用户名: 密码: 验证码:
富水区大埋深高渗压隧洞涌水预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锦屏二级水电站引水洞工程是世界上目前规模最大的水工隧洞工程,由于施工受阻及工期紧缺,增设辅引3“施工支洞以增加工作面,解救被强岩爆掩埋的TBM等施工设备并且保障工程如期顺利完成。可见,辅引3“施工支洞的顺利完成对锦屏二级水电站引水洞工程至关重要。然而,辅引3#支洞涌水问题是本工程最大的重难点,具有突发性、大流量、高水压等特点,对其涌水量进行合理预测成为工程建设过程必须得面对与解决的难题之一。
     本文以锦屏二级水电站辅引3“施工支洞工程为背景,综合运用理论分析、数值模拟和现场测试等研究方法对隧洞涌水进行预测研究。在详细介绍隧道涌水预测的传统方法的基础上,利用BP神经网络方法建立“富水区大埋深高渗压隧洞涌水预测模型”,并采用模糊数学和MODFLOW数值分析两种方法对涌水量进行计算,其计算结果用来对比验证“富水区大埋深高渗压隧洞涌水预测模型”可靠性。本文的主要研究内容及结论如下:
     1、对锦屏二级水电站辅引3#施工支洞的工程地质和水文地质条件进行了分析,揭示了辅引3“支洞涌水的突发性、大流量、高水压是本工程最大的重难点。影响辅引3“支洞涌水的因素主要分为三大类共计11个因素,分别为工程地质条件、水文地质条件和隧洞工况。其中工程地质条件具体包括地质构造、最大埋深、围岩级别、渗透系数和岩溶发育5个影响因素,水文地质条件主要考虑了水头高度、降水量和地表环境对涌水的影响,隧洞工况的具体因素为隧道半径、施工工况和隧道长度的影响。
     2、综合分析隧洞涌水的影响因素得出,地质构造、水头高度、渗透系数、降水量和隧道半径对涌水量的影响最为显著。其中将地质构造因素按地质构造等级采用1-100由定性指标转化为定量指标,能够较好地计算出隧洞涌水量。基于这五种因素与隧洞涌水量之间的关系,构建了基于BP神经网络方法的“富水区大埋深高渗压隧洞涌水预测模型”。
     3、三种预测涌水的方法对比分析可知,涌水预测的基本前提是充分掌握涌水隧洞工程区地质条件与水理环境等方面的信息,在此基础上,BP神经网络和Mod-flow法相对层次分析与模糊数学法对涌水预测较为客观,层次分析与模糊数学法较为主观,建议优先采用BP神经网络和Mod-flow法,可用层次分析与模糊数学法对其他预测方法进行辅助判断。
     4、针对锦屏二级水电站辅引3#施工支洞涌水量预测,分别利用“富水区大埋深高渗压隧洞涌水预测模型”、层次分析与模糊数学和Mod-flow法对锦屏二级水电站辅引3#施工支洞辅(3)0+020~0+050、辅(3)0+170~0+200及辅(3)0+280~0+310三个重点涌水段进行涌水量预测,各种方法的预测值与现场实测涌水量进行了对比分析。研究表明,运用“富水区大埋深高渗压隧洞涌水预测模型”对涌水量的预测值比实际值偏大,误差在10%范围内,能够较为合理地预测隧洞涌水量。
JinPing Ⅱ Hydropower Station is the world's largest hydraulic tunnel engineering now. Because of construction delay and duration shortage, its3auxiliary construction tunnel had been added for more working faces, in order to rescue the TBM and other construction equipments buried by strong rock-burst and ensure project completed on schedule. Obviously, it is essential to the hydraulic tunnel engineering of JinPing Ⅱ Hydropower Station for3#auxiliary construction tunnel had been completed successfully. It is the largest heavy and difficult point of this project that3#auxiliary construction tunnel's water gushing has the characteristics of sudden, big flow, high water pressure, however. Reasonable prediction of its water inrush is one of the largest difficulties in the process of engineering construction.
     Take the3#auxiliary construction tunnel of JinPing Ⅱ Hydropower Station as the background, this paper comprehensively use the theoretical analysis, numerical simulation and field test and other methods to study of tunnel water gushing prediction. On the basis of the traditional methods to predict the tunnel gushing in detail,"the prediction model of hydraulic tunnel water gushing with water-rich area large buried depth and ultra-high osmotic pressure" is established by BP neural network method. At the same time, the numerical fuzzy mathematics and MODFLOW analysis are used to calculate the water inflow. Take the calculation results to compare to verify reliability of "the prediction model of hydraulic tunnel water gushing with water-rich area large buried depth and ultra-high osmotic pressure". The main research contents and conclusions of this paper are as follows:
     1. Analyzed the engineering geology and Hydrogeology conditions of the3#auxiliary construction tunnel of JinPing II Hydropower Station, reveals that It is the largest heavy and difficult point of this project that3auxiliary construction tunnel's water gushing has the characteristics of sudden, big flow, high water pressure. The water inrush factors of the3#auxiliary construction tunnel are mainly divided into three major categories of a total of11factors, respectively, the engineering geology conditions, hydrogeology conditions and tunnel conditions. Among them, the engineering geological conditions includ geological structure, the maximum buried depth, the rock level, permeability coefficient and the development of karst a total of5influence factors; Hydrogeology conditions mainly consider the influence of water level, the precipitation and surface water environment; Factors influencing tunnel conditions for tunnel radius, construction conditions and tunnel length.
     2. They are the most significant influence for water gushing that Include geological structure, water level, permeability coefficient, the precipitation and tunnel radius, by a synthesis of the influential factors of tunnel water gushing. The geological structure factors, according to the tectonic level using1-100transform from qualitative to quantitative indicators, can be used to calculate the tunnel water inflow. Based on the relationship between these five factors and tunnel water gushing,"the prediction model of hydraulic tunnel water gushing with water-rich area large buried depth and ultra-high osmotic pressure" is established by BP neural network method.
     3. By comparative analysis of three methods of forecasting water inrush, the basic premise of water inrush prediction is fully mastering inrush geological condition of tunnel engineering and water environment information. On the basis of this, BP neural network and Mod-flow method are more objective for water gushing prediction, and hierarchy analysis and fuzzy mathematics method is more subjective. So, The BP neural network and Mod-flow method are the preferred ways other than hierarchy analysis and fuzzy mathematics method.
     4.In the light of the water gushing prediction of the3auxiliary construction tunnel of JinPing II Hydropower Station,"the prediction model of hydraulic tunnel water gushing with water-rich area large buried depth and ultra-high osmotic pressure", hierarchy analysis and fuzzy mathematics method and Mod-flow method are taken to predict the water gushing of three key water gushing section of the3auxiliary construction tunnel of JinPing II Hydropower Station, which are the auxiliary (3)0+020~0+050, the auxiliary (3)0+170~0+200, and the auxiliary (3)0+280~0+310. Various methods of value prediction are compared with the measured discharge. The results show that using "the prediction model of hydraulic tunnel water gushing with water-rich area large buried depth and ultra-high osmotic pressure" value is larger than the actual value for predicting water inrush, which relative error is in the range of10%. It can reasonably predict the tunnel water inflow.
引文
[1]李忠.在建铁路隧道水砂混合物突涌灾害的形成机制、预报及防治[D].徐州:中国矿业大学,2009
    [2]姜云,王兰生.深埋长大公路隧道高地应力岩爆和岩溶涌突水问题及对策[J].岩石力学与工程学报,2002,(9):1319-132
    [3]刘建国,刘义立.华蓥山隧道特大涌水突泥的综合治理[J].公路,2003,(10):25-29
    [4]孟乔然.歌乐山隧道大股涌水处理[J].铁道建筑技术,2002,(S1):4-7
    [5]王学武.南京地铁二号线元通站深基坑涌水采用双液注浆封堵加固施工技术[J].职业技术,2007,(14):63
    [6]马栋,李庚许.宜万铁路大支坪隧道+990岩溶治理技术[J].中国工程科学,2009,(12):53-59
    [7]龚睿.隧道工程建设对隔档式岩溶富水背斜地下水环境的影响研究[D].成都:成都理工大学,2010
    [8]Shuster, E.T, White, W.B. Seasonal fluctuations in the chemistry of limestone springs:A possiblemeans for characterizing carbonate aquifers, J. Hydrology,1971, 14:93~128.
    [9]Smart, P.L., Hobbs, S.L. Characterization of carbonate aquifers:A conceptual base, Proceedings ofthe Environmental Problems in Karst Terranes and Their Solutions Conference, Bowling Green, KY,1986,1~14
    [10]William B. White, Conceptual models for karstic aquifers, Speleogenesis and environment of karstaquifers,1(1),2003.8
    [11]Jonathan B. Martin, Elizabeth J. Screaton, Exchange of matrix and conduit with example from theFlordian Aquifer, Geological survey karst interest group proceedings, water-resources investigationreport,2001.01:38~44
    [12]李鹏飞,张顶立,周烨.隧道涌水量的预测方法及影响因素研究[J].北京交通大学学报,2010,(4):11-15
    [13]王振宇,陈银鲁,刘国华,梁旭.隧道涌水量预测计算方法研究[J].水利水电技术,2009,(7):41-44
    [14]安典新.隧道涌水量预测方法的研究[J].农业科技与信息,2008,(24):26-28
    [15]林传年,李利平,韩行瑞.复杂岩溶地区隧道涌水预测方法研究[J].岩石力学 与工程学报,2008,(7):1469-1476
    [16]郭玉法,鲍庆煜.岩溶隧道涌水量的预测方法研究[J].铁道勘察,2007,(5):73-75
    [17]张雷,赵剑,张和平.隧道涌水量预测的计算方法研究[J].公路交通技术,2007,(1):121-129
    [18]邓百洪,方建勤.隧道涌水预测方法的研究[J].公路交通技术,2005,(3):161-163
    [19]黄卓广,黄钟焕,黄梅新.比拟法在矿区矿坑涌水量预测应用实例[J].西部探矿工程.2006,(3):93-94
    [20]董兴文.矿井最大涌水量计算与参数确定[J].工程勘察,1995,(4):24-28
    [21]蒙彦,雷明堂.岩溶区隧道涌水研究现状及建议[J].中国岩溶,2003,22(4):287-292
    [22]黄涛,杨立中.渗流—应力—温度耦合下裂隙围岩隧道涌水量的预测[J].西南交通大学学报,1999,34(5):554-559
    [23]毕焕军.裂隙岩体数值法预测计算特长隧道涌水量的应用研究[J].铁道工程学报,2000,(1):59-62
    [24]李廷春,李术才,陈卫忠等.厦门海底隧道的流固祸合分析[J].岩土工程学报,2004,26(3):397-400
    [25]黄涛.渗流场与应力场耦合环境下裂隙围岩型隧道涌水量预测的研究[J].岩石力学与工程学报,1999,18(2):237
    [26]程学军,蔡美峰,李长洪.灰色-突变模型及其在声发射监测预报中的应用[J].中国矿业,1997,6(2)
    [27]吴慈生,白勤虎,王新元.基于模糊聚类分析的矿井突水预测及危险性评价[J].中国安全科学学报,1995,5(增刊)
    [28]王玉振,王连国,周文安.用数量化理论建立矿井涌水危险性评价模型[J].系统工程理论与实践,1996(4)
    [29]王延福,勒德武,曾艳京,王晓明.岩溶矿井煤层底板突水系统的非线性特征初步分析[J].中国岩溶,1998,17(4)
    [30]张王景,王延福,曾燕京.神经网络专家系统在煤矿突水预测中的应用[J].微电子学与计算机,1995(5)
    [31]徐则民,黄润秋,罗杏春.特长岩溶隧道涌水预测的系统辨识方法[J].水文地质工程地质,2002(4)
    [32]Y. Bai; J.L. Yan:K.J. Ge:X.Y. Li.RBJ for sizable underpass construction in saturated soft soils[J]. Tunnelling and Underground Space Technology.2006. 21(3/4):289-294
    [33]PanYue; ZhangYong; YuGuang-Ming.Mechanism and catastrophe theory analysis of circular tunnel rock burst[J]. Applied Mathematics and Mechanics,2006,27 (6) 841-852
    [34]Lee S.M.;Park B.;S.Lee S.W. Analysis of rockbursts that have occurred in a water way tunnel in Korea[J]. International Journal of Rock Mechanics and Mining Sciences. 2004,41(SUPPL.1):3B 24 1-6
    [35]Lei Shengxiang, Gao Bo. Study on Construction Blasting Vibration Control and Effect of Space Coupling of the Large Cavern under High Crustal Stress [J]. Advanced Materials Research.2012:2908-2914
    [36]Kaiser P K,McCreath D R,Tannnant D D. Canadian rockburst support handbook[R]. Sudbury, Ontario, Canada:Geomechanics. Research Centre,1996
    [37]Cook N G W,Hoek E,Pretorius JPG,et al. Rock mechanics applied to the study of rockbursts[J]. Journal of the South African Institute ofMining and Metallurgy,1966, 66(10):436-528
    [38]Kaiser P K,McCreath D R,Tannnant D D. Canadian rockburst support handbook[R]. Sudbury, Ontario, Canada:Geomechanics. Research Centre,1996
    [39]Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering &Design,1984, 80(2):233-245
    [40]Lemaitre J. A continuous damage Mechanics model for ductile fracture[J].Engng. Mater. Tech.,1985,107:83-89
    [41]Kachanov L M. Introduction to continuum damage mechanics [J]. The Nethelands: Martinus NijhoffDordrecht,1986,80(1):245-260
    [42]CARRANZA-TORRES C. Analytical and numerical study of the mechanics of rock bolt reinforcement around tunnels in rock masses [J].Rock Mechanics and Rock Engineering,2009,42(2):175-228
    [43]Dimitrios Kolymbas, Peter Wagner. Groundwater ingress to tunnels-The exact analy-tical solu-tion[J]. Tunnelling and Undergrand space Technology,2007,22(1): 23~27
    [44]Jin-Hung Hwang, Chih-ChiehLu. A semi-analytical method for analyzing the tunnel water inflow[J]. Tunnelling and Undergrand space Technology,2007,22:39~46
    [45]E.Shimojima, T.Tanaka, Y.Hoso, R.Yoshioka, etal.Using shot-and long-term tran-sients in seepage discharge and chemistry in a mountain tunnel to quantify fracture and matrix water fluxe [J]. Journal of Hydrology,2000,23(4):142~161
    [46]张霄.地下工程动水注浆过程中浆液扩散与封堵机理研究及应用[D].济南:山东大学,2011
    [47]黄平华,陈建生.基于多元统计分析的矿井突水水源Fisher识别及混合模型[J].煤炭学报,2011,(S1):131-136
    [48]陈俊儒,王星华.海底隧道涌水量的预测及其应用研究[J].现代隧道技术,2008,(5):18-21
    [49]李苍松,何发亮,陈成宗.渝怀线武隆隧道岩溶涌水量计算新方法[J].中国铁道科学,2005,(5):41-46
    [50]刘文剑,吴湘滨,王东.隧道涌水量综合渗透系数的推导及应用[J].工程勘察,2008,(2):26-28
    [51]王莲芬,许树柏层次分析法引论[m]:北京中国人民大学出版社,1992
    [52]杜栋论.标度评价[J]运筹与管理,2000,9(4)
    [53]陈浩,石文一.基于层次分析法的监理评标方法研究[J]建筑经济,2008,(6)
    [54]门治君.模糊数学法在建设工程项目评价中的研究及应用[D].西安:西安理工大学,2010
    [55]刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2000
    [56]张文泉,等.矿井顶板涌水量的模糊预测与防治决策研究矿业研究与开发,2001
    [57]从爽.面向Matlab工具箱的神经网络理论与应用.合肥:中国科大出版社
    [58]张恩亮.基于BP神经网络的道路交通安全预测研究[D].北京:北京交通大学,2006
    [59]罗敏.岩溶蓄水构造区隧道涌突水量计算探析[D].成都:成都理工大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700