用户名: 密码: 验证码:
穿透性对流活动特征及其对上对流层/下平流层臭氧分布的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在深对流活动中,有一部分对流能穿透对流层顶,这类对流称为穿透性对流,它对上对流层/下平流层(upper troposphere and lower stratosphere,简称UTLS)区域的能量、水汽以及痕量气体的收支起重要的调节作用,而UTLS区域内的辐射平衡也是全球能量平衡的一个重要组成部分。随着卫星观测资料的广泛应用,人们对深对流活动有了一定认识,特别是首部星载测雨雷达的升空,深对流及穿透性对流的内部结构也为人们所了解。然而由于缺乏准确的对流层顶资料,深对流是否穿透对流层顶?穿透性对流对UTLS区域产生什么影响?我们对这些的认识仍然不足。
     本论文利用多卫星平台多仪器观测资料、探空资料,结合再分析资料,研究了全球对流层顶诸参量的变化特征,率先建立了逐月全球对流层顶诸参量的时空变化数据集。依据逐月对流层顶诸参量的数据集,确定了准确的对流层顶信息,结合星载测雨雷达探测的对流活动,系统地研究了热带副热带地区穿透性对流活动特征及其对UTLS区域温湿结构的影响。论文还就西北太平洋台风活动产生的深对流和穿透性对流对UTLS区域臭氧分布的变化进行了研究,揭示了该地区台风活动对UTLS臭氧变化的影响程度。本论文取得的主要结论如下:
     (1)揭示了全球热力对流层顶气候特征
     资料分析结果表明,热力学对流层顶高度在热带地区超过16.5km,在副热带地区出现显著的梯度区,在极区则小于9km,这是地球大气热力平均状态。但是,深对流和穿透性对流活动会造成局地对流层顶高度的扰动,资料分析表明这种扰动小于1km,也表明了大尺度气团的稳定性。对流层顶附近的静力稳定度在对流层顶之上0至1km和1至3km附近,分别出现两个最大值,其中0至1km的最大值位于赤道附近,而1至3km的最大值出现在南北半球10°-15°纬度带内;就季节而言,北半球冬春季节对流层顶以上静力稳定度的最大值位于非洲中部、热带西太平洋和热带东太平洋,而在副热带其静力稳定度明显变小。
     不同资料对流层顶差异的分析表明,COSMIC与IGRA差异较小,两者对流层顶高度差异0.02±0.54km,气压差异1.61±15.44hPa,温度差异-0.06±2.25K,位温差异-0.52±5.59K;差异的区域特征表明在印度次大陆差异较为明显,这与该地区探空数据质量可信度较低有关。而COSMIC与NCEP对流层顶差异较大:北半球冬季高度-0.20±0.57km,夏季高度-0.16±0.90km;其中NCEP对流层顶在热带明显偏低约2km,而在南半球明显偏高达到2km。
     研究表明全球多对流层顶事件发生与急流关系密切,急流附近对流层顶厚度可达6km;在北半球冬春季节,东太平洋和大西洋西部由于急流减弱引起对流层Rossby波破碎频发,从而导致这两地区多对流层顶发生频次下降。安第斯山脉地区多对流层顶几乎没有显现季节变化特征,这里全年都可观测到多对流层事件。研究结果还发现,多对流层顶事件发生时,对流层顶之间几乎都伴随着低稳定度的出现。
     (2)揭示了热带副热带穿透性对流特征
     研究结果表明热带副热带穿透性对流降水发生频次为0.005~0.05%,且具有较大的区域差异及显著的季节变化特征;陆面穿透性对流频次及强度均高于海面;穿透性对流活动在ITCZ、亚洲夏季风区、非洲中部及亚马逊地区最为活跃。穿透性对流的平均雨顶高度为14~18.5km。
     论文定义了穿透性对流雨团的等效半径和穿透尺度。研究结果发现95%以上的穿透性对流的等效半径为2.5km,穿透尺度小于4.5km。与洋面相比,陆面穿透性对流雨团的等效半径更大;亚洲夏季风穿透性对流发展深厚,并且雨团水平尺度更宽,因此穿透性对流的等效半径和穿透尺度均大。
     论文还就穿透性对流的物质输送进行了初步的分析,结果表明亚洲季风区穿透性对流在平流层与对流层交换通量过程中的贡献显著。
     (3)揭示了深对流及穿透性对流活动对UTLS区域温湿结构的影响程度
     研究表明陆面、季风区和洋面的深对流及穿透性对流的降水结构存在明显的差异,如陆面这类对流的降水更剧烈、雨团中存在更强的雷达回波(更大的降水率)、雨顶更高等;而洋面的降水强度最弱、雨顶高度也最低;季风区深对流和穿透性对流的降水强度比洋面的大;深对流及穿透性对流的潜热垂直结构也表现了类似区域性特征,其中穿透性对流的区域性差异更为突出。
     研究还表明大气温度垂直结构与深对流垂直结构存在一定的关系,深对流云体内出现暖异常(与潜热加热有关),深对流云顶附近出现冷异常(与气团绝热上升冷却有关),而在深对流云顶之上存在暖异常,这个暖异常与高层空气绝热下沉增温有关。对于穿透性对流情况,上述现象更为明显。
     深对流和穿透性对流均造成对流层整层显著的加湿,其中最明显的加湿作用发生在陆面,这里的水汽混合比增加程度可超过40%;在季风区稍弱,而洋面最弱。与此同时,深对流和穿透性对流还造成云顶附近气层脱水,其中深对流的脱水效应比穿透性对流的大。
     (4)揭示了西北太平洋台风中对流活动对UTLS区域臭氧的影响
     个例研究发现,台风可造成200hPa以上臭氧柱浓度下降超过-4DU,且臭氧垂直廓线也有明显的亏损,可达-12%或更多。强台风阶段臭氧亏损程度还明显增强,亏损的水平和垂直范围也显著增大。
     西北太平洋台风雨带中穿透性对流雨团加权平均等效半径为4.0km,加权穿透尺度0.49km。西北太平洋台风可造成台风中心附近10°之内200~50hPa臭氧柱浓度(简称OCUTLS)显著亏损,亏损程度达-5DU,相应的变化百分比为-5%。其中台风云墙内(距离台风中心0.5°-3°环带区)强对流造成显著的OCUTLS负异常。
     较以往的研究结果,论文率先给出了基于准确对流层顶高度的穿透性对流活动的空间特征尺度,并揭示了穿透性对流活动的垂直结构特征及其相应的温度和湿度垂直结构特征,以及上述特征的区域性差异,增进了我们对穿透性对流活动的认知,并为模式模拟提供了准确的观测事实依据。
Deep convection penetrating the tropopause, also known as penetrating convection, plays a crucial role in controlling the budget of energy, water vapor, as well as other trace constituents of the tropical upper troposphere and lower stratosphere (UTLS). In order to understand these important impacts, a number of ways to observe the distribution and frequency of penetrating convection from spaceborne platforms have been proposed. The launch of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) provides a new opportunity to study the vertical structure and the intensity of tropical convection. However, since the previous studies do not use the accurate tropopause data, TRMM PR and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) observations are first combined to understand the characteristics of deep and penetrating convection over tropics and subtropics in this thesis. Meanwhile, we aim to better quantify the deep convective temperature and water vapor signals in the UTLS using multiple datasets. In addition, the contribution of typhoons to ozone variation in the UTLS over the western North Pacific is also estimated. The major findings are presented as follows.
     (1) Characteristics of Global thermal tropopause
     Climatological tropopause height reaches its maximum16.5km over tropics and sharply decreases in subtropics, settling to values of9km at the poles. Meanwhile, the static stability over tropopause shows a unique horizontally and vertically variation, with maxima located0-1km and1-3km above the tropopause. The lower maximum is centered at the equator; the upper maximum has its largest magnitude at10°-15°latitude in both hemispheres. It can be found that static stability maxima are significant over Central Africa, West Pacific and East Pacific between December and May. Moreover, static stability minima occur over the subtropics. The fluctuations of tropopause caused by convective clouds are limited within1km. The results reveal that tropopause over tropics and subtropics is modified by both the convective activity and processes in the UTLS, rather than the convective activity.
     The mean deviations between COSMIC and IGRA tropopause parameters are (0.02±0.54) km for height,(1.61±15.44) hPa for pressure,(-0.06±2.25) K for temperature and (-0.52±5.59) K for potential temperature. Comparisons of tropopause height between COSMIC and NCEP are (0.20±0.57) km and (-0.16±0.90) km during December-January-February and June-July-August, respectively. NCEP tropopause is2-km higher over the tropics and2-km lower over subtropics.
     Multiple tropopause events have a strong tendency to follow the subtropical jet and are presented over Andes throughout the year. Thickness of Multiple tropopause events is6km at subtropical jet. During December-May, there is a decrease in multiple tropopause frequency over the eastern Pacific and western Atlantic, which is regions of Rossby wave breaking triggered by jet weakening. Multiple tropopause is accompanied by a low static stability between tropopauses.
     (2) Characteristics of Penetrating Convection
     It is found that0.005~0.05%of the total PR pixel numbers can penetrate the tropopause.Penetrating Convection shows regional variability and seasonal variations. Penetrating convection is more frequent over land than over ocean. The highest frequency of penetrating convection is found over ITCZ, Asian Summer Monsoon, Central Africa and Amazon. The average rain top of penetrating convection ranges from14to18.5km.
     Results also show that penetrating convection clouds are frequently observed within an equivalent radius of2.5km. The vertical distributions show that most of penetrating convective clouds overshoot less than4.5km above the tropopause. The regional statistics indicate that the penetrating convective clouds are wider and taller in the Asian monsoon region.
     The relationship between stratosphere-troposphere flux and the horizontal extents of penetrating convective clouds is demonstrated to be strong in the Asian monsoon region and weak in the other region of tropics and extratropics. Therefore, penetrating convection of Asian monsoon region may play a significant role in the stratosphere-troposphere exchange.
     (3) The role of deep convection on temperature and water vapor in the UTLS
     There is an evident regional difference in deep convective structures. Deep convection is strongest over land and is weakest over ocean, with monsoonal convection intermediate between them. Latent heat profiles shows similar characteristic. Major regional difference on convective structure are related to updraft and microphysics. Temperature anomaly profile reveals a wave like response to deep convection:warming middle tropopause and upper half of the UTLS and cooling the lower UTLS. The most pronounced temperature signal appears for temperature profiles in proximity to penetrating convection.
     Both deep and penetrating convection can hydrate the troposphere. The most significant hydration can be found over land (water vapor mixing ration increase more than40%), less over monsoon region, and least over ocean. Meanwhile, deep and penetrating convection can dehydrate the environment near cloud top. Deep convection shows a stronger dehydration.
     (4) Impact of typhoon on the ozone variations in the UTLS over the northwest Pacific
     During the passage of Typhoon Hai-Tang in2005over the northwest Pacific, low values of ozone column and ozone mixing ratio above200hPa are observed right above the typhoon's track, a result due to the strong upward propagation of air associated with overshooting convection in typhoon. A comparative analysis of different stages of Hai-Tang suggests that in the region where typhoon has higher intensity the troposphere-to-stratosphere transport is enhanced.
     The statistic analysis for typhoon over the northwest Pacific during2004-2012suggests that0.18%of the convective pixel numbers reach the tropopause, with a weighted averaged equivalent radius and penetrating depth of4.0km and0.49km, respectively. Typhoons cause ozone column between200hPa and50hPa (OCUTLS) decrease significantly within10°radius, with-5DU (about-5%of the local OCTULS). The strongest decrease appears within0.5°-3°radius of the typhoon center.
     This thesis reveal the deep convection penetrating the accurate tropopause. In addition, we exhibit precipitation, temperature and water vapor structures of penetrating convection in the UTLS and offer new guidance for categorization of convection over land, monsoon and ocean for modeling studies.
引文
陈柏生.一种二值图像连通区域标记的新方法[J].计算机工程与应用,2006,42(25):46-47.
    丁一汇,朱彤.陆地气旋爆发性发展的动力学分析和数值试验[J].中国科学:B辑,1993,23(11):1226-1232.
    傅云飞,宇如聪,徐幼平,等.TRMM测雨雷达和微波辐射成像仪对两个中尺度特大暴雨降水结构的观测分析研究.气象学报,2003,61:421-431
    傅云飞,张爱民,刘勇,等.基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析.气象学报,2008,66:730-746
    傅云飞,冯沙,刘鹏,等.热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧.气象学报,2010,68:195-206
    傅云飞,曹爱琴,李天奕,等.星载测雨雷达探测的夏季亚洲对流与层云降水雨顶高度气候特征[J].气象学报,2012,70(3):436-451
    刘鹏,王雨,冯沙,李崇银,傅云飞.冬、夏季热带及副热带穿透性对流气候特征分析[J].大气科学,2012,36(3):579-589
    刘奇,傅云飞.基于TRMM/TMI的亚洲夏季降水研究[J].中国科学:D辑,2007,37(1):111-122
    江宇,盛峥,石汉青.基于COSMIC掩星资料的全球第二对流层顶详细特征[J].物理学报,2013,62(3):39205-039205.
    李锐,傅云飞,赵萍.利用热带测雨卫星的测雨雷达资料对1997/1998年El Nino后期热带太平洋降水结构的研究[J].大气科学,2005,29(2):225-235.
    王鑫,吕达仁.利用GPS掩星数据分析青藏高原对流层顶结构变化[J].自然科学进展,2007,17(7):913-919.
    王振会,王喆,康士峰,等.利用WRF模式对大气波导的数值模拟研究[J].电波科学学报,2010(005):913-919.
    魏鸣,欧阳首承.2008年冬季-2009年春季干旱的大气结构与地球转动特征[J].中国工程科学,2011,13(001):49-55.
    伍亦亦,洪振杰,郭鹏,等.地基GPS低高度角观测反演大气折射率廓线的模拟仿真[J].地球物理学报,2010,53(5):1085-1090.
    徐贤胜,洪振杰,郭鹏,等.COSMIC掩星电离层资料反演以及结果验证[J].物理学报,2010(3):2163-2168.
    杨健,吕达仁.平流层-对流层交换研究进展[J].地球科学进展,2003,18(3):380-385.
    杨健,吕达仁.东亚地区平流层,对流层交换对臭氧分布影响的模拟研究[J].大气科学,2004,28(4):579-588.
    易明建,傅云飞,刘鹏,等.我国东部夏季一次强对流活动过程中对流层上部大气成分变化的分析[J].大气科学,2012,36(5):901-911.
    Alcala, C. M., and A. E. Dessler, Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar, Journal of Geophysical Research (Atmospheres),2002,107,4792, doi:10.1029/2002JD002457.
    Anel J A, Antuna J C, de la Torre L, et al. Global statistics of multiple tropopauses from the IGRA database[J]. Geophysical research letters,2007,34(6).
    Anthes, R. A., et al., The COSMIC/FORMOSAT-3 Mission:Early Results, Bulletin of the American Meteorological Society,2008,89,313, doi:10.1175/BAMS-89-3-313.
    Arakawa A. The cumulus parameterization problem:Past, present, and future[J]. Journal of Climate, 2004,17(13)
    Aumann, H. H., et al., AIRS/AMSU/HSB on the Aqua mission:Design, science objectives, data products, and processing systems, IEEE Trans. Geosci. Remote Sens.,2003,41,253-264, doi:10.1109/TGRS.2002.808356.
    Awaka J, Iguchi T, Kumagai H, et al. Rain type classification algorithm for TRMM precipitation radar[C]. Geoscience and Remote Sensing,1997. IGARSS'97. Remote Sensing-A Scientific Vision for Sustainable Development.,1997 IEEE International. IEEE,1997,4:1633-1635.
    Baray J L, Ancellet G, Randriambelo T, et al. Tropical cyclone Marlene and stratosphere-troposphere exchange[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1999, 104(D11):13953-13970.
    Bell S W, Geller M A. Tropopause inversion layer:Seasonal and latitudinal variations and representation in standard radiosonde data and global models[J]. Journal of Geophysical Research: Atmospheres (1984-2012),2008,113(D5).
    Bethan S, Vaughan G, Reid S J. A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere [J]. Quarterly Journal of the Royal Meteorological Society,1996,122(532):929-944.
    Biondi, R., W. J. Randel, S.-P. Ho, T. Neubert, and S. Syndergaard. Thermal structure of intense convective clouds derived from GPS radio occultations[J], Atmospheric Chemistry & Physics,2012, 12,5309-5318, doi:10.5194/acp-12-5309-2012.
    Biondi R, Ho S P, Randel W, et al. Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements[J]. Journal of Geophysical Research: Atmospheres,2013,118(11):5247-5259.
    Birner T. Fine-scale structure of the extratropical tropopause region[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2006,111 (D4).
    Birner T. Recent widening of the tropical belt from global tropopause statistics:Sensitivities[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2010,115(D23).
    Bischoff S A, Canziani P O, Yuchechen A E. The tropopause at southern extratropical latitudes: Argentine operational rawinsonde climatology[J]. International journal of climatology,2007,27(2): 189-209.
    Borsche M, Kirchengast G, Foelsche U. Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses[J]. Geophysical research letters,2007,34(3).
    Brewer A W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere[J]. Quarterly Journal of the Royal Meteorological Society, 1949,75(326):351-363.
    Brunner D, Staehelin J, Jeker D, et al. Nitrogen oxides and ozone in the tropopause region of the Northern Hemisphere:Measurements from commercial aircraft in 1995/1996 and 1997[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2001,106(D21):27673-27699.
    Cairo F, Buontempo C, MacKenzie A R, et al. Morphology of the tropopause layer and lower stratosphere above a tropical cyclone:a case study on cyclone Davina (1999)[J]. Atmospheric Chemistry and Physics,2008,8(13):3411-3426.
    Carsey T P, Willoughby H E. Ozone Measurements from Eyewall Transects of Two Atlantic Tropical Cyclones[J]. Monthly weather review,2005,133(1).
    Castanheira J M, Gimeno L. Association of double tropopause events with baroclinic waves[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2011,116(D19).
    Castanheira J M, Peevey T R, Marques C A F, et al. Relationships between Brewer-Dobson circulation, double tropopauses, ozone and stratospheric water vapour[J]. Atmospheric Chemistry and Physics,2012,12(21):10195-10208.
    Chae, J. H., Wu, D. L., Read, W. G., and Sherwood, S. C. The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL), Atmos. Chem. Phys.,2011,11,3811-3821, doi:10.5194/acp-11-3811-2011.
    Chan C Y, Li Y S, Tang J H, et al. An analysis on abnormally low ozone in the upper troposphere over subtropical East Asia in spring 2004[J]. Atmospheric Environment,2007,41(17):3556-3564.
    Chen, S. S., R. A. Houze, and B. E. Mapes. Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci.,1996,53,1380-1409.
    Chu, W. P., M.P. McCormick, J. Lenoble, C. Brogniez, and P. Pruvost, SAGE II inversion algorithm, J. Geophys. Res.,1989,94,8339-8351.
    Chung E S, Sohn B J, Schmetz J. CloudSat shedding new light on high-reaching tropical deep convection observed with Meteosat[J]. Geophysical Research Letters,2008,35(2).
    Cifelli, E., W. A. Peterson, L. D. Carey, S. A. Rutledge, and M. A. F. Silva Dias. Radar observations of the kinematic, microphysical, and precipitation characteristics of two
    MCSs in TRMM LBA. J. Geophys. Res.,2002,107,8077, doi:10.1029/2000JD000264.
    Cooper M J, Martin R V, Livesey N J, et al. Analysis of satellite remote sensing observations of low ozone events in the tropical upper troposphere and links with convection[J]. Geophysical Research Letters,2013,40(14):3761-3765.
    Danielsen E F. Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity[J]. Journal of the Atmospheric Sciences,1968,25(3):502-518.
    Danielsen E F. A dehydration mechanism for the stratosphere[J]. Geophysical Research Letters, 1982,9(6):605-608, doi:10.1029/GL009i006p00605.
    Danielsen, E. F. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones, J. Geophys. Res.1993,98,8665-3681, doi:42810.1029/92JD02954.429
    Danielsen E F, Hipskind R S, Gaines S E, et al. Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1987,92(D2):2103-2111.
    Das S S. A new perspective on MST radar observations of stratospheric intrusions into-troposphere associated with tropical cyclone[J]. Geophysical Research Letters,2009,36(15).
    De la Torre A, Alexander P, Llamedo P, et al. Gravity waves above the Andes detected from GPS radio occultation temperature profiles:Jet mechanism?[J]. Geophysical research letters,2006, 33(24).
    Dessler A E. The effect of deep, tropical convection on the tropical tropopause layer[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2002,107(D3):ACH 6-1-ACH 6-5.
    Dima I M, Wallace J M. Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses[J]. Journal of the atmospheric sciences,2007,64(8).
    Durden S L, Tanelli S, Dobrowalski G. CloudSat and A-Train observations of tropical cyclones[J]. Open Atmos. Sci. J,2009,3(1):80-92.
    Durre I, Vose R S, Wuertz D B. Overview of the integrated global radiosonde archive[J]. Journal of Climate,2006,19(1).
    Elbern H, Hendricks J, Ebel A. A climatology of tropopause folds by global analyses[J]. Theoretical and applied climatology,1998,59(3-4):181-200.
    Ern M, Preusse P, Alexander M J, et al. Absolute values of gravity wave momentum flux derived from satellite data[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2004,109(D20). Feng, S., Y. Fu, and Q. Xiao, Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data, Journal of Geophysical Research (Atmospheres),2011,116, D21121, doi:10.1029/2011JD016140.433
    Feng, S., Y. Fu, and Q. Xiao, Trends in the global trop opause thickness revealed by radiosondes, Geophys. Res. Lett.2012,39, L20706, doi:10.1029/2012GL053460.
    Fischer H, Wienhold F G, Hoor P, et al. Tracer correlations in the northern high latitude lowermost stratosphere:Influence of cross-tropopause mass exchange [J]. Geophysical research letters,2000, 27(1):97-100.
    Folkins, I., M. Lo ewenstein, J. Po dolske, S. J. Oltmans, and M. Proffltt, A barrier to vertical mixing at 14 km in the tropics:Evidence from ozonesondes and aircraft measurements, Journal of Geophysical Research:Atmospheres (1984-2012),1999,104 (D18),22,095-22,102.
    Folkins I, Fueglistaler S, Lesins G, et al. A low-level circulation in the tropics[J]. Journal of the Atmospheric Sciences,2008,65(3).
    Folkins I, Martin R V. The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone[J]. Journal of the atmospheric sciences,2005,62(5).
    Forster F, Piers M, Shine K P. Radiative forcing and temperature trends from stratospheric ozone changes[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1997,102(D9):10841-10855.
    Fu, Q., Y. Hu, and Q. Yang, Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations,Geophys. Res. Lett.,2007,34, L14813, doi:10.1029/2007GL030099.
    Fu Y F, Xian T, Lu D R, et al. Ozone vertical variations during a typhoon derived from the OMI observations and reanalysis data. Chin Sci Bull,2013,58:3890 3894, doi:10.1007/s11434-013-6024-7
    Fu Y, Liu G. The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferredfrom TRMM data. J Appl Meteorol,2001,40:2130-2143.
    Fu Y, Liu G. Precipitation characteristics in mid-latitude East Asia as observed by TRMM PR and TMI. J Meteorol Soc Jpn,2003,81:1353-1369.
    Fu Y, Liu G, Wu G, et al. Tower mast of precipitation over the central Tibetan Plateau summer[J]. Geophysical research letters,2006,33(5).
    Fueglistaler S, Bonazzola M, Haynes P H, et al. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2005,110(D8).
    Fueglistaler S, Legras B, Beljaars A, et al. The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses[J]. Quarterly Journal of the Royal Meteorological Society,2009,135(638):21-37.
    Gabriel A, Schmitz G, Geprags R. The tropopause in a 2D circulation model[J]. Journal of the atmospheric sciences,1999,56(23):4059-4068.
    Gadgil S. The Indian monsoon and its variability [J]. Annual Review of Earth and Planetary Sciences, 2003,31(1):429-467.
    Gage K S, Reid G C. Solar variability and the secular variation in the tropical tropopause [J]. Geophysical Research Letters,1981,8(2):187-190.
    Geerts B, Dejene T. Regional and diurnal variability of the vertical structure of precipitation systems in Africa based on spaceborne radar data[J]. Journal of climate,2005,18(7).
    Gettelman A, Sobel A H. Direct diagnoses of stratosphere-troposphere exchange[J]. Journal of the atmospheric sciences,2000,57(1):3-16.
    Gettelman A, de Forster P M. A climatology of the tropical tropopause layer[J]. JOURNAL-METEOROLOGICAL SOCIETY OF JAPAN SERIES 2,2002,80(4B):911-924.
    Gettelman A, Salby M L, Sassi F. Distribution and influence of convection in the tropical tropopause region[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2002,107(D10):ACL 6-1-ACL 6-12.
    Gettelman A, Birner T. Insights into tropical tropopause layer processes using global models[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2007,112(D23).
    Gettelman A, Hoor P, Pan L L, et al. The extratropical upper troposphere and lower stratosphere[J]. Reviews of Geophysics,2011,49(3).
    Gill A E. Some simple solutions for heat-induced tropical circulation[J]. Quarterly Journal of the Royal Meteorological Society,1980,106(449):447-462.
    Grise K M, Thompson D W J, Birner T. A global survey of static stability in the stratosphere and upper troposphere[J]. Journal of Climate,2010,23(9).
    Guo P, Kuo Y H, Sokolovskiy S V, et al. Estimating Atmospheric Boundary Layer Depth Using COSMIC Radio Occultation Data[J]. Journal of the Atmospheric Sciences,2011,68(8).
    Hack J J, Schubert W H. Nonlinear response of atmospheric vortices to heating by organized cumulus convection[J]. Journal of the atmospheric sciences,1986,43(15):1559-1573.
    Hay G A, Ao C O, Iijima B A, et al. CHAMP and SAC-C atmospheric occultation results and intercomparisons[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2004,109(D6).
    Hall, T. J., and T. H. Vonder Haar, The diurnal cycle of west Pacific deep convection and its relation to the spatial and temporal variations of tropical MCSs. J. Atmos. Sci.,1999,56,3401-3415.
    Haynes P, Shepherd T, Wirth V. Report on the SPARC tropopause workshop[J]. SPARC Newsl, 2001,17:3-10.
    Haynes, J M., Stephens, G L., Mitrescu, C., Miller, S D., Ecuyer, T S., Precipitation estimation from CloudSat, EOS Transactions, American Geophysical Union (0096-3941),25 Dec.2007. Vol.88, Iss.52
    Hegglin M I, Shepherd T G. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux [J]. Nature Geoscience,2009,2(10):687-691.
    Held M I. On the height of the tropopause and the static stability of the troposphere[J]. Journal of the Atmospheric Sciences,1982,39(2):412-417.
    Highwood E J, Hoskins B J. The tropical tropopause[J]. Quarterly Journal of the Royal Meteorological Society,1998,124(549):1579-1604.
    Highwood E J, Hoskins B J, Berrisford P. Properties of the Arctic tropopause[J]. Quarterly Journal of the Royal Meteorological Society,2000,126(565):1515-1532.
    Hirose M, Nakamura K. Spatial and seasonal variation of rain profiles over Asia observed by spaceborne precipitation radar [J]. Journal of climate,2002,15(23).
    Hirose M, Nakamura K. Spatiotemporal variation of the vertical gradient of rainfall rate observed by the TRMM precipitation radar[J]. Journal of climate,2004,17(17).
    Ho S, Zhou X, Kuo Y H, et al. Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis[J]. Remote Sensing,2010,2(5):1320-1330.
    Homeyer C R, Bowman K P, Pan L L. Extratropical tropopause transition layer characteristics from high-resolution sounding data[J]. Journal of Geophysical Research:Atmospheres (1984-2012), 2010,115(D13).
    Hoerling M P, Schaack T K, Lenzen A J. Global objective tropopause analysis[J]. Monthly Weather Review,1991,119(8):1816-1831.
    Homeyer, C. R., K. P. Bowman, L. L. Pan, E. L. Atlas, R.-S. Gao, and T. L. Campos. Dynamical and chemical characteristics of tropospheric intrusions observed during START08[J], J. Geophys. Res.,2011,116,D06111, doi:10.1029/2010JD015098
    Homeyer C R, Bowman K P, Pan L L, et al. Convective injection into stratospheric intrusions[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2011,116(D23).
    Hoinka, K. The tropopause:Discovery, definition and demarcation[J], Meteorologische Zeitschrift,1997,6(6),281-303.
    Hoinka K P. Mean global surface pressure series evaluated from ECMWF reanalysis data[J]. Quarterly Journal of the Royal Meteorological Society,1998,124(551):2291-2297.
    Hoinka, K. P.Temperature, humidity, and wind at the global tropopause[J], Mon. Weather Rev.,1999, 127,2248-2265.
    Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange [J]. Reviews of Geophysics,1995,33(4):403-439.
    Holton, J. R., and A. Gettelman. Horizontal transp ort and the dehydration of the stratosphere[J]. Geophysical Research Letters,2001,28 (14),2799-2802.
    Holton J R, Hakim G J. An introduction to dynamic meteorology[M]. Academic press,2012.
    Holloway C E, Neelin J D. The convective cold top and quasi equilibrium[J]. Journal of the atmospheric sciences,2007,64(5).
    Hong G, Heygster G, Miao J, et al. Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2005,110(D5).
    Hoor P, Fischer H, Lange L, et al. Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO-O3 correlation from in situ measurements[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2002,107(D5):ACL 1-1-ACL 1-11.
    Hoor P, Fischer H, Lelieveld J. Tropical and extratropical tropospheric air in the lowermost stratosphere over Europe:A CO-based budget [J]. Geophysical research letters,2005,32(7).
    Hoskins, B. J., Towards a preview of the general circulation, Tel lus A,1991,43 (4),27-35.
    Huang, C.-Y., W.-H. Teng, S.-P. Ho, and Y.-H. Kuo, Global variation of COSMIC precipitable water over land:Comparisons with ground-based GPS measurements and NCEP reanalyses, Geophys. Res. Lett,2013,40,5327-5331, doi:10.1002/gr1.50885.
    Iguchi, T., T. Kozu, R. Meneghini,J. Awaka and K. Okamoto, Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor.,2000,39,2038-2052.
    Iguchi T, Kozu T, Meneghini R, et al. Rain-profiling algorithm for the TRMM precipitation radar[J]. Journal of Applied Meteorology,2000,39(12):2038-2052.
    Jensen E J, Toon O B, Pfister L, et al. Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause[J]. Geophysical research letters,1996,23(8): 825-828.
    Jensen, E., A. Ackerman, and J. Smith, Can oversho oting convection dehydrate the tropical trop opause layer? Journal of Geophysical Research:Atmospheres (1984-2012),2007,112 (D11).
    Johnson R H, Kriete D C. Thermodynamic and circulation characteristics, of winter monsoon tropical mesoscale convection[J]. Monthly Weather Review,1982,110(12):1898-1911.
    Joiner J, Vasilkov A, Yang K, et al. Observations over hurricanes from the ozone monitoring instrument[J]. Geophysical research letters,2006,33(6).
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American meteorological Society,1996,77(3):437-471.
    KelleyO. The association of tall eyewall convection with tropical cyclone intensification. Ph.D. dissertation, George Mason University,2008,320 pp.
    Kelley O A, Stout J, Summers M, et al. Do the Tallest Convective Cells over the Tropical Ocean Have Slow Updrafts?[J]. Monthly Weather Review,2010,138(5):1651-1672.
    Keyser D, Shapiro M A. A review of the structure and dynamics of upper-level frontal zones[J]. Monthly Weather Review,1986,114(2):452-499.
    Kiladis G N, Straub K H, Reid G C, et al. Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere[J]. Quarterly Journal of the Royal Meteorological Society,2001, 127(576):1961-1983.
    Kiladis G N, Straub K H, Haertel P T. Zonal and Vertical Structure of the Madden-Julian Oscillation[J]. Journal of the atmospheric sciences,2005,62(8).
    Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., and Roundy, P. E.:Convectively coupled equatorial waves, Rev. Geophys.,2009,47, RG2003, doi:10.1029/2008RG000266.
    Kim J, Son S W. Tropical Cold-Point Tropopause:Climatology, Seasonal Cycle, and Intraseasonal Variability Derived from COSMIC GPS Radio Occultation Measurements[J]. Journal of Climate, 2012,25(15).
    Kirk-Davidoff D B, Lindzen R S. An energy balance model based on potential vorticity homogenization[J]. Journal of climate,2000,13(2):431-448.
    Knutson T R, McBride J L, Chan J, et al. Tropical cyclones and climate change[J]. Nature Geoscience,2010,3(3):157-163.
    Kochanski A. Cross sections of the mean zonal flow and temperature along 8o w[J]. Journal of Meteorology,1955,12(2):95-106.
    Kozu T, Kawanishi T, Kuroiwa H, et al. Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite[J]. Geoscience and Remote Sensing, IEEE Transactions on,2001,39(1):102-116.
    Kritz M A, Rosner S W, Kelly K K, et al. Radon measurements in the lower tropical stratosphere: Evidence for rapid vertical transport and dehydration of tropospheric air[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1993,98(5):8725-8736.
    Kroon M, De Haan J F, Veefkind J P, et al. Validation of operational ozone profiles from the Ozone Monitoring Instrument[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2011, 116(D18).
    Kuang, Z., and C. S. Bretherton, Convective influence on the heat balance of the tropical tropopause layer:A cloud-resolving model study, Journal of the atmospheric sciences,2004,61 (23),2919-2927.
    Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol.,1998,15,809-817.
    Kunz A, Konopka P, Muller R, et al. High static stability in the mixing layer above the extratropical tropopause[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2009,114(D16).
    Kunz A, Konopka P, Muller R, et al. Dynamical tropopause based on isentropic potential vorticity gradients[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2011a,116(D1).
    Kunz A, Pan L L, Konopka P, et al. Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses[J]. Journal of Geophysical Research: Atmospheres (1984-2012),2011b,116(D24).
    Kunz A, Muller R, Homonnai V, et al. Extending water vapor trend observations over Boulder into the tropopause region:Trend uncertainties and resulting radiative forcing[J]. Journal of Geophysical Research:Atmospheres,2013,118(19):11,269-11,284.
    Kuroiwa H, Kawanishi T, Kojima M, et al. Precipitation radar onboard TRMM satellite[C].Phased Array Systems and Technology,1996., IEEE International Symposium on. IEEE,1996:249-254.
    Kursinski E R, Hajj G A, Schofield J T, et al. Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System[J]. Journal of Geophysical Research: Atmospheres (1984-2012),1997,102(D19):23429-23465.
    Lang, S., W.-K. Tao, J. Simpson, R. Cifelli, S. Rutledge, W. Olson, andJ. Halverson, Improving simulations of convective systemsfrom TRMMLBA:Easterly and westerly regimes, J. Atmos. Sci., 2007,64,1141-1164, doi:10.1175/JAS3879.1.
    Lang, T. J., S. A. Rutledge, and R. Cifelli, Polarimetric radarobservations of convection in northwestern Mexico during the NorthAmerican Monsoon Experiment,J. Hydrometeorol.,2010, 11(6),1345-1357,doi:10.1175/2010JHM1247.1.
    Leclair De Bellevue J, Baray J L, Baldy S, et al. Simulations of stratospheric to tropospheric transport during the tropical cyclone Marlene event[J]. Atmospheric Environment,2007,41(31): 6510-6526.
    Levelt P F, van den Oord G H J, Dobber M R, et al. The ozone monitoring instrument[J]. Geoscience and Remote Sensing, IEEE Transactions on,2006,44(5):1093-1101.
    Li R, Cai H, Fu Y, et al. The optical properties and longwave radiative forcing in the lateral bound ary of cirrus cloud[J]. Geophysical Research Letters,2014.
    Lindzen R S. The importance and nature of the water vapor budget in nature and models[M]. Climate Sensitivity to Radiative Perturbations. Springer Berlin Heidelberg,1996:51-66.
    Liu C, Zipser E J. Global distribution of convection penetrating the tropical tropopause[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2005,110(D23).
    Liu C, Zipser E J, Nesbitt S W. Global distribution of tropical deep convection:Different perspectives from TRMM infrared and radar data[J]. Journal of climate,2007,20(3).
    Liu X, Bhartia P K, Chance K, et al. Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder (MLS) measurements[J]. Atmospheric Chemistry and Physics,2010,10(5):2539-2549.
    Luo, Z., G. L. Stephens, K. A. Emanuel, D. G. Vane, N. Tourville, and J. M. Haynes 2008a:On the use of CloudSat and MODIS data for estimating hurricane intensity. IEEE Geoscience Remote Sensing Lett.2008, Vol.5, No.1,13-16
    Luo, Z., G. Y. Liu, and G. L. Stephens,2008b:CloudSat adding new insight into tropical penetrating convection. Geophys. Res. Letts.2008,35, L19819, doi:10.1029/2008GL035330
    Ma, D. and Kuang, Z.:Modulation of radiative heating by the Madden Julian Oscillation and convectively coupled Kelvin wavesas observed by CloudSat, Geophys. Res. Lett.,2011,38, L21813, doi:10.1029/2011GL049734.
    Machado, L., W. Rossow, R. Guedes, and A. Walker, Life cycle variations of mesoscale convective systems over the americas, Monthly Weather Review,1998,126 (6),1630-1654.
    Manabe S, Strickler R F. Thermal equilibrium of the atmosphere with a convective adjustment[J]. Journal of the Atmospheric Sciences,1964,21(4):361-385.
    Mapes, B. E., and R. A. Houze Jr, Cloud clusters and super clusters over the oceanic warm pool, Monthly Weather Review,1993,121 (5),1398-1416.
    Mapes B E, Houze Jr R A. Diabatic divergence profiles in western Pacific mesoscale convective systems[J]. Journal of the atmospheric sciences,1995,52(10):1807-1828.
    McCormick M P. SAGE Ⅱ:an overview[J]. Advances in space research,1987,7(3):219-226.
    Mauldin, L. E., Ⅲ, N.H. Zaun, M.P. McCormick, J. H. Guy, and W. R. Vaughn, Stratospheric Aerosol and Gas Experiment II instrument:A functional description, Opt. Eng.,1985,24,307-312. Merrill R T. Characteristics of the upper-tropospheric environmental flow around hurricanes[J]. Journal of the atmospheric sciences,1988,45(11):1665-1677.
    Mitovski T, Folkins I, Von Salzen K, et al. Temperature, Relative Humidity, and Divergence Response to High Rainfall Events in the Tropics:Observations and Models[J]. Journal of Climate, 2010,23(13).
    Mitrescu C, Miller S, Hawkins J, et al. Near-real-time applications of CloudSat data [J]. Journal of Applied Meteorology & Climatology,2008,47(7).
    Mohr K I, Zipser E J. Mesoscale convective systems defined by their 85-GHz ice scattering signature:Size and intensity comparison over tropical oceans and continents[J]. Monthly weather review,1996,124(11):2417-2437.
    Murakami, H., et al., Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM.J. Clim.,2012,25,3237-3260,doi:10.1175/JCLI-D-11-00415.1
    Nesbitt S W, Anders A M. Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar[J]. Geophysical Research Letters,2009,36(15)
    Newell R E, Zhu Y, Browell E V, et al. Walker circulation and tropical upper tropospheric water vapor[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1996,101(D1):1961-1974.
    Newell, R. E., and S. Gould-Stewart, A stratospheric fountain? Journal of the Atmospheric Sciences, 1981,38 (12),2789-2796.
    Norton, W. A.:Tropical Wave Driving of the Annual Cycle in Tropical Tropopause Temperatures. Part Ⅱ:Model Results, J. Atmos.Sci.,2006,63,1420-1431.
    Olsen M A, Douglass A R, Newman P A, et al. HIRDLS observations and simulation of a lower stratospheric intrusion of tropical air to high latitudes[J]. Geophysical Research Letters,2008, 35(21).
    Pan, L. L., E. J. Hintsa, E. M. Stone, E. M. Weinstock, and W. J. Randel, The seasonal cycle of water vapor and saturation vapor mixing ratio in the extratropical lowermost stratosphere, Journal of Geophysical Research:Atmospheres (1984-2012),2000,105 (D21),26,519-26,530.
    Pan L L, Randel W J, Gary B L, et al. Definitions and sharpness of the extratropical tropopause:A trace gas perspective [J]. Journal of Geophysical Research:Atmospheres (1984-2012),2004, 109(D23).
    Pan L L, Bowman K P, Shapiro M, et al. Chemical behavior of the tropopause region observed during the Stratosphere-Troposphere Analyses of Regional Transport (START) experiment [J]. J. Geophys. Res,2007,112:D18110.
    Pan L L, Randel W J, Gille J C, et al. Tropospheric intrusions associated with the secondary tropopause[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2009,114(D10).
    Pan LL, Munchak L A. Relationship of cloud top to the tropopause and jet structure from CALIPSO data[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2011,116(D12).
    Pan, L. L., and L. A. Munchak, Relationship of cloud top to the tropopause and jet structure from CALIPSO data, J. Geophys. Res.,2011,116, D12201, doi:10.1029/2010JD015462.
    Pan L L, Bowman K P, Atlas E L, et al. The stratosphere-troposphere analyses of regional transport 2008 experiment[J]. Bulletin of the American Meteorological Society,2010,91(3):327-342.
    Paulik, L. C, and T. Birner, Quantifying the deep convective temperature signal within the tropical tropopause layer (TTL), Atmospheric Chemistry and Physics,2012,12 (24),12,183-12,195.
    Peevey T R, Gille J C, Randall C E, et al. Investigation of double tropopause spatial and temporal global variability utilizing High Resolution Dynamics Limb Sounder temperature observations[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2012,117(D1).
    Peevey T R, Gille J C, Randall C E, et al. Investigation of double tropopause spatial and temporal global variability utilizing High Resolution Dynamics Limb Sounder temperature observations[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2012,117(D1).
    Peixoto J P, Oort A H. Physics of Climate,520 pp[J]. Am. Inst. of Phys., New York,1992. Penn, S., Ozone and temperature structure in a hurricane,J. Appl. Meteorol.,1965,4,212-216, doi:10.1175/1520-0450(1965)004<0212:OATSIA>2.0.CO;2.
    Penn, S., Temperature and ozone variations near tropopause level over Hurricane Isbell, October 1964, J. Appl. Meteorol.,1966,5,407-410, doi:10.1175/1520-0450(1966)005<0407:TAO-VNT>2.0.CO;2.
    Petersen W A, Rutledge S A. Regional variability in tropical convection:Observations from TRMM[J]. Journal of climate,2001,14(17).
    Petersen W A, Nesbitt S W, Blakeslee R J, et al. TRMM observations of intraseasonal variability in convective regimes over the Amazon[J]. Journal of Climate,2002,15(11).
    Posselt, Derek J., Graeme L. Stephens,Martin Miller, CLOUDSAT:Adding a New Dimension to a Classical View of Extratropical Cyclones.Bull. Amen Meteor. Soc.,2008,89,599-609.
    Randel W J, Wu F. Isolation of the ozone QBO in SAGE Ⅱ data by singular-value decomposition[J]. Journal of the atmospheric sciences,1996,53(17):2546-2559.
    Randel W J, Wu F, Gaffen D J. Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2000,105(D12):15509-15523.
    Randel, W. J., F. Wu, and W. Rivera Rios. Thermal variability of the tropical tropopause region derived from GPS/MET observations[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2003,108 (D1), ACL-7.
    Randel W J, Park M. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS)[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2006,111(D12).
    Randel W J, Park M, Wu F, et al. A Large Annual Cycle in Ozone above the Tropical Tropopause Linked to the Brewer-Dobson Circulation[J]. Journal of the Atmospheric Sciences,2007,64(12).
    Randel W J, Thompson A M. Interannual variability and trends in tropical ozone derived from SAGE II satellite data and SHADOZ ozonesondes[J]. Journal of Geophysical Research: Atmospheres (1984-2012),2011,116(D7).
    Reed R J. A STUDY OF A CHARACTERISTIC TPYE OF UPPER-LEVEL FRONTOGENESIS[J]. Journal of Meteorology,1955,12(3):226-237.
    Reid G C, Gage K S. Interannual variations in the height of the tropical tropopause [J]. Journal of Geophysical Research:Atmospheres (1984-2012),1985,90(D3):5629-5635.
    Ray E A, Rosenlof K H. Hydration of the upper troposphere by tropical cyclones[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2007,112(D12).
    Rex, D. F.,Climate of the Free Atmosphere, World Survey of Climatology,1969, vol.4,450 pp., Elsevier, New York.
    Richard, E. C., K. H. Rosenlof, E. A. Ray, K. K. Kelly, T. L. Thompson, andM. J. Mahoney, Upper tropospheric-lower stratospheric in-situmeasurements over Hurricane Floyd:The impact of tropical cyclones onstratosphere-troposphere exchange,Eos Trans. AGU,2001,82(47), Fall Meet. Suppl., Abstract A51H-09
    Rodgers E B, Stout J, Steranka J, et al. Tropical cyclone-upper atmospheric interaction as inferred from satellite total ozone observations[J]. Journal of Applied Meteorology,1990,29(9):934-954. Rocken C, Ying-Hwa K, Schreiner W S, et al. COSMIC system description[J]. Terrestrial Atmospheric and Oceanic Sciences,2000,11(1):21-52.
    Rodriguez-Franco, J. J., and E. Cuevas, Characteristics of the subtropical tropopause region based on long-term highly-resolved sonde records over Tenerife,J. Geophys. Res. Atmos.,2013,118, 10,754-10,769, doi:10.1002/jgrd.50839.
    Romps, D. M., and Z. Kuang, Overshooting convection in tropical cyclones, Geophysical Research Letters,2009,36 (9), L09,804.
    Rosenfeld D, Lensky I M. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds[J]. Bulletin of the American Meteorological Society, 1998,79(11):2457-2476.
    Rossow, W. B., and C. Pearl,22-year survey of tropical convection penetrating into the lower stratosphere, Geophysical research letters,2007,34 (4).
    Ryu D, Kang H, Cho J, et al. Turbulence and magnetic fields in the large-scale structure of the universe[J]. Science,2008,320(5878):909-912.
    Salby M, Sassi F, Callaghan P, et al. Fluctuations of cloud, humidity, and thermal structure near the tropical tropopause[J]. Journal of climate,2003,16(21).
    Santer B D, Wigley TML, Simmons AJ, et al. Identification of anthropogenic climate change using second generation reanalysis [J]. Journal of Geophysical Research,2004,109, D21104, doi: 10.1029/2004JD005075.
    Savtchenko A, Kummerer R, Smith P, et al. A-train data depot:Bringing atmospheric measurements together[J]. Geoscience and Remote Sensing, IEEE Transactions on,2008,46(10):2788-2795.
    Schmetz J, Tjemkes S A, Gube M, et al. Monitoring deep convection and convective overshooting with METEOSAT[J]. Advances in Space Research,1997,19(3):433-441.
    Schmidt T, Wickert J, Beyerle G, et al. Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP[J]. Journal of Geophysical Research:Atmospheres (1984- 2012),2004,109(D13).
    Schmidt T, Heise S, Wickert J, et al. GPS radio occultation with CHAMP and SAC-C:global monitoring of thermal tropopause parameters[J]. Atmospheric Chemistry and Physics,2005,5(6): 1473-1488.
    Schmidt G A, Ruedy R, Hansen J E, et al. Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data[J]. Journal of Climate,2006,19(2).
    Schmidt T, Wickert J, Haser A. Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures[J]. Advances in Space Research,2010, 46(2):150-161.
    Schneider T. The tropopause and the thermal stratification in the extratropics of a dry atmosphere[J]. Journal of the atmospheric sciences,2004,61(12).
    Selkirk, H. B., The tropopause cold trap in the Australian monsoon during step/amex 1987, Journal of Geophysical Research:Atmospheres (1984-2012),1993,98 (D5),8591-8610.
    Seidel, D. J., and W. J. Randel, Variability and trends in the global tropopause estimated from radiosonde data, Journal of Geophysical Research:Atmospheres (1984-2012),2006,111 (D21).
    Shapiro M A. Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone systems[J]. Monthly Weather Review,1978,106(8):1100-1111.
    Shapiro M A. Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere [J]. Journal of the Atmospheric Sciences,1980,37(5):994-1004.
    Sherwood, S. C., and A. E. Dessler, On the control of stratospheric humidity. Geophys. Res. Lett., 2000,27,2513-2516.
    Sherwood, S. C., T. Horinouchi, and H. A. Zeleznik, Convective impact on temperatures observed near the tropical tropopause, Journal of the atmospheric sciences,2003,60 (15),1847-1856.
    Sherwood S C, Wahrlich R. Observed evolution of tropical deep convective events and their environment[J]. Monthly weather review,1999,127(8).
    Shige S, Takayabu Y N, Tao W K, et al. Spectral retrieval of latent heating profiles from TRMM PR data. Part Ⅰ:Development of a model-based algorithm[J]. Journal of applied meteorology,2004, 43(8).
    Shige S, Takayabu Y N, Tao W K, et al. Spectral retrieval of latent heating profiles from TRMM PR data. Part Ⅱ:Algorithm improvement and heating estimates over tropical ocean regions[J]. Journal of Applied Meteorology & Climatology,2007,46(7).
    Shige S, Takayabu Y N, Tao W K. Spectral retrieval of latent heating profiles from TRMM PR data. Part Ⅲ:Estimating apparent moisture sink profiles over tropical oceans[J]. Journal of Applied Meteorology & Climatology,2008,47(2).
    Shige S, Takayabu Y N, Kida S, et al. Spectral retrieval of latent hearing profiles from TRMM PR data. Part IV:Comparisons of lookup tables from two-and three-dimensional cloud-resolving model simulations[J]. Journal of Climate,2009,22(20).
    Shimizu, S., N. Takahashi, T. Iguchi, J. Awaka, T. Kozu, R. Meneghini, and K. Okamoto, Validation analyses after the altitude change of TRMM. Microwave Remote Sensing of the Atmosphere and Environment III,C. D. Kummerow, J. Jiang, and S. Uratuka, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol.4894),2003,83-91.
    Shin, D.-B., G. R. North, and K. P. Bowman, A summary of reflectivity profiles from the first year of TRMM radar data, Journal of climate,2000,13 (23),4072-4086.
    Shine K P, Forster P M F. The effect of human activity on radiative forcing of climate change:a review of recent developments[J]. Global and Planetary Change,1999,20(4):205-225.
    Simpson, S., Adler, F.R., and North, R.G., A proposed tropical rainfall measuring mission. Bull. Amer. Meteor. Soc.,1988,69,278-295
    Smith, E. K., and S. Weintraub, The constants in the equation for atmospheric refractive index at radio frequencies, Proceedings of the IRE,1953,41 (8),1035-1037.
    Smith C A, Haigh J D, Toumi R. Radiative forcing due to trends in stratospheric water vapour[J]. Geophysical research letters,2001,28(1):179-182.
    Solomon S, Rosenlof K H, Portmann R W, et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J]. Science,2010,327(5970):1219-1223.
    Son S J, Bai X, Lee S B. Inorganic hollow nanoparticles and nanotubes in nanomedicine:part 1. Drug/gene delivery applications[J]. Drug Discovery Today,2007,12(15):650-656.
    Son S W, Polvani L M. Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model[J]. Geophysical Research Letters,2007,34(17).
    Son, S.-W., N. F. Tandon, and L. M. Polvani, The fine-scale structure of the global tropopause derived from cosmic GPS radio occultation measurements, Journal of Geophysical Research: Atmospheres (1984-2012),2011,116 (D20).
    S(?)rensen J H, Nielsen N W. Intrusion of stratospheric ozone to the free troposphere through tropopause folds-A case study[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2001,26(10):801-806.
    Sprenger M, Wernli H. A Northern Hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979-1993)[J]. Journal of Geophysical Research:Atmospheres (1984-2012), 2003,108(D12).
    Stephens G L, Vane D G, Tanelli S, Im E, Durden S, Rokey M, Reinke D, Partain P, Mace G G, Austin R, L'Ecuyer T, Haynes J, Lebsock M, Suzuki K, Waliser D, Wu D, Kay J, Gettelman A, Wang Z and Marchand R. CloudSat mission performance and early science after first year of operation[J]. J. Geophys. Res.,2008,113, D00A18, doi:10.1029/2008JD009982
    Stout J, Rodgers E B. Nimbus-7 total ozone observations of western North Pacific tropical cyclones[J]. Journal of Applied Meteorology,1992,31(7):758-783.
    Su H, Read W G, Jiang J H, et al. Enhanced positive water vapor feedback associated with tropical deep convection:New evidence from Aura MLS[J]. Geophysical research letters,2006,33(5).
    Takahashi, N., and T. Iguchi,2004b:Estimation and correlation of beam mismatch of the precipitation radar after an orbit boost of the TRMM satellite. IEEE Trans. Geosci. Remote Sens., 2004,42,2362-2369.
    Tao W K, Lang S, Simpson J, et al. Retrieval algorithms for estimating the vertical profiles of latent heat release:Their applications for TRMM[J]. Journal of the Meteorological Society of Japan,1993, 71(6):685-700.
    Teng, W.-H., C.-Y. Huang, S.-P. Ho, Y.-H. Kuo, and X.-J. Zhou, Characteristics of global precipitable water in ENSO events revealed by COSMIC measurements, J. Geophys. Res. Atmos., 2013,118,8411-8425, doi:10.1002/jgrd.50371.
    Thuburn J, Craig G C. Stratospheric influence on tropopause height:The radiative constraint[J]. Journal of the atmospheric sciences,2000,57(1):17-28.
    Tian, B. J., B. J. Soden, and X. Wu., Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere:Satellites versus a general circulation model. J. Geo-phys. Res.,2004, 109,D10101, doi:10.1029/2003JD004117.
    Tilmes, S., et al., An aircraft-based upper troposphere lower stratosphere O3,CO,andH2O climatology for the Northern Hemisphere,J. Geophys. Res.,2010,115, D14303, doi:10.1029/2009JD012731.
    Tsutsumi Y, Makino Y, Jensen J B. Vertical and latitudinal distributions of tropospheric ozone over the western Pacific:Case studies from the PACE aircraft missions[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2003,108(D8).
    Tuck, A. F., et al., The Brewer-Dobson circulation in the light of high-altitude in situ aircraft observations,Q. J. R. Meteorol, Soc.,1997,123,1-69.
    Varble A, Fridlind A M, Zipser E J, et al. Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations:Precipitation and cloud structure[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2011,116(D12).
    Veefkind J P, Kroon M, de Haan J F. Validation Status of the OMI Ozone Profile Product OMO3PR[J].2009.
    Wang, P.-H., M.P. McCormick, L. R. Poole, W. P. Chu, G. K. Yue, G. S. Kent, and K. M. Skeens, Tropical high cloud characteristics derived from SAGE II extinction measurements, Atmos. Res., 1994,34,53-83
    Wang, C., P. J. Crutzen, V. Ramanathan, and S. F. Williams, Therole of a deep convective storm over the tropical Pacific Ocean in the redistribution of atmospheric chemical species, J. Geophys. Res.,1995,100(D6),11,509-11,516, doi:10.1029/95JD01173.
    Ware R, Rocken C, Solheim F, et al. GPS sounding of the atmosphere from low Earth orbit: Preliminary results[J]. Bulletin of the American Meteorological Society,1996,77(1):19-40.
    Wei, M. Y., A new formulation of the exchange of mass and traceconstituents between the stratosphere and troposphere, J. Atmos. Sci.,1987,44(20),3079-3086, doi:10.1175/1520-0469(1987)044<3079:ANFOTE>2.0.CO;2.
    Williams E, Rosenfeld D, Madden N, et al. Contrasting convective regimes over the Amazon: Implications for cloud electrification[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2002,107(D20):LBA 50-1-LBA 50-19.
    Williams E, Stanfill S. The physical origin of the land-ocean contrast in lightning activity[J]. Comptes Rendus Physique,2002,3(10):1277-1292.
    Xu W, Zipser E J, Liu C. Rainfall Characteristics and Convective Properties of Mei-Yu Precipitation Systems over South China, Taiwan, and the South China Sea. Part Ⅰ:TRMM Observations[J]. Monthly Weather Review,2009,137(12).
    Xu W, Zipser E J. Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes[J]. Geophysical Research Letters,2012,39(7).
    Young A H, Bates J J, Curry J A. Complementary use of passive and active remote sensing for detection of penetrating convection from CloudSat, CALIPSO, and Aqua MODIS[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2012,117(D13).
    Yu R, Yuan W, Li J, et al. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China. Clim Dyn,2010,35:567-576.
    Zahn A, Brenninkmeijer C A M, Van Velthoven P F J. Passenger aircraft project CARIBIC 1997-2002, Part Ⅰ:The extratropical chemical tropopause [J]. Atmospheric Chemistry and Physics Discussions,2004,4(1):1091-1117.
    Zeng, Z., Ho, S.-P., Sokolovskiy, S., and Kuo, Y.-H.:Structural evolution of the Madden-Julian Oscillation from COSMIC radio occultation data, J. Geophys. Res.,2012,117, D22108, doi:10.1029/2012JD017685.
    Zhan, R., and Y. Wang, Contribution of tropical cyclones to stratosphere-troposphere exchange over the northwest Pacific:Estimation based on AIRS satellite retrievals and ERA-Interim data,J. Geophys. Res.,2012,117, D12112, doi:10.1029/2012JD017494
    Zhou J, Lau K M. Does a monsoon climate exist over South America?[J]. Journal of Climate,1998, 11(5).
    Zipser E J. Deep cumulonimbus cloud systems in the tropics with and without lightning[J]. Monthly weather review,1994,122(8):1837-1851.
    Zipser E J, Lutz K R. The vertical profile of radar reflectivity of convective cells:A strong indicator of storm intensity and lightning probability? [J]. Monthly Weather Review,1994,122(8):1751-1759.
    Zipser E J. Some views on "hot towers" after 50 years of tropical field programs and two years of TRMM data[J]. Meteorological Monographs,2003,29(51):49-58.
    Zipser E J, Cecil D J, Liu C, et al. Where are the most intense thunderstorms on Earth?[J]. Bulletin of the American Meteorological Society,2006,87(8).
    Zou X, Wu Y. On the relationship between Total Ozone Mapping Spectrometer (TOMS) ozone and hurricanes[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2005,110(D6).
    Zuidema, P., Convective clouds over the Bay of Bengal. Mon. Wea. Rev.,2003,131,780-798.
    Zangl G, Hoinka K P. The tropopause in the polar regions[J]. Journal of climate,2001,14(14).
    Zangl G, Wirth V. Synoptic-scale variability of the polar and subpolar tropopause:Data analysis and idealized PV inversions[J]. Quarterly Journal of the Royal Meteorological Society,2002, 128(585):2301-2315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700