagnetic resonators[J]. IEEE Antennas and Wireless Propagation Letters,2010,9:99-102
    [36] O. Yurduseven, A. E. Yilmaz, G. Turhan-Sayan. Triangular-shaped single-loop resonator: atriple-band metamaterial with MNG and ENG regions in S/C bands[J]. IEEE Antennas andWireless Propagation Letters,2011,10:701-704
    [37] O. Yurduseven, A. E. Yilmaz, G. Turhan-Sayan. Hybrid-shaped single-loop resonator: afour-band metamaterial structure[J]. Electro. Lett.,2011,47:1381-1382
    [38] C. L. Ding, X. P. Zhao. Multi-band and broadband acoustic metamaterial with resonantstructures[J]. J. Phys. D: Appl. Phys.,2011,44:215402-1-8
    [39] M. Turkmen, S. Aksu, A. E. Cetin, et al. Multi-resonant metamaterials based on UT-shapednano-aperture antennas[J]. Opt. Express,2011,19:7921-7928
    [40] H. X. Xu, G. M. Wang, Q. Liu, et al. A metamaterial with multi-band left handedcharacteristic[J]. Appl. Phys. A,2012,107:261-268
    [41] B. Li, J. Zhou, L. Li, et al. Ferroelectric inverse opals with electrically tunable photonic bandgap[J]. Appl. Phys. Lett.,2003,83:4704-4706
    [42] M. Haurylau, S. P. Anderson, K. L. Marshall, et al. Electrical modulation of silicon-basedtwo-dimensional photonic bandgap structures[J]. Appl. Phys. Lett.2006,88:061103-1-3
    [43] I. C. Khoo, D. H. Werner, X. Liang, et al. Nanosphere dispersed liquid crystals for tunablenegative–zero–positive index of refraction in the optical and terahertz regimes[J]. Opt. Lett.,2006,31:2592-2594
    [44] Q. Zhao, L. Kang, B. Li, et al. Tunable negative refraction in nematic liquid crystals[J]. Appl.Phys. Lett.,2006,89:221918-1-3
    [45] L. Kang, Q. Zhao, B. Li, et al. Experimental verification of a tunable optical negativerefraction in nematic liquid crystals[J]. Appl. Phys. Lett.,2007,90:181931-1-3
    [46] D. H. Werner, D. H. Kwon, I. C. Khoo, et al. Liquid crystal clad near-infrared metamaterialswith tunable negative-zero-positive refractive indices[J]. Opt. Express,2007,15:3342-3347
    [47] Q. Zhao, L. Kang, B. Du, et al. Electrically tunable negative permeability metamaterials basedon nematic liquid crystals[J]. Appl. Phys. Lett.,2007,90:011112-1-3
    [48] F. Zhang, Q. Zhao, L. Kang, et al. Magnetic control of negative permeability metamaterialsbased on liquid crystals[J]. Appl. Phys. Lett.,2008,90:193104-1-3
    [49] F. Zhang, L. Kang, Q. Zhao, et al. Magnetically tunable left handed metamaterials by liquidcrystal orientation[J]. Opt. Express,2009,17:4360-4366
    [50] A. Minovich, D. N. Neshev, D. A. Powell, et al. Tunable fishnet metamaterials infiltrated byliquid crystals[J]. Appl. Phys. Lett.,2010,96:193103-1-3
    [51] F. Zhang, W. Zhang, Q. Zhao, et al. Electrically controllable fishnet metamaterial based onnematic liquid crystal[J]. Opt. Express,2011,19:1563-1568
    [52] R. Kowerdziej, J. Parka, P. Nyga, et al. Simulation of a tunable metamaterial with nematicliquid crystal layers[J]. Liquid Crystals,2011,38:377-379
    [53] R. Kowerdziej, J. Parka, J. Krupka. Experimental study of thermally controlled metamaterialcontaining a liquid crystal layer at microwave frequencies[J]. Liquid Crystals,2011,38:743-747
    [54] G. Dewar. A thin wire array and magnetic host structure with n <0[J]. J. Appl. Phys.,2005,97:10Q101-1-3
    [55] G. Dewar. Minimization of losses in a structure having a negative index of refraction[J]. NewJ. Phys.,2005,7:161-1-11
    [56] F. J. Rachford, D. N. Armstead, V. G. Harris, et al. Simulations of ferrite-dielectric-wirecomposite negative index materials[J]. Phys. Rev. Lett.,2007,99:057202-1-4
    [57] X. B. Cai, X. M. Zhou, G. K. Hu. Numerical study on left-handed materials made of ferriteand metallic wires[J]. Chin. Phys. Lett.,2005,23:348-351
    [58] Y. J. Cao, G. J. Wen, K. M. Wu, et al. A novel approach to design microwave medium ofnegative refractive index and simulation verification[J]. Chin. Sci. Bull.,2007,52:433-439
    [59] Y. He, P. He, S. D. Yoon, et al. Tunable negative index metamaterial using yttrium irongarnet[J]. J. Magnetism and Magnetic Materials,2007,313:187-191
    [60] H. Zhao, J. Zhou, Q. Zhao, et al. Magnetotunable left-handed material consisting of yttriumiron garnet slab and metallic wires[J]. Appl. Phys. Lett.,2007,91:131107-1-3
    [61] H. Zhao, L. Kang, J. Zhou, et al. Experimental demonstration of tunable negative phasevelocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial[J].Appl. Phys. Lett.,2007,93:201106-1-3
    [62] Y. Huang, G. Wen, T. Li, et al. Low-loss, broadband and tunable negative refractive indexmetamaterial[J]. J. Electromag. Ana. Appl.,2010,2:104-110
    [63] Y. Huang, G. Wen, T. Li, et al. Positive-negative-positive metamaterial consisting offerromagnetic host and wire array[J]. Appl. Comput. Electrom. Soc. J.,2010,25:696-702
    [64] L. Kang, Q. Zhao, H. Zhao, et al. Magnetically tunable negative permeability metamaterialcomposed by split ring resonators and ferrite rods[J]. Opt. Express,2008,16:8825-8834
    [65] L. Kang, Q. Zhao, H. Zhao, et al. Ferrite-based magnetically tunable left-handed metamaterialcomposed of SRRs and wires[J]. Opt. Express,2008,16:17269-17275
    [66] Y. J. Huang, G. J. Wen, Y. J. Yang, et al. Tunable dual-band ferrite-based metamaterials withdual negative refractions[J]. Appl. Phys. A.,2012,106:79-86
    [67] J. Zhong, Y. Huang, G. Wen, et al. Tunable dual-band negative refractive index metamaterialconsisting of ferrites and SRR-wires[C].2012International Workshop on Information andElectronics Engineering (IWIEE), Procedia Engineering,2012,29:797-801
    [68] J. Zhong, F. Wang, G. Wen, et al, Tunable triple-band negative permeability metamaterialconsisting of single-loop resonators and ferrite[J]. Journal of Electromagnetic Waves andApplications,2013,27(3):267-275
    [69] K. Bi, J. Zhou, H. Zhao, et al. Tunable dual-band negative refractive index in ferrite-basedmetamaterials[J]. Optics Express,2013,21(9):10746-10752
    [70] Y. J. Huang, G. J. Wen, T. Q. Li, et al. Design and characterization of tunable terahertzmetamaterials with broad bandwidth and low loss[J]. IEEE Antennas and WirelessPropagation Letters,2012,11:264-267
    [71] I. Gil, J. Bonache, J. García-García, et al. Tunable metamaterial transmission lines based onvaractor-loaded split-ring resonators[J]. IEEE Trans. MTT,2006,54:2665-2674
    [72] A. Vélez, J. Bonache, F. Martin. Varactor-loaded complementary split ring resonators(VLCSRR) and their application to tunable metamaterial transmission lines[J]. IEEEMicrowave and wireless components letters,2008,18:28-30
    [73] D. Wang, L. Ran, H. Chen et al. Active left-handed material collaborated with microwavevaractors[J]. Appl. Phys. Lett.,2007,91:164101-1-3
    [74] K. Aydin, E. Ozbay. Capacitor-loaded split ring resonators as tunable metamaterialcomponents[J]. J. Appl. Phys.,2007,101:024911-1-5
    [75] T. H. Hand, S. A. Cummer. Frequency tunable electromagnetic metamaterial usingferroelectric loaded split rings[J]. J. Appl. Phys.,2008,103:066105-1-3
    [76] H. Chen, B. I. Wu, L. Ran, et al. Controllable left-handed metamaterial and its application to asteerable antenna[J]. Appl. Phys. Lett.,2006,89:053509-1-3
    [77] I. V. Shadrivov, S. K. Morrison, Y. S. Kivshar. Tunable split-ring resonators for nonlinearnegative-index metamaterials[J]. Opt. Express,2006,14:9344-9349
    [78] M. C. Ricci, H. Xu, R. Prozorov, et al. Tunability of superconducting metamaterials[J]. IEEETrans. Appl. Superconductivity,2007,17:918-921
    [79] H. Tao, A. C. Strikwerda, K. Fan, et al. MEMS based structurally tunable metamaterials atterahertz frequencies[J]. J. Infrared Milli. Terahz. Waves,2011,32:580-595
    [80] M. Lapine, D. Powell, M. Gorkunov, et al. Structural tunability in metamaterials[J]. Appl.Phys. Lett.,2009,95:084105-1-3
    [81] E. Ekmekci, A. C. Strikwerda, K. Fan, et al. Frequency tunable terahertz metamaterials usingbroadside coupled split-ring resonators[J]. Phys. Rev. B,2011,83:193103-1-4
    [82] Y. Wang, C. Du, X. Dong. Creating a simplified frequency-tunable metamaterial[J]. SPIENewsroom,2011
    [83] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, et al. BW media-media with negativeparameters, capable of supporting backward waves[J]. Microwave and Optical TechnologyLetters,2001,31(2):129-133
    [84] C. Caloz, T. Itoh. Electromagnetic metamaterials: transmission line theory and microwaveapplications[J]. New Jersey, John Wiley&Sons, Inc.,2006
    [85] R. F. Harrington. Time-harmonic electromagnetic fields[M]. New York, McGraw-Hill,1961
    [86] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii. Electrodynamics of Continuous Media[M].New York, Pergamon,1984
    [87] J. D. Jackson. Classical Electrodynamics[M]. New York, Wiley,1999(3rd ed.)
    [88] R. Marqués, F. Martin, M. Sorolla. Metamaterials with negative parameters: theory, designand microwave applications[M]. New Jersey, John Wiley&Sons, Inc.,2008
    [89] D. M. Pozar. Microwave Engineering[M]. Second Edition, New Jersey, John Wiley&Sons,1997,41-42
    [90]徐新河.二维传输线媒质成像特性研究[D].成都:电子科技大学,2009,1-11
    [91] P. M. Valanju, R. M. Walser, A. P. Valanju. Wave refraction in negative-index media: Alwayspositive and very inhomogeneous[J]. Phys. Rev. Lett.,2002,88(18):187401-1-4.
    [92] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis. Refraction in media with a negativerefractive index[J]. Phys. Rev. Lett.,2003,90(10):107402-1-4
    [93] A. A. Houck, J. B. Brock, I. L. Chuang. Experimental observations of a left-handed materialthat obeys Snell’s law[J]. Phys. Rev. Lett.,2003,90(13):137401-1-4
    [94] A. Grbic, G. V. Eleftheriades. Overcoming the diffraction limit with a planar left-handedtransmission-line lens. Phys Rev Lett,2004,92(11):117403-14
    [95] T. Andrade, A. Grbic, G. V. Eleftheriades. Growing evanescent waves in continuoustransmission-line grid media[J]. IEEE Antennas Wireless Propagat. Lett.,2003,2:186-189
    [96] Z. Feng, X. Zhang, K. Ren, et al. Experimental demonstration of non-near-field image formedby negative refraction[J]. Phys. Rev. B,2006,73(7):075118:1-5
    [97] P. A. Belov, Y. Hao. Subwavelength imaging at optical frequencies using a transmissiondevice formed by a periodic metal-dielectric structure operating in the canalization regime[J].Phys. Rev. B,2006,73(11):113110:1-4
    [98] J. Lu, T. M. Gregorczyc, Y. Zhang, et al. Cerenkov radiation in materials with negativepermittivity and permeability[J]. Opt. Express,2003,11:723-734
    [99] F. Goos, H. H nchen. Ein neuer und fundamentaler Versuch zur Totalreflexion[J]. Ann. Phys.Lpz,1947,1:333-346
    [100] K. Artmann. Berechnung der Seitenversetzung des totatreflektierten strahles[J]. Ann. Phys.Lpz.,1948,2:87-102
    [101] J. A. Kong, B. I. Wu, Y. Zhang. Lateral displacement of a Gaussian beam reflected from agrounded slab with negative permittivity and permeability[J]. Appl. Phys. Lett.,2002,80:2084-2086
    [102] R.W. Ziolkowski. Pulsed and CW Gaussian beam interactions with double negativemetamaterial slabs[J]. Opt. Express,2003,11:662-681
    [103] I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar. Giant Goos-H nchen effect at the refraction fromleft-handed metamaterials[J]. Appl. Phys. Lett.,2003,83:2713-2715
    [104] P. Bacarelli, P. Burghignoli, F. Frezza, et al. Effects of leaky-wave propagation inmetamaterial grounded slabs excited by a dipole source[J]. IEEE Trans. Microwave TheoryTech.,2005,53:32-44
    [105] J. D. Baena, L. Jelinek, R. Marque′s, et al. Near-perfect tunneling and amplification ofevanescent electromagnetic waves in a waveguide filled by a metamaterial: Theory andexperiments[J]. Phys. Rev. B,2005,72:075116
    [106] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields[J]. Science,2006,312:1780-1782
    [107] D. Schurig, J. B. Pendry, D. R. Smith. Calculation of material properties and ray tracing intransformation media[J]. Optics Express,2006,14(21):9794-9804
    [108] H. Chen, B.–I. Wu, B. Zhang, et al. Electromagnetic wave interactions with a metamaterialcloak[J]. Phys. Rev. Lett.,2007,99(6):063903-1-4
    [109] S. A. Cummer, B.–I. Popa, D.Schurig, et al. Full-wave simulations of electromagneticcloaking structures[J]. Phys. Rev. E,2006,74(3):036621-1-5
    [110] D. Schurig, J. J. Mock, B. J. Justice, et al. Metamaterial electromagnetic cloak at microwavefrequencies[J]. Science,2006,314:977-980
    [111] J. Li, J. B. Pendry. Hiding under the carpet: a new strategy for cloaking[J]. Phys. Rev. Lett.,2008,101(20):203901-1-4
    [112] R. Liu, C. Ji, J. J. Mock, et al. Broadband ground-plane cloak[J]. Science,2009,323(5912):366-369
    [113] H. F. Ma, T. J. Cui. Three-dimensional broadband ground-plane cloak made ofmetamaterials[J]. Nature Communication,2010,1:21-1-6
    [114] N. I. Landy, S. Sajuyigbe, J. J. Mock, et al. Perfect metamaterial absorber[J]. Phys. Rev. Lett.,2008,100:207402-1-4
    [115] C. M. Watts, X. Liu, W. J. Padilla. Metamaterial electromagnetic wave absorbers[J]. Adv.Mater.,2012,24: OP98-OP120
    [116] H. Tao, C. M. Bingham, A. C. Strikwerda, et al. Highly flexible wide angle of incidenceterahertz metamaterial absorber: Design, fabrication, and characterization[J]. Phys. Rev. B,2008,78:241103(R)-1-4
    [117] H. Zhou, Z. Pei, S. Qu, et al. A novel high-directivity microstrip patch antenna based onzero-index metamaterial[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:538-541
    [118] Q. Wu, P. Pan, F.-Y. Meng, et al. A novel flat lens horn antenna designed based on zerorefraction principle of metamaterials[J]. Appl. Phys. A,2007,87:151-156
    [119] B. Zhou, Y. Yang, H. Li, et al. Beam-steering Vivaldi antenna based on partial Luneburg lensconstructed with composite materials[J]. Journal of Applied Physics,2011,110:084908-1-6
    [120] M.-C. Tang, S. Xiao, T. Deng, et al. Compact UWB Antenna with multiple band-notches forWiMAX and WLAN[J]. IEEE Transactions on Antennas and Propagation,2011,59(4):1372-1376
    [121] Y. Dong, T. Itoh. Composite right/left-handed substrate integrated waveguide and half modesubstrate integrated waveguide leaky-wave structures[J]. IEEE Transactions on Antennas AndPropagation,2011,59(3):767-775
    [122] Y. Dong, T. Itoh. Metamaterial-based antenna[C]. Proceedings of the IEEE,2012,100(7):2271-2285
    [123] C. Caloz, A. Sanada, T. Itoh. A novel composite right-/left-handed coupled-line directionalcoupler with arbitrary coupling level and broad bandwidth[J]. IEEE transactions onmicrowave theory and techniques.2004,52(3):980-992
    [124] I.-H. Lin, M. Devincentis, C. Caloz, et al. Arbitrary dual-band components using compositeright/left-handed transmission lines[J]. IEEE transactions on microwave theory andtechniques.2004,52(4):1142-1149
    [125] M. A. Antoniades, G. V. Eleftheriades. A broadband wilkinson balun using microstripmetamaterial lines[J]. IEEE antennas and wireless propagation letters.2005,4:209-212
    [126] F. Falcone, F. Martin, J. Bonache, et al. Coplanar waveguide structures loaded with split ringresonators[J]. Microwave Opt. Tech. Lett.,2004,40:3-6
    [127] F. Falcone, T. Lopetegi, J. D. Baena, et al. Effective negative-ε stop-band microstrip linesbased on complementary split ring resonators[J]. IEEE Microwave Wirel. Comp. Lett.,2004,14:280-282
    [128] F. Martín, F. Falcone, J. Bonache, et al. Split ring resonator based left handed coplanarwaveguide[J]. Appl. Phys. Lett.,2003,83:4652-4654
    [129] I. Gil, J. Bonache, J. García-García, et al. Metamaterials in microstrip technology for filterapplications[C]. Proc. APS-URSI, Washington, July2005
    [130] J. García-García, F. Martín, E. Amat, et al. Microwave filters with improved stop band basedon sub-wavelength resonators[J]. IEEE Trans. Microwave Theory Tech.,2005,53:1997-2006
    [131] J. Bonache, F. Martín, F. Falcone, et al. Compact coplanar waveguide band-pass filter atS-band[J]. Microwave Opt. Tech. Lett.,2005,46:33-35
    [132] J. Bonache, I. Gil, J. García-García, et al. Complementary split rings resonator for microstripdiplexer design[J]. Electron. Lett.,2005,41:810-811
    [133] J. Zhu, J. Christensen, J. Jung, et al. A holey-structured metamaterial for acousticdeep-subwavelength imaging[J]. Nature Physics,2011,7:52-55
    [134] B. Reinhard, K. M. Schmitt, V. Wollrab, et al. Metamaterial near-field sensor fordeep-subwavelength thickness measurements and sensitive refractometry in the terahertzfrequency range[J]. Appl. Phys. Lett.,2012,100:221101-1-4
    [135] V. V. Yakovlev, W. Dickson, A. Murphy, et al. Ultrasensitive non-resonant detection ofultrasound with plasmonic metamaterials[J]. Adv. Mater.2013,25:2351–2356
    [136] D. Schurig, J. J. Mock, and D. R. Smith. Electric-field-coupled resonators for negativepermittivity metamaterials[J]. Appl. Phys. Lett.,2006,88:041109-1-3
    [137] W. J. Padilla, M. T. Aronsson, C. Highstrete, et al. Electrically resonant terahertzmetamaterials: Theoretical and experimental investigations[J]. Phys. Rev. B,2007,75:041102-1-4
    [138] R. Liu, A. Degiron, J. J. Mock, et al. Negative index material composed of electric andmagnetic resonators[J]. Appl. Phys. Lett.,2007,90:263504-1-3
    [139] C. M. Watts, X. Liu, W. J. Padilla. Metamaterial electromagnetic wave absorbers[J]. Adv.Matter.,2012,24: OP98-OP120
    [140] I. Bahl, P. Bhartia. Microwave solid state circuit design[M]. New York: Wiley,1988, ch.2
    [141] D. R. Smith, D. C. Vier, Th. Koschny, et al. Electromagnetic parameter retrieval frominhomogeneous metamaterials[J]. Phys. Rev. E,2005,71:036617-1-11
    [142] H. Chen, J. Zhang, Y. Bai, et al. Experimental retrival of the effective parameters ofmetamaterials based on a waveguide method[J]. Opt. Express,2006,14:12944-12949
    [143] B. Lax, K. J. Button, Microwave Ferrites and Ferrimagnetics, New York: McGraw-Hill,1962
    [144] E. Ekmekci, G. Turhan-Sayan. Single-loop resonator: dual-band magnetic metamaterialstructure[J]. Electron. Lett.,2010,46:324-325
    [145] C. G. Hu, X. Li, Q. Feng, et al. Investigation on the role of the dielectric loss in metamaterialabsorber[J]. Opt. Express,2010,18:6598-6603
    [146] L. Li, Y. Yang, C. Liang. A wide-angle polarization-insensitive ultra-thin metamaterialabsorber with three resonant modes[J]. J. Appl. Phys.,2011,110:063702-1-5
    [147] H. Tao, C. M. Bingham, D. Pilon, et al. A dual band terahertz metamaterial absorber[J]. J.Phys. D: Appl. Phys.,2010,43:225102-1-5
    [148] Y. Cheng, H. Yang, Z. Cheng, et al. Perfect metamaterial absorber based on a split-ring-crossresonator[J]. Appl. Phys. A,2011,102:99-103
    [149] X. Shen, T. J. Cui, J. Zhao, et al. Polarization-independent wide-engle triple-bandmetamaterial absorber[J]. Opt. Express,2011,19:9401-9407
    [150] F. Ding, Y. Cui, X. Ge, et al. Ultra-broadband microwave metamaterial absorber[J]. Appl.Phys. Lett.2012,100:103506-1-4
    [151] Y. Liu, S. Gu, C. Luo, et al. Ultra-thin broadband metamaterial absorber[J]. Appl. Phys. A,2012,108:19-24
    [152] Y. Pang, Y. Zhou, J. Wang. Equivalent circuit method analysis of the influence of frequencyselective surface resistance on the frequency response of metamaterial absorbers[J]. J. Appl.Phys.2011,110:023704-1-5
    [153] Y. Pang, H. Cheng, Y. Zhou, et al. Analysis and design of wire-based metamaterial absorbersusing equivalent circuit approach[J]. J. Appl. Phys.2013,113:114902-1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700