用户名: 密码: 验证码:
噻吩诺啡低成瘾性与中枢阿片受体、相关脑区单胺递质及突触可塑性的关系探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的和意义:
     随着吸毒人口逐年倍增,毒品滥用已经成为全球性的社会和医学问题。由于95%以上的脱毒者在短期内复吸造成戒了再吸,吸了再戒,周而复始的恶性循环,使得戒毒治疗的长期效果不能令人满意。因此,预防复吸已是全世界物质依赖防治医学中公认的最重要的课题。开发和研制既有脱毒防复吸作用,又能治疗稽延症状,减少心理渴求的新药物已成为当今医学研究的重点、难点和热点。
     然而,目前国内外均缺乏理想的防复吸药物。常用的戒毒药纳曲酮虽能阻断阿片类毒品与受体结合,但不能缓解稽延症状和心理渴求,使服药者的顺应性差;又因有效时间不够长,停药后24h即可复吸,致使6个月的操守率只有服药病例的20%-30%。美沙酮维持治疗在替代海洛因毒瘾的同时,会使病人产生对美沙酮的新依赖,这种混合毒品形成的依赖比单一毒品更难戒掉。近年来,阿片受体部分激动剂丁丙喏啡(Buprenorphine,Bup)在戒毒临床应用的疗效较好,且有效时间长,不但能缓解稽延症状,而且能阻断毒品的欣快感。但由于Bup口服吸收较差,本身也具有一定的依赖潜能,使得Bup难以成为一个理想的戒毒良药。
     噻吩诺啡是我所自行设计合成的具有自主知识产权的Bup的衍生物。本研究室前期工作发现,噻吩诺啡是一种新型非选择性阿片受体部分激动剂。噻吩诺啡镇痛效能比丁丙诺啡强、口服吸收好、具有抗吗啡诱导的精神依赖的作用及安全性高等特点,而且在有效剂量仅为纳曲酮的1/10-1/20的情况下,其拮抗吗啡的生物效应竟长达约14 d(t1/2为108 h,约为纳曲酮的26倍)。这一长效特性使其可降低服药的脱失率,最大限度地提高脱毒后的操守率。噻吩诺啡最突出的特点是:在前期大量依赖试验中噻吩诺啡均未表现出具有精神依赖和躯体依赖特性,说明该药依赖性极低。上述特点决定了噻吩诺啡有望成为一个较理想的防止脱毒后复吸的药物,具有诱人的应用前景。一旦上市将可能取代纳曲酮和丁丙诺啡,占领绝大部分的戒毒与防复吸的临床治疗市场,使我国的戒毒成功率取得突破性进展,并有可能打入国际市场,为世界戒毒工作作出贡献。
     有关噻吩诺啡低依赖性的机制目前尚未阐明。本实验室前期研究结果表明,噻吩诺啡对μ,δ,κ三种阿片受体的选择性没有差别,结合速率均较快,解离速度缓慢;在35S-GTPγ-S实验中,噻吩诺啡对μ,κ受体的激动活性较强,对δ受体的激动活性较弱;用噻吩诺啡慢性处理CHO-μ细胞,可使膜阿片受体数量剂量依赖性下调;这些结果尚不足以解释噻吩诺啡的低成瘾性。本课题根据目前已揭示的与依赖相关的神经生物学基础,如与躯体依赖相关的中枢蓝斑核去甲肾上腺素功能;与精神依赖相关的奖赏环路中的单胺递质;与神经可塑性变化等为切入点,寻找噻吩诺啡与阿片类药物对中枢神经系统影响的不同点,以便进一步了解噻吩诺啡低成瘾性的机制。这不仅能拓展药物依赖的神经精神原理,而且能够指导噻吩诺啡的临床合理应用,探索以噻吩诺啡为主药的戒毒复方的研究,具有重大的学术价值和重要的实际意义。
     研究内容和方法:
     1、观察噻吩诺啡的药理学特性与对中枢阿片受体亚型选择性的关系。本部分根据κ受体激动可以拮抗μ受体激动所引起的躯体依赖的理论,探讨噻吩诺啡低依赖性是否与受体亚型的选择有关。拟利用不同受体拮抗剂为工具药,在小鼠疼痛和躯体依赖模型上观察噻吩诺啡对中枢μ受体和κ受体功能的影响。
     2、考察噻吩诺啡对依赖相关脑区单胺类递质含量及相关酶类活性的影响。本部分拟利用清醒动物脑微透析技术结合高效液相-电化学检测(HPLC-ECD)等方法,以吗啡为阳性对照药物,观察噻吩诺啡急、慢性给药(纳络酮催促戒断)对大鼠蓝斑核、伏隔核、纹状体等药物依赖密切相关脑区单氨类神经递质释放的影响,同时测定递质代谢限速酶单胺氧化酶(Monoamine oxidase,MAO)活性的变化,比较分析噻吩诺啡与吗啡急、慢性给药后不同脑区神经系统的单胺类递质释放和MAO活性的变化,进一步从递质水平探讨噻吩诺啡低依赖性的神经机制。
     3、评价噻吩诺啡对突触可塑性的影响。该部分采用透射电镜技术,定性观察与突触可塑性变化密切相关的突触界面结构参数;用Western blot的方法检测位于突触囊泡膜上的突触素(Synaptophysin,SYP)一种钙结合蛋白。观察并测量噻吩诺啡慢性处理大鼠伏隔核,海马CA1区神经元超微结构、突触界面结构参数的改变;检测突触素在成瘾相关脑区含量的变化,探讨该药对大鼠突触结构可塑性的影响,并通过比较分析噻吩诺啡与吗啡给药后上述指标的异同变化,进一步分析噻吩诺啡的低依赖性的突触机制。
     主要结果与结论:
     1.在小鼠乙酸扭体模型上,脑室注射κ受体特异性拮抗剂Nor-BNI可以抑制噻吩诺啡的镇痛效果,使其镇痛强度从100%下降至70.94%;在小鼠热辐射甩尾模型上,Nor-BNI使噻吩诺啡的可能最大镇痛百分率从69.79%下降至41.19%。用μ受体特异性拮抗剂纳洛肼也能部分抑制噻吩诺啡的镇痛效果,使其镇痛强度分别下降38.24%和44.11%,略强于κ受体拮抗剂Nor-BNI。在小鼠躯体依赖模型形成实验中,Nor-BNI+噻吩诺啡组、噻吩诺啡组和噻吩诺啡+吗啡组给与纳洛酮催促以后,均没有产生跳跃等躯体依赖的症状。结果提示,噻吩诺啡镇痛作用与其激动中枢μ和κ受体均有关;但噻吩诺啡的低成瘾性与激动中枢κ受体的关系尚不明确,可能是κ受体在中枢的分布与μ受体不同,不能干预蓝斑核μ受体诱导的躯体依赖效应。
     2.噻吩诺啡急、慢性(纳洛酮促催戒断)处理不影响大鼠蓝斑核内去甲肾上腺素(Norepinephrine,NE)的含量,也不影响伏隔核和纹状体内多巴胺(Dopamine,DA)的含量,各脑区神经递质的含量与盐水对照组动物相同(P>0.05),而吗啡慢性(纳洛酮促催戒断)处理后NE和DA的含量增加是其依赖性的神经基础,这可能是噻吩诺啡依赖性低的神经机制之一。与盐水对照组和吗啡组比较,噻吩诺啡慢性处理大鼠给予纳洛酮催促后纹状体内DA的代谢产物3,4-二羟基苯乙酸(3,4-hihydroxyphenylacetic acid,DOPAC)、高香草酸(Homovanillic acid,HVA)明显升高,同时MAO活性显著增强,提示在该脑区噻吩诺啡可能是通过增强MAO的活性,加速了DA的代谢,阻断了依赖形成神经通路的DA递质含量的显著增加,进而不表现出依赖特性。
     3.噻吩诺啡慢性处理对大鼠伏隔核突触素含量有升高作用,对大鼠海马区突触素含量无影响,而吗啡对海马区突触素含量的有降低作用,提示噻吩诺啡对学习记忆的影响显著小于吗啡。噻吩诺啡组与盐水对照组相比,伏隔核突触活性区长度及突触后致密质厚度显著减小(P<0.01),海马CA1区突触活性区长度减小(P<0.01);与吗啡组相比,伏隔核区突触间隙减小(P<0.05)及突触活性区长度增厚(P<0.05),海马CA1区突触活性区长度(P<0.05)和突触后致密物厚度均增加(P<0.05)。上述结果提示噻吩诺啡和吗啡均可以降低大鼠伏隔核和海马CA1区神经元突触的传递效能,但突触结构参数的变化反映出的认知功能的损害程度上噻吩诺啡明显低于吗啡,这可能是噻吩诺啡的低依赖性而区别于吗啡的突触机制。
     综上所述,本研究从受体、神经递质、突触可塑性三个方面入手,探讨了噻吩诺低成瘾性的可能机制,为全面深入阐明噻吩诺啡的作用特点及其合理应用并进一步开发提供实验依据。
Objective and significance:
     With the number of drug users increasing yearly, drug abuse has become a global social and medical problem. However, detoxification treatment has so far failed to achieve satisfactory long-term results, so much so that the relapse rate in drug use tops 95 % among patients undergoing detoxification treatment. Post-detoxification relapse prevention has become a focus to addictive medicine worldwide. Medical researchers are faced with the important task to develop a new medicine for the prevention of opioid addiction, reduction of psychological curving and post-detoxification relapse prevention.
     However, the available anti-opioid relapse drugs are insufficient at home and abroad. As a commonly used anti-opioid relapse agent, naltrexone calls for large dosage, but its effective period is so short that its medication’s failing rate is running high. Only 20-30% of all the detoxification patients treated with naltrexone can manage to remain drug free for six months. In recent years, a partial opioid agonist known as Buprenorphine (Bup) has been proved effective for its good and long detoxification effects in alleviating the protracted withdrawal syndrome, and obstructing drug craving. However, for its poor oral absorption and some dependence potentials, Bup can hardly be accepted as a desirable detoxificaion agent.
     Thienorphine (Thien) is a Bup derivant with independent intellectual property rights synthesized by our institute. It has been proved that Thien is a new type of non-selective opioid receptor partial agonists which has stronger analgesic effect than buprenorphine, good oral absorption, a long term of treatment and clinical safety. Moreover, at an effective dosage only 1/10-1/20 that of naltrexone, Thien can antagonize the effects of morphine for as long as 14 days. Its t1/2 was 108 h (26 times longer than that of naltrexone). This prolonged anti-morphine effect, which helps cut medication’s failing rate and maximize the post-detoxification abstinence rate. Another prominent pharmacological characteristic of Thien is its low psychological and physical dependence. Those features determine that Thien may become a choice medicine in dealing with opioid relapse. Once introduced to clinic use, Thien will be widely used in the medical treatment of drug abuse and will be likely to replace naltrexone and Bup. China’s drug rehabilitation rate will be increased by our breakthroughs. Thien will be also likely to enter the world market and contribute to worldwide anti-drug efforts.
     However, the mechanisms of Thien’s low dependence remain largely unknown. Previous available results obtained from our institute indicated that Thien had no selective affinity toμ、κandδopioid receptors, and can easily bind to the three receptors. Nevertheless, its dissociation toμ,κopioid receptors was quite slow. We also found that Thien had stronger capability of activatingμandκopioid receptors than that ofδopioid receptors. Thien can down-regulate the number of MOR in the cell membrane in a dose-dependent manner after incubating with CHO-μcells. But these results are still insufficient to explaining the mechanism of Thien’s low dependence. So we try to explain the mechanisms of Thien’s low dependence based on current mechanism of opioid dependence including the function of Norepinephrine (NE) in the locus coeruleus (LC) related with physical dependence, the release of monoamine neurotransmitter in the reward system related with psychological dependence and the change of synaptic plasticity. To clarify this question is valuable not only for developing nerves theory of drug dependence but also guiding clinical practice and synthesizing more and better anti-opioid relapse agents using Thien as the leading compound.
     Content and Methodology:
     1. Study relationship between Thien’s pharmacological properties and its activation of central opioid receptor in vivo. We utilize mu and kappa receptor antagonist to oppose Thienorphine antinociceptive effects and establish mice physical dependence model and pretreat with kappa receptor antagonist to observe dependence symptoms. The aim of this part is to investigate receptor mechanism of Thien’s low dependence on the basis of the theory on activation ofκreceptor against dependence induced by activation ofμreceptor.
     2. Investigate the effect of Thien on the content of monoamine neurotransmitter and activity of enzymes in the brain region correlatd with dependence. We analysis the release course of monoamine neurotransmitter in the Locus coeruleus (LC), Nucleus accumbens (NAc) and Striatum of dialyzed rats by HPLC-ECD method and measure activity of Monoamine oxidase (MAO) after Thien acute and chronic administration. Our objective of this part is to approach mechanisms of Thien’s low dependence from neuromechanism level compared with Mor.
     3. Explore the possible role of Thien-induced synaptic plasticity. We observe the ultra-microstructure of neurons and the synaptic interface structure in NAc and hippocampus CA1 (Hip CA1) using transmission electron microscope and measure the activity of Synaptophysin (SYP) in the brain region correlatd with dependence of rats treated with Thien administration by Western blot way. Our purpose of this part is to get the mechanisms of Thien’s low dependence from synaptic plasticity aspect.
     Results and conclusions:
     1.Nor-BNI (a kappa receptor antagonist) can inhibite Thien’s antinociceptive effects which inhibition rate decreased from 100% to 70.94% (writhing model) and from 69.79% to 41.19% (P<0.05) (tail flick model); Naloxonazine(a mu receptor antagonist) can also antagonize Thien analgesic effect which inhibition rate dropped from 79.26% to 41.02% (P <0.05) (writhing model) and from 86.08% to 41.97% (P < 0.05) (tail flick model). In mice model of physical dependence, Mice pretreated with Nor-BNI on Thien group did not show jumping and other physical dependence symptoms. Thien can activate kappa receptors to take its effect in vivo. It is not certain that relationship between Thien’s kappa receptors activation and its low dependence. Maybe distribution ofκopioid receptor in the central nervous system (CNS) is different with that ofμopioid receptor, so Thien’s kappa receptors activation can not interfere with the physical dependence induced byμopioid receptor in the locus coeruleus.
     2.Compared with saline group, Thien’s acute and chronic administration did not affect the content of NE in the LC and the content of DA in the NAC and the Striatum of freely moving rats using microdialysis, while Mor increased the content of NE and DA. These results may display one of neuromechanism of Thien’s low dependence. Compared with saline and Mor group, Thien’s chronic administration increased the content of DOPAC and HVA (DA metabolites) and reinforce the activity of MAO in the Striatum of rats. The results indicated that Thien may accelerate DA metabolism course owing to strengthening the activity of MAO and block the change of neurotransmitter and did not show dependence.
     3. Thien’s chronic administration increased the content of SYP in the NAc of rats, but did not affect the content of SYP in the hippocampus CA1 area (Hip CA1) of rats, while Mor decreased the content of SYP in the Hip CA1 of rats. These results showed Thien’s effect on neural plasticity is lower than that of Mor. Length of synaptic active zone (NAc and Hip CA1) and the post-synaptic density (NAc) of Thien-treated rats were significantly lower than that of saline group. Length of synaptic active zone in NAc and Hip CA1 of Thien-treated rats were greater than that of Mor group, but the width of synaptic cleft and the post-synaptic density have an opposite result. These result indicated Thien and Mor can decrease synaptic transmission efficiency, but decrease level of Thien was lower than that of Mor. This might be one of mechanisms of Thien’s low dependence from synaptic plasticity aspect.
     In a word, we investigate the possible mechanism of Thien’s low dependence from three directions including receptor, neurotransmitter and synaptic plasticity. These results provide experimental foundation for explaining of Thien’s pharmacological characteristic and clinical practice.
引文
1. Singh J, Basu D. Ultra-rapid opioid detoxification: current status and controversies. J Postgrad Med, 2004, 50(3):227-232.
    2. Tang YL, Zhao D, Zhao C, Cubells JF. Opiate addiction in China: current situation and treatments. Addiction, 2006, 101(5):657-665.
    3. Tang YL, Hao W. Improving drug addiction treatment in China. Addiction. 2007 Jul; 102(7):1057-1063.
    4. 苏木金,许望纯,张伟杰。不同年代 9818 例海洛因依赖者吸毒方式与并发传染病分析。中国药物滥用防治杂志,2006;12(5):277-278。
    5. 谈绍强,曾水金,曾亮等。2513 例药物滥用者 HIV 检测与流行病学调查。 中国药物依赖性杂志,2000;9(3):222-229。
    6. Nestler EJ, Barrot M, Self DW. ?FosB: a molecular switch for addiction. Proc Natl Acad Sci U S A, 2001, 98(20): 11042-11046.
    7. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. TIPS, 1992, 13(5): 177-184.
    8. Kiyatkin EA. Dopamine in the nucleus accumbens: cellular actions, drug- and behavior- associated fluctuations and a possible role in an organism's adaptive activity. Behav Brain Res, 2002, 137(1-2): 27-46.
    9. Rainer Spanagel. Modulation of drug-induced sensitization processes by endogenous opioid systems. Behavoural Brain Research, 1995, 70(1):37-49.
    10. Eric J Nestler. Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. TRENDS in Pharmacological Sciences, 2004, 25(4):210-218.
    11. Koob GF, Maldonado R, Stinus L. Neuro substrates of opiate withdrawal. Trends Neurosc, 1992, 15(5): 186-191.
    12. Van Ree JM, Gerrits MA, Vanderschuren LJ. Opioids, reward and addiction: An encounter of biology, psychology, and medicine. Pharmacol Rev, 1999, 51(2): 341-396.
    13. Misicka A. Peptide and non-peptide ligands for opioid receptors. Acta Pol Pharm, 1995, 52(5):349-363.
    14. Matthes HW, Maldonado R, Simonin F, et al. Loss of Morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu opioid receptor gene. Nature, 1996, 383(6603): 819-823.
    15. Kaye AD, Gevirtz C, Bosscher HA, Duke JB, Frost EA, Richards TA, Fields AM. Ultrarapid opiate detoxification: a review. Can J Anaesth. 2003, 50(7):663-671.
    16. Ling W, Wesson DR. Drugs of abuse-opiates. West J Med. 1990, 152(5):565-572.
    17. DeMaria PA Jr, Weinstein SP. Methadone maintenance treatment. When and how to refer patients. Postgrad Med. 1995, 97(3):83-86, 91-92.
    18. Kirchmayer U, Davoli M, Verster AD, Amato L, Ferri A, Perucci CA. A systematic review on the efficacy of naltrexone maintenance treatment in opioid dependence.Addiction, 2006, 97(10):1241-1249.
    19. 秦伯益。纳曲酮使用中的问题和经验。中国药物滥用防治杂志,1999;5(2): 4-7。
    20. 杨晓松,王永崇,朱光荣,景风标。 盐酸纳曲酮防复吸初步研究。中国药物依赖性杂志,1998,7(3):156-158。
    21. James J, Manlandro. Buprenorphine for Office-Based Treatment of Patients with Opioid Addiction. JAOA, 2005; 105(6): 8-13.
    22. Paul A, Donaher MD, Galena, Maryland. Managing Opioid Addiction with Buprenorphine. Am Famliy Physician, 2006; 873(3):1573-1578.
    23. Manlandro JJ Jr. Using buprenorphine for outpatient opioid detoxification. J Am Osteopath Assoc, 2007(suppl-5), 107: ES11-16.
    24. Boatwright DE. Buprenorphine and addiction: challenges for the pharmacist. J Am Pharm Assoc (Wash), 2002, 42(3):432-438.
    25. Yu G, Yue YJ, Cui MX, Gong ZH. Thienorphine is a potent long-acting partial opioid agonist: a comparative study with Buprenorphine. J Pharmacol Exp Ther. 2006; 318(1): 282-287.
    26. Wen-li ZHAO, Ze-hui GONG, Jian-hui LIANG. A new Buprenorphine analogy, theinorphine, inhibits morphine-induced behavioral sensitization in mice. Acta Pharmacol Sin 2004; 25 (11): 1413-1418.
    27. Kreek MJ. Opioid receptors: some perspectives from early studies of their role in normal physiology, stress responsivity, and in specific addictive diseases. Neurochem Res, 1996, 21(11):1469-1488.
    28. Maldonado R.The neurobiology of addiction. J Neural Transm Suppl. 2003, (66):1-14.
    29. Hyman SE. Addiction: a disease of learning and memor Am J Psychiatry. 2005, 162(8):1414-1422.
    30. Pan ZZ. Mu-opposing actions of the kappa-opioid receptor.Trends Pharmacol Sci. 1998, 19(3): 94-98.
    31. Kiyatkin EA.Dopamine in the nucleus accumbens: cellular actions, drug- and behavior- associated fluctuations and a possible role in an organism's adaptive activity. Behav Brain Res, 2002, 137(1-2): 27-46.
    32. Jones S, Bonci A. Synaptic plasticity and drug addiction. Curr Opin Pharmacol.2005:5(1):20-25.
    33. Mansouri AF, Motamedi F, Fathollabi Y, et al. Augmentation of LTP induction by primed-bursts titanic stimulation in hippocampus CA1 area of morphine dependent rats. Brain Res, 1997, 769(1):119-124.
    34. Mansouri FA, Motamedi F, Fathollahi Y. Chronic in vivo morphine administration facilitates primed-bursts-induced long-term potentiation of Schaffer collateral-CA1 synapses in hippocampal slices in vitro. Brain Res, 1999, 815(2):419-423.
    35. Pu L, Bao GB, Xu NJ, et al. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci, 2002, 22(5):1914-1921.
    36. Hou XE, Dahlstr?m A. Synaptic vesicle proteins and neuronal plasticity in adrenergic neurons. Neurochem Res, 2000, 25(9-10):1275-1280.
    37. Liu HX, Zhang JJ, Zheng P, Zhang Y.Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res 2005, 139(1):169-177.
    38. Subramaniam S, Marcotte ER, Srivastava LK.Differential changes in synaptic terminal protein expression between nucleus accumbens core and shell in the amphetamine-sensitized rat. Brain Res, 2001, 901(1-2):175-183.
    39. Davis PE, Liddiard H, McMillan TM. Neuropsychological deficits and opiate abuse. Drug Alcohol Depend, 2002, 67(1):105-108.
    40. 仲伯华,刘河,吴波,王亚萍。N-环丙甲基-7α-【(R)-1-羟基-1-甲基-3-(-噻吩)丙基】-6,14-内乙基桥四氢去甲基蒂巴因(噻诺啡)合成和晶体结构。有机化学,2005,25(2):210-212。
    41. 赵文丽,梁建辉,宫泽辉。噻诺啡灌胃给药对小鼠甲基苯丙胺行为敏化的影响。中国药物依赖性杂志,2005,14(2):93-97。
    42. Wen-li ZHAO, Ze-hui GONG, Jian-hui LIANG. A new Buprenorphine analogy, theinorphine, inhibits morphine-induced behavioral sensitization in mice. Acta Pharmacol Sin, 2004, 25 (11): 1413-1418.
    43. Tulunay FC, Jen MF, Chang JK, Loh HH, Lee NM. Possible regulatory role of dynorphin on morphine- and beta-endorphin-induced analgesia. J Pharmacol Exp Ther, 1981 Nov; 219(2):296-298.
    44. Tao PL, Hwang CL, Chen CY. U-50,488 blocks the development of morphine tolerance and dependence at a very low dose in guinea pigs. Eur J Pharmacol, 1994,256(3):281-286。
    45. Ramarao P, Jablonski HI Jr, Rehder KR, Bhargava HN. Effect of kappa-opioidreceptor agonists on morphine analgesia in morphine-naive and morphine-tolerant rats.Eur J Pharmacol, 1988, 156(2):239-246.
    46. Friedman HJ, Jen MF, Chang JK, Lee NM, Loh HH. Dynorphin: a possible modulatory peptide on morphine or beta-endorphin analgesia in mouse. Eur J Pharmacol, 1981, 69(3):357-360.
    47. Song ZH, Takemori AE. Antagonism of morphine antinociception by intrathecally administered corticotropin-releasing factor in mice. J Pharmacol Exp Ther. 1991, 256(3):909-912.
    48. Glick SD, Maisonneuve IM, Raucci J, Archer S. Kappa opioid inhibition of morphine and cocaine self-administration in rats. Brain Res. 1995, 681(1-2):147-152.
    49. Funata M, Suzuki T, Narita M, Misawa M, Nagase H. Blockade of morphine reward through the activation of kappa-opioid receptors in mice. Neuropharmacology, 1993, 32(12), 1315-1323.
    50. Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathwayProc. Natl. Acad. Sci. U. S. A., 1992, 89(3):2046-2050.
    51. Di Chiara G, et al. Drugs abused by humans preferentially increase synaptic dopamine concentration in the mesolimbic system in freely moving rats Proc. Natl. Acad. Sci. U. S. A. ,1988, 85(14):5274-5278.
    52. Simmons ML, Chavkin C. Endogenous opioid regulation of hippocampal function. Int Rev Neurobiol, 1996, 39(1):145-196.
    53. Wagner JJ, Terman GW, Chavkin C. Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature, 1993, 363(3):451-454.
    54. Weisskopf MG, Zalutsky RA, Nicoll RA. The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature. 1999, 362(6419):423-427.
    55. Golshani S, Karamkhani F, Monsef-Esfehani HR, Abdollahi M. Antinociceptive effects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. J Pharm Pharm Sci, 2004, 20; 7(1):76-79.
    56. Salahpour A, Medvedev IO, Beaulieu JM, Gainetdinov RR, Caron MG. Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry, 2007, 61(1):65-69.
    57. Pinardi G, Sierralta F, Miranda HF. Atropine reverses the antinociception of nonsteroidal anti-inflammatory drugs in the tail-flick test of mice. PharmacolBiochem Behav, 2003, 74(3):603-608.
    58. Portoghese PS, Lipkowski AW, Takemori AE. Binaltorphimine and nor-binaltorphimine, potent and selective kappa-opioid receptor antagonists. Life Sci, 1987, 40(13):1287-1292.
    59. Horan P, Taylor J, Yamamura HI, Porreca F. Extremely long-lasting antagonistic actions of nor-binaltorphimine (nor-BNI) in the mouse tail-flick test[J]. J Pharmacol Exp Ther, 1992, 260(3):1237-1243.
    60. Hahn EF, Pasternak GW. Naloxonazine, a potent, long-lasting inhibitor of opiate binding sites. Life Sci, 1982, 31(12-13):1385-1388.
    61. Loh HH,Liu H,Cavalli A,et al .Mu-opioid receptor knockout in m ice: effects on ligand-induced analgesia and moiphine lethality. Mo1 Brain Res, 1998, 54(2): 321-326.
    62. simonin F, Valverde O,Smadja C, et al. Disruptern of the kappa-opioid receptor gene in mice enhances sensitivity to themical visceral pain, in pairs hmmawlogical actions of the selective kappa-agonist U50488H and attenuates morphine withdrawal. EMBO J, 1998, 17(34): 886-897.
    63. Fields HL. Understanding how opioids contribute to reward and analgesis. Reg Anesth Pain Med, 2007, 32(3):242-246.
    64. Gong ZH,Yue YJ, Cui MX, Liu YS, Qin BY. A potent long-acting partial opioid agonist: a study on Thienorphine. Chinese Pharmacologist, 2003: 20(1):19-20.
    65. White JM, Lopatko OV. Opioid maintenance: a comparative review of pharmacological strategies. Expert Opin Pharmacother. 2007, 8(1):1-11.
    66. Meunier JG. Nociceptinorphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmocol, 1997, 340(1):1-15.
    67. Robinson TE, Kolb B. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse, 1999, 33(2):160-162.
    68. Nestler EJ. Under siege: the brain on opiates. Neuron, 1996, 16(5):897-900.
    69. Rasmussen K, Beitner Johnson D, Krystal JH, et al. Opiate withdrawal and electrophysiological and biochemical correlates. J Neurosci, 1990, 10(7):2308-2317.
    70. Ackerman JM, Womble MD, Moises HC. Multiple effects of Long-term morphine treatment on postsynaptic beta-adrenergic receptor function in hippocampus: an intracellular analysis. Brain Res, 1994, 656(2):309-318.
    71. JohnsLon JP. Some observations upon a new inhibitor of monoamine oxidose in hrain tissue. Riochem Pharmacol, 1968.1(C7): 1195-1197.
    72. Tao R, Auerbach SB. Increased extracellular serotonin in rat brain after systemic orintraraphe administration of morphine. J Neurochem, 1994, 63(2):517-524.
    73. Su RB, Li J, Li X et al. Down-regulation of MAO-B activity and imidazoline receptor in rat brain following chronic treatment of morphine. Acta Pharmacoil Sin, 2001, 22(7):639-644.
    74. Monika Orowska-Majdak. Microdialysis of the brain structures: application in behavioral research on vasopressin and oxytocin, Acta Neurobiol Exp, 2004, 64(2):177-188.
    75. 潘越芳,李范珠。微透析技术及其在脑内药动/药效学研究中的应用。中国药物与临床,2008,8(1):5-8。
    76. 韩慧婉,舒鸿钧,刘国铨。微透析技术及其应用。化学通报,2000,12(1):52-56。
    77. Cousins MS, Trevitt J, Atherton A, Salamone JD. Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: a microdialysis and behavioral investigation. Neuroscience, 1999, 91(3):925-934.
    78. Philpot RM, McQuown S, Kirstein CL. Stereotaxic localization of the developing nucleus accumbens septi. Brain Res Dev Brain Res, 2001, 130(1):149-153.
    79. Walling SG, Nutt DJ, Lalies MD, Harley CW.Orexin-A infusion in the locus ceruleus triggers norepinephrine (NE) release and NE-induced long-term potentiation in the dentate gyrus.J Neurosci,2004,24(34):7421-7426.
    80. Paronis CA, Holtzman SG. Development of tolerance to the analgesic activity of mu agonists after continuous infusion of morphine,meperidine or fentanyl in rats. J Pharmacol Exp Ther, 1992:262(1):1-9.
    81. France CP, et al. Descriminative stimulus effects of reversible and irreversible opiate agonists: morphine, oxymorphazone and buprenorphine. Pharmacol Exp, 1984, 230 (3):652-657.
    82. Steinmiller CL, Maisonneuve IM, Glick SD. Effects of dextromethorphan on dopamine release in the nucleus accumbens: Interactions with morphine. Pharmacol Biochem Behav, 2003, 74(4): 803–810.
    83. Pratt JA. The neuroanatomical basis of anxiety. Pharmacol Ther, 1992, 55 (2): 149-181.
    84. Lane-Ladd SB, Pineda J, Boundy VA, et al. CREB (cAMP response element-binding rotein) in the locus coeruleus: Biochemical, physiological, and behavioral evidence for a role in opiate dependence. J N eurosci, 1997, 17 (20): 7890-901.
    85. Nestler EJ, BarrotM, SelfDW. DeltaFosB: a molecular switch for addiction. Proc N atlAcad Sci U.S.A., 2001, 98 (20): 11042-11046.
    86. Nestler EJ. Total recall-the memory of addiction. Science, 2001, 292(5525): 2266-2267.
    87. DeVries TJ, Shippenberg TS. Neural System Underlying Opiate Addiction. Neurosci, 2002, 22(9):3321-3325.
    88. Berke JD,Hyman SE. Addiction,dopamine,and the molecular mechanisms of memory. Neuron, 2000, 25(3): 515-532.
    89. Hyman SE,Hyman SE,Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci, 2001, 2(10): 695-703.
    90. Nestles EJ .Molecular basis of long term plasticity underlying addiction. Nat Rev Neurosci, 2001, 2 (2):215-228.
    91. Mansouri FA, Motamedi F, Fathollahi Y. Chronic in vivo morphine administration facilitates rimed-bursts-induced long-term potentiation of Schaffer collateral-CA1 synapses in hippocampal slices in vitro. Brain Res, 1999, 815(2):419-423.
    92. Mansouri AF, Motamedi F, Fathollabi Y, et al. Augmentation of LTP induction by primed-bursts titanic stimulation in hippocampal CA1 area of morphine dependent rats. Brain Res, 1997, 769(1):119-124.
    93. Pu L, Bao GB, Xu N, et al. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci, 2002, 22(5):1914-1921.
    94. Albright TD, et al : Current Opinion in Neurobiology, 2000 ;10(5) : 612-624.
    95. 吴馥梅,杜红燕,章子贵。突触界面曲率及其生理意义。神经解剖学杂志,1994,10(1):89-92。
    96. France CP, et al.Descriminative stimulus effects of reversible and irreversible opiate agonists: morphine,oxymorphazone and buprenorphine. Pharmacol Exp, 1984:230(3):652-657.
    97. SklairTavron L. Chronic rmrphine induces visible changes in the rmrphology of plimbic dopamine neurons .Froc Natl Acad Sci U.S.A., 1996, 93(20):11202-11207.
    98. Robinpn TE. Alterations in the rmrplrology of dendrites and dendrites spines in the nucleus accumbens and prefrontal comes following repeated treatment with amphetamine or cocaine. Eur J Neurosci, 1999, 11(5):1591-1604.
    99. Filch AJ. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci U.S.A., 2000, 97 (13): 7579-7584.
    100. Wiedenmann B Franke WW. Identification and localization of synaptophysin, an Integral membrane glycoprotein of Mr 38000 characteristic of presynaptic vesicles. Cell, 1985, 41(3):1017-1028.
    101. Wiedenmann B. A widespread constituent of small neuroendocrine vesicles and anew tool in tumor diagnosis .Acta-Oncol, 1991, 30(40):435-440.
    102. Rehm H,Wiedenmann B, Betz H. Molecular characterization of synaptophysin,a major calcium-binding protein of the synaptic vesicle membrane. MBO J, 1986, 5(3):535-541.
    103. Calakos N, Scheller RH. Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle.J Biol Chem, 1994, 269(40):24534-24537.
    104. Robinson TE, Berridge KC. Addiction. Annu Rev Psychol, 2003, 54(3): 25-53.
    105. Guidner FH, Ingham CA. Increase in postsynaptic density material in optic target neuron of the rat suprachismatic nucleus after bilateral enucleation. Neurosci Lett, 1980, 17(1-2): 2731-2734.
    106. Jones DG, Devon RM. An ultra structural study into the effects of pentobarbital on synaptic organization. Brain Res, 1978, 147(1):47-63.
    107. Ferrer I. Neurons and their dendrites in frontotemporal dementia.Dement Geriatr Cogn Disord, 1999, 10 (suppl 1):55-58.
    108. Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron, 1999 Nov; 24(3):687-700.
    109. Stroemer RP, Kent TA, Neocortical neural sprouting, synaptogenesis and behavioral recovery after neocortical infarction in rats Stroke. 26(11):2135-2144.
    110. Masliah E, Terry RD, Deteresa R, Hansen LA. Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzhemmer’s disease. Neurosci Lett, 1989, 103 (2):234-235.
    111. Liang YJ, Wu DF, Yang LQ, H?llt V, Koch T. Interaction of the mu-opioid receptor with synaptophysin influences receptor trafficking and signaling. Mol Pharmacol. 2007, 71(1):123-131.
    112. 何鸣,杨德森,程介士等。吗啡依赖大鼠的行为与 VTA 单胺释放改变研究。中国心理卫生杂志,1995,3 (1):1-15。
    113. 罗焕敏。海马结构:从形态,功能到可塑性的衰老性变化。神经解剖学杂志。1996,12 (2 ):177-184。
    114. Xu X, Zhang Z. Effects of estradiol benzoate on learning-memory behavior and synaptic structure in ovariectomized mice. Life Sci, 2006, 79(16):1553-60.
    115. 章子贵,陆汉新,李振武。小鼠记忆保持能力与海马 CA3 区突触界面结构的相关性。神经科学,1995,2(3):136-140。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700