用户名: 密码: 验证码:
基于TRMM探测的热带及副热带降水及其光谱信号特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降水可以分为对流降水和层云降水两种主要雨型。由于热-动力过程和微物理过程的不同,不同类型降水的潜热廓线存在着显著差异;同时,反演降水所需要的雨滴谱信息与降水类型密切相关。因此,针对不同类型的降水进行研究,不仅可以更好地理解降水与热力、动力过程之间的关系以及降水潜热对大气环流的作用,进而为模式模拟降水提供参考依据,而且对改善降水反演算法也有很大的帮助。基于此,本文利用1998~2007年TRMM PR和VIRS的综合探测结果,在详细探讨了不同类型降水廓线的基础上,从季尺度特征出发,重点分析了热带及副热带地区对流降水和层云降水的降水频次、条件降水强度、雨顶高度、云顶温度以及垂直结构等降水参数,并对这些降水参数的夏季日变化特征进行了探讨。主要结论总结如下:
     1降水廓线特征
     在PR2A25_V61998~2007年所有的降水样本中,层云降水占78.6%左右,对流降水所占比例约为20.8%,而“其它”类型降水仅占0.6%。在24种降水类型中,只有16类降水的出现频率大于0.1%,且降水频率的空间分布具有明显的海陆差异。对降水廓线的分析表明,热带地区多年季平均降水廓线的季节变化最小。陆面降水的雨顶高度较洋面偏高,而近地面降水强度却相反,且陆面降水廓线的季节变化与洋面相比较强。综合考虑各类型降水的雷达回波信号及其垂直廓线特征,可以分别将层云降水和对流降水重新定义为四类和两类,其中T-100~T-130和T-200~T-240分别为“确定型”层云降水和对流降水。此外,“其它”类型降水的垂直廓线显示出了云砧的特点。
     2对流降水和层云降水气候特征
     对流降水主要分布在热带辐合带、南太平洋辐合带、亚洲季风区、南美至中美以及热带非洲等区域,其频次多介于1~2%之间。但总体上,热带及副热带85%以上区域四季对流降水频次小于1%。层云降水分布较广,频次也相对较高,超过55%的区域四季层云降水频次在1%以上,但两类降水的频次都体现出了明显的地域性和季节变化。对流降水的条件降水强度主要介于6~14mm/h之间,而绝大部分地区层云降水的条件降水强度在4mm/h以下。对降水廓线的分析表明,层云降水平均雨顶高度多低于9km,而对流降水平均雨顶高度相对较高,可达14km左右。两类降水的频次和条件降水强度都是洋面大于陆地,雨顶高度却相反,三者均存在显著的海陆差异。降水垂直结构的季节变化体现在雨顶高度和近地表降水强度两方面,且高纬度地区的季节变化较低纬度带剧烈。此外,由于洋面下垫面较陆地稳定,故洋面两类降水的季节变化较陆地偏弱。
     3雨顶高度季尺度特征
     对流降水雨顶高度明显高于层云降水,且层云降水雨顶高度的空间分布更加均匀。由于陆地强迫效应,陆面雨顶高度要高于洋面,但对流降水的陆地强迫作用较层云降水明显。就季节变化来说,对流降水雨顶高度的季节差异要比层云降水明显,但无论对流降水,还是层云降水,季节变化都是陆面强于洋面,高纬强于低纬。对不同雨顶高度对应的降水廓线分析表明,相同的雨顶高度,洋面近地面降水强度要大于陆面。对流降水近地面降水强度要大于层云降水,这与二者形成过程中的热-动力、微物理过程存在一定的关系。雨顶高度越高,降水廓线的层状结构越明显。此外,统计还表明,对流降水和层云降水雨顶高度与条件降水强度均存在明显的二次函数关系。
     4降水云云顶温度季尺度特征
     在主要的降水区,对流降水云和层状降水云的云顶温度(VIRS10.8μm通道亮温)多在250K以下。云顶温度低于230K的对流降水云和层状降水云都主要分布于陆面,而云顶温度高于270K的低云则主要出现在洋面,体现出了显著的海陆差异。此外,对流降水云和层状降水云的云顶温度还具有明显的季节变化特征。无论对流降水云,还是层状降水云,云顶温度越低,相应的条件降水强度也都越大,二者之间存在明显的负相关,且对流降水云的相关性要好于层状降水云。进一步的分析表明,条件降水强度与云顶温度之间存在自然指数函数关系。对不同云顶温度下对流降水和层云降水廓线的分析表明,云顶温度越低,降水廓线呈现的层状结构越明显,且海陆差异也更加显著。此外,相同的云顶温度,陆面对流降水和层云降水的雨顶高度要略高于洋面,但近地表降水强度却相反。
     5夏季降水日变化特征
     陆面对流降水多发生在午后,而洋面对流降水则多出现在夜间。陆面对流降水条件降水强度峰值时间最大概率密度仍出现在午后,洋面则出现在上午。陆面对流降水雨顶高度峰值时间与相应降水云云顶温度低值都主要出现在午后至傍晚,洋面主要集中在23~10点之间。层云降水参数的日变化与对流降水相似,但存在一些差异,如各时段见的概率密度差异更小。对典型区域降水参数日变化的研究表明,雨顶高度与相应降水云云顶温度日变化存在较好的对应关系,但由于探测仪器的不同,云顶温度较雨顶高度稍有延迟。降水频次和条件降水强度并不存在很好的一致性,这与地面雨量计观测结果存在一定的差异,但原因需要做进一步的研究。对比分析陆面和洋面降水参数日变化发现,陆面降水参数的日变化要强于洋面。对流降水和层云降水垂直廓线的日变化都主要体现在雨顶高度和近地表降水强度的日变化上。对流降水廓线显示,雨顶高度和近地表降水强度的最大差值都要大于层云降水廓线,这说明对流降水廓线日变化要强于层云降水廓线日变化。此外,陆面降水廓线的日变化要强于洋面。
Precipitation can be classified into two main types, convective and stratiform. Due to different thermo-dynamics and micro-processes during the formation of precipitation, the latent heating profiles of the two rain types differ crucially. By understanding the characteristics of different types of precipitation, we can get better insight into the interrelation among atmospheric circulation, thermo-dynamical and precipitation processes, and then provide references for models. Furthermore, retrieval of rain rate from radar requires knowledge of rain types, on which drop size distribution depends. In this paper, on the basis of the comparison of mean profile for different rain types, the seasonal characteristics of precipitation frequency, conditional rain rate, storm height, vertical structures and precipitating clouds top temperature for convective and stratiform precipitation over the Tropical and Subtropical areas are analyzed. Furthermore, diurnal variations of these precipitation parameters in summer are investigated. The results obtained in the present study can be summarized as follows.
     1. Mean profiles of different rain types are presented. The contributions to total rain samples are about78.6%from stratiform precipitation,20.8%from convection, and only0.6%from "others". Actually, there are only sixteen of twenty four rain types whose populations exceed0.1%. The climatic characteristics of mean profiles at seasonal scale are then exposed in the Tropical belt of10°S to10°N according to over ocean or land, compared with that in the Northern Subtropics (15°N~35°N). It is found that seasonal variations of the mean profiles in the Tropics are minimal regardless of rain types, implying significant latitudinal dependent. Although the shapes of mean profiles over land and ocean resemble each other, there are still some differences between them. Meanwhile, seasonal variations of precipitation profiles over land and ocean differ crucially, mainly due to the different disabilities of underlying surface. Taking echo strength and climatic characteristics of precipitation profiles into consideration, stratiform precipitation can be reclassified as four main types while only two for both convection and "others". It is meaningful to analysis T-100-T-140subcategories for stratiform precipitation while T-200-T-240subcategories for convective precipitation as in many previous studies.
     2. Climatic characteristics of convective and stratiform precipitation are exposed. Convective precipitations are distributed mainly over the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), the Asian Monsoon Region, regions between the South America and the Mid-America, and the Tropical Africa where the frequencies lie between1%and2%. But in four seasons, total area fractions of convective precipitation frequencies less than1%all exceed85%. The frequencies of stratiform precipitation are much higher than those of convective precipitation, and total area fractions of stratiform precipitation frequencies>1%are over55%during four seasons. However, frequencies of the two rain types show not only remarkable regionality, but also distinct seasonal variations. Conditional rain rates of convective precipitation range from6mm/h to14mm/h whereas those of stratiform precipitation are smaller than4mm/h. Meanwhile, rain tops of convective precipitation are higher than those of stratiform precipitation. The mean profiles of the two rain types show significant latitudinal dependency. And the seasonal variations of precipitation profiles are displayed mainly in the variations of rain tops. The frequencies and conditional rain rates of both rain types over ocean are higher than those over land, but rain tops are just the opposite. Moreover, the seasonal variations of both rain types over ocean are weaker than those over land because of the different stable states of underlying surfaces.
     3. Seasonal characteristics of storm height are analyzed. Storm heights of convective precipitation are relatively higher than that of stratiform precipitation, and the distributions of storm heights for stratiform precipitation are more uniform. Because of the land effect, storm heights over land are higher than that over ocean. But land effect to stratiform precipitation is not as obvious as that for convection. Generally, seasonal variations of storm heights for convective precipitation are stronger than that of stratiform precipitation. However, seasonal variations of storm heights over land (in high latitudes) are intense than that over ocean (in low latitudes). The analyses of mean profile for different storm heights indicate that near surface rain rates of convective precipitation are larger than that of stratiform precipitation. For the same storm height, near surface rain rates over ocean are intense than that over land. Clear layer structures of vertical profile for higher storm heights are also noticed. Statically, conditional rain rates and storm heights show remarkable quadratical function relationship for both convective and stratiform precipitation.
     4. Climatic characteristics of cloud top temperatures for precipitating clouds are investigated. Cloud top temperatures are lower than250K in regions where convective and stratiform precipitations are mainly distributed. Further analyses show that regions in which cloud top temperatures<230K (>270K) are mainly distributed over land (ocean). Cloud top temperatures also show remarkable seasonal variations. Cloud top temperatures decrease with the increment of conditional rain rates, which show obvious negative correlation. Meanwhile, negative correlation for convective precipitation is more significant than that for stratiform precipitation. The results also show that conditional rain rate is the natural exponential function versus cloud top temperatures. The analyses of vertical profiles for different cloud top temperatures show that both layer structures and land-sea dependency are more visible for higher cloud top temperatures. For the same cloud top temperature, storm height over land is higher than that over ocean, but near surface rain rate is just contrast.
     5. Diurnal variations of convective and stratiform precipitation in summer are discussed. Convections occur in afternoon over most land areas while in night time over ocean in summer Tropics and Subtropics. The peak time of conditional rain rate for convective precipitation does not agree with precipitation frequency very well. The largest PDF (probability density function) of peak time for conditional rain rates over land occurs in the afternoon while in the morning over ocean. The peak of storm heights and minimum clouds top temperatures over land mainly appear in afternoon and evening while in23-20LST over ocean. The diurnal variations of stratiform precipitation show similar characteristics with convective precipitation, but with a little differences of PDF among different time. Due to derived from different sensors, a shift exists between minimum clouds top temperature and peak of storm height. The diurnal variations over land are stronger than that over ocean. The diurnal variations of vertical profiles display in storm heights and near surface rain rates. Meanwhile, the diurnal variations of mean profile for convective precipitation are intense that that for stratiform precipitation.
引文
Adler R F, Yeh H Y M, Prasad N, et al.1991. Microwave simulations of a tropical rainfall system with a three-dimensional cloud model [J]. J Appl Meteorol,30,924-953
    Adler R F, Huffman G J, Bolvin D T, et al.2000. Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information [J]. J Appl Meteorol,39(12): 2007-2023.
    Alcala C M, Dessler A E.2002. Observations of deep convection in the Tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar [J]. J Geophys Res,107(D24),4792, doi:10.1029/2002JD002457.
    Andersson T.1970. The diurnal variation of precipitation frequency over weather ship m [J]. J Appl Meteorol,9:17-19
    Arkin P A, Ardanuy P E.1989. Estimating climatic-scale precipitation from space:A review [J]. J Clim,2(11):1229-1238
    Arkin P A, Xie P.1994. The global precipitation climatology project:First algorithm intercomparison project [J]. Bull Amer Meteor Soc,75:401-419
    Awaka J, T Iguchi and K Okamoto.1998. Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar [C]. Proc Eighth URSI Commission F Open Symp, Averior, Portugal, Union Radio-Scientifigue Internationale,134-146
    Awaka J, Iguchi T, Okamoto K.2004. On rain type classification algorithm TRMM PR 2A23 V6 [C].2nd TRMM International Science Conference, Tokyo, Japan
    Barros A P, Joshi M, Putkonen J, et al.2000. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations [J]. Geophys Res Lett,27(22):3683-3686
    Barrett E C.1970. The estimation of monthly rainfall from satellite data [J]. Mon Weather Rev,98: 322-327
    Battan L J.1973. Radar Observation of the Atmosphere [M]. University of Chicago Press, Chicago, IL
    Betts A K, Jakob C.2002. Study of diurnal cycle of convective precipitation over Amazonia using a single column model [J]. J Geophys Res,107(D23),4732, doi:10.1029/2002 JD002264
    Bhatt B C, Nakamura K.2005. Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar [J]. Mon Weather Rev,133:149-165
    Bowman K P.2005. Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys [J]. J Clim,18(1):178-190
    Bowman K P, Colliler J C, North G R, et al.2005. Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data [J]. J. Geophys Res,110, D21104, doi:10.1029/2005JD005763
    曹爱琴.2010.基于星载测雨雷达和云廓线雷达探测的亚洲雨顶和云顶高度分析[D].中国科学技术大学硕士学位论文
    Carbone R E, Tuttle J D, Ahijevych D A, et al.2002. Inferences of predictability associated with warm season precipitation episodes [J]. J Atmos Sci,59,2033-2056
    Chang A T C, Chiu L S, Kummerow C, et al.1999. First result of the TRMM Microwave Imager (TMI) monthly oceanic rain rate:Comparison with SSM/I [J]. Geophys Res Lett,26(15): 2379-2382
    陈丹,吕达仁.2010.台风麦莎与赤道穿透对流云团的初步比较分析.气象学报,68(6):885-895
    Churchill D D and Houze R A.1984. Development and structure of winter monsoon cloud clusters on 10 December 1978 [J]. J Atmos Sci,41(6):933-960
    Collier J C, Bowman K P.2004. Diurnal cycle of tropical precipitation in a general circulation model [J]. J Geophys Res,109, D17105, doi:10.1029/2004JD004818
    Cook A W.1939. The diurnal variation of summer rainfall at Denver [J]. Mon Weather Rev 67, 95-98
    Dai A, Deser C.1999. Diurnal and semidiurnal variations in global surface wind and divergence fields [J]. J Geophys Res,104:31109-31125
    Dai A, Giorgi F, Trenberth K E.1999. Observed and model-simulated diurnal cycles of precipitation over the contiguous United States [J]. J Geophys Res,104:6377-6402.
    Dai A.2001. Global precipitation and thunderstorm frequencies, Part Ⅱ:Diurnal variations [J]. J Clim,14:1112-1128.
    Dai A.2006:Precipitation characteristics in eighteen coupled climate models [J]. J Clim,19: 4605-4630
    Fisher B L.2004. Climatological validation of TRMM TMI and PR monthly rain products over Oklahoma [J]. J Appl Meteorol,43(3):519-535
    Fujinami H, Nomura S, Yasunari T.2005. Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer [J]. SOLA,1:49-52
    Fujiyoshi Y, Takasugi T, Gocho Y, et al.1980. Radar-echo structure of middle-level precipitating clouds and the change of raindrops-Processes of mixing of precipitation particles falling from generating cells [J]. J. Meteor. Soc. Japan,58:203-216
    Fulton R, Heymsfield G M.1991. Microphysical and radiative characteristics of convective clouds during COHMEX [J]. J Appl Meteorol,30,98-116
    Fu Y, Liu G.2001. The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data [J]. J Appl Meteorol,40:2130-2143
    Fu Y, Liu G.2003. Precipitation characteristics in mid-latitude East Asia as observed by TRMM PR and TMI [J]. J Meteorol Soc Jpn,81:1353-1369
    Fu Y, Lin Y, Liu G, et al.2003. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR [J]. Adv Atmos Sci (in Chinese),20 (4):511-529
    Fu Y, Liu G, Wu G X, et al.2006. Tower mast of precipitation over the central Tibetan Plateau summer [J]. Geophys Res Lett,33, L05802, doi:10.1029/2005GL024713
    Fu Y, Liu G.2007. Possible misidentification of rain type by TRMM PR over Tibetan Plateau [J]. J Appl Meteorol,46,667-1672
    傅云飞,宇如聪,徐幼平,等.2003TRMM测雨雷达和微波辐射成像仪对两个中尺度特大暴雨降水结构的观测分析研究[J].气象学报,61(4):421-431
    傅云飞,冯静夷,朱红芳,等.2005.西太平洋副热带高压下热对流降水结构特征的个例分析[J].气象学报,63(5):750-761
    傅云飞,李宏图,自勇.2007TRMM卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象,26(1):98-106
    傅云飞,刘栋,王雨,等.2007.热带测雨卫星综合探测结果之“云娜”台风降水云与非降水云特征[J].气象学报,65(3):316-328
    傅云飞,张爱民,刘勇,等.2008.基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征 分析[J].气象学报,66(5):730-746
    傅云飞,冯沙,刘鹏,等.2010.热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧[J].气象学报,68(2):195-206
    傅云飞,刘鹏,刘奇,等.2011.夏季热带及副热带降水云可见光/红外信号气候分布特征[J].大气与环境光学学报,6(2):129-140
    傅云飞,曹爱琴,李天奕,等.2012.星载测雨雷达探测的夏季亚洲对流与层云降水雨顶高度气候特征[J].气象学报(接收,待刊)
    Franchito S H, Rao V B, Vasques A C, et al.2009. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil [J]. J Geophys Res,114, D02105, doi:10.1029/2007JD 009580
    Geerts B, Dejene T.2005. Regional and diurnal variability of the vertical structure of precipitation systems in Africa based on spaceborne radar data [J]. J Clim,18:893-916
    GSFC/NASA.2007. Interface Control Specification between the Tropical Rainfall Measuring Mission Science and Data Information System (TSDIS) and the TSDIS Science User (TSU) [R]. Vol.4:File Specifications for TRMM Products-Level 2 and Level 3, Release 6.09
    Hann J.1901. Lehrbuch der meteorologie [J]. CH Tauchnitz,805pp
    Hartmann D L, Short D A.1980. On the use of earth radiation budget statistics for studies of clouds and climate [J]. J Atmos Sci,37:1233-1250
    何会中,程明虎,周康军等.2002TRMM/PR与香港雷达资料对比分析[J].气象,28(10):32-36
    何文英,陈洪滨.2006TRMM卫星对一次冰雹降水过程的观测分析研究[J].气象学报,64(3):364-376
    Hirose M, Nakamura K.2005. Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM precipitation radar [J]. J Geophys Res,110(D05106), doi:10.1029/ 2004JD004815
    Hirose M, Oki R, Shimizu S, et al.2008. Fine scale diurnal rainfall statistics refined from eight years of TRMM PR data [J]. J Appl Meteorol Clim,47:544-561.
    Hobbs P V.1989. Research on clouds and precipitation past, present, and future [J]. Bull Amer Meteor Soc,70:282-285
    Hong Y, Kummerow C D, Olson W S.1999. Separation of convective and stratiform precipitation using microwave brightness temperature [J]. J Appl Meteorol,38(8):1195-1213
    Houze R A Jr.1981. Structures of atmospheric precipitation systems:A global survey [J]. Radio Sci,16,671-689
    Houze R A Jr.1982. Cloud clusters and large-scale vertical motions in the Tropics [J]. J Meteor Soc Jpn,60,396-410
    Houze R A Jr.1993. Cloud Dynamics [M]. Academic Press, New York,573pp
    Houze R A JR, Cheng C P. 1977. Radar characteristics of tropical convection observed during GATE-Mean properties and trends over the summer season [J]. Mon Weather Rev,105: 964-980
    Iguchi T, Kozu T, Meneghini R, et al.2000. Rain-profiling algorithm for the TRMM precipitation radar [J]. J Appl Meteorol,39:2038-2052
    Jiang X, Lau N C, Klein S A.2006. Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great plains [J]. Geophys Res Lett,33, L19809, doi:10.1029/2006GL027022
    蒋尚城.2006.应用卫星气象学[M].北京大学出版社
    Joyce R, Arkin P A.1997. Improved Estimates of Tropical and Subtropical Precipitation Using the GOES Precipitation Index [J]. J Atmos Oceanic Technol,14(5):997-1011
    Kikuchi K, Wang B.2008. Diurnal precipitation regimes in the global tropics [J]. J Clim,21: 2680-2696
    Kincer J B.1916. Daytime and nighttime precipitation and their economic significance [J]. Mon Weather Rev,44:628-633
    Kodama Y M, Tamaoki A.2002. A re-examination of precipitation activity in the subtropics and the mid-latitudes based on satellite-derived data [J]. J Meteorol Soc Jpn,80(5):1261-1278
    Kousky V E.1980. Diurnal rainfall variation in northeast Brazil. Mon Weather Rev,108:488-498
    Kraus E B.1963. The diurnal precipitation change over the sea [J]. J the Atmos Sci,20:551-556
    Kummerow C, Olson W S, Giglo L.1996. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors [J]. IEEE Trans Geosci Remote Sens,34,1213-1232
    Kummerow C, Barnes W, Kozu T.1998. The tropical rainfall measuring mission (TRMM) sensor package [J]. J Atmos Ocean Technol,15:809-817
    Kummerow C, Simpson J, Thiele O, et al.2000:The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit [J]. J Appl Meteor,39,1965-1982
    Kummerow C, Hong Y, Olson W S, et al.2001. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors [J]. J Appl Meteorol, 40(11):1801-1820
    Li J, Yu R C, Zhou T J.2008. Seasonal variation of the diurnal cycle of rainfall in the southern contiguous China [J]. J Clim,21(22),6036-6043
    Liu C, Zipser E J.2005. Global distribution of convection penetrating the tropical Tropopause [J]. J Geophys Res,110, D23104, doi:10.1029/2005JD006063
    Liu G, Takeda T.1989. Two types of stratiform precipitation clouds associated with cyclones [J]. Tenki,36:147-158
    Liu G, Fu Y.2001. The Characteristics of Tropical Precipitation Profiles As Inferred From Satellite Radar Measurements [J]. J Meteor Soc Jpn,79:131-143
    李锐,傅云飞.2005GPCP和TRMM PR热带月平均降水的差异分析[J].气象学报,63(2):146-160
    李锐,傅云飞,赵萍.2005.利用热带测雨卫星的测雨雷达资料对1997/1998年El Nino后期热带太平洋降水结构的研究[J].大气科学,29(2):225-235
    刘洪利,朱文琴,宜树华,等.2003.中国地区云的气候特征分析[J].气象学报,61(4):466-473
    李昀英,宇如聪,徐幼平等.2003.中国南方地区层状云的形成和日变化特征分析[J].气象学报,61(6):732-743
    刘鹏,傅云飞,冯沙.2010.中国南方地基雨量计观测与星载测雨雷达探测的降水之比较分析[J].气象学报,68(6):822-835
    刘鹏,傅云飞.2010.利用星载测雨雷达探测结果对夏季中国南方对流和层云降水气候特征的分析[J].大气科学,34(4):802-814
    刘鹏,王雨,傅云飞.2012a.冬、夏季热带及副热带穿透性对流气候特征分析[J].大气科学,doi:10.3878/j.issn.1006-9895.2011.11109(接收,待刊)
    刘鹏,李崇银,王雨,等.2012b.基于TRMM PR探测的热带及副热带对流和层云降水气候特征分析[J].中国科学D辑(接收,待刊)
    刘奇,傅云飞.2007.夏季青藏高原潜热分布及其廓线特征[J].中国科学技术大学学报,37(3): 303-310
    刘奇.2007.基于ISCCP及TRMM观测的热带降水云与非降水云差异的研究[D].中国科学技术大学博士论文
    Liu Q, Y Fu, R Yu, et al. A new satellite-based census of precipitating and nonprecipitating clouds over the tropics and subtropics [J]. Geophys Res Lett,2008,35, L07816, doi:10.1029/2008 GL 033208
    刘奇,傅云飞.2009.热带地区云量日变化的气候特征[J].热带气象学报,25(6):717-724
    刘显通,刘奇,傅云飞,等.2010.基于TRMM VIRS可见光和红外五通道的白天云检测方案[J].大气与环境光学学报,5(2):128-140
    McGarry M M, Reed R J.1978. Diurnal variations in convective activity and precipitation during Phases Ⅱ and Ⅲ of GATE [J]. Mon Wea Rev,106,101-113
    Meisner B N, Arkin P A.1987. Spatial and annual variations in the diurnal cycle of large-scale tropical convective cloudiness and precipitation. Mon Weather Rev,115:2009-2032
    Meneghini R, Kozu T.1990. Spaceborne Weather Radar [M]. Artech House, Boston-London
    Negri A J, Bell T L, Xu L.2002. Sampling of the diurnal cycle of precipitation using TRMM [J]. J. Atmos Oceanic Technol,19,1333-1344
    Nesbitt S W, Zipser E J, Cecil D J.2000. A census of precipitation features in the tropics using TRMM:radar, ice scatting, and lightning observations [J]. J Clim,13:4087-4106
    Nesbitt S W, Zipser E J.2003. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements [J]. J Clim,16:1456-1475
    Olson W S, Bauer P, Kummerow C D, et al.2001a. A melting-layer model for passive/active microwave remote sensing applications. Part Ⅱ:Simulation of TRMM observations [J]. J Appl Meteorol,40(7):1164-1179.
    Olson W S, Hong Y, Kummerow C D, et al.2001b. A texture-polarization method for estimating convective-stratiform precipitation area coverage from passive microwave radiometer data [J]. J Appl Meteorol,40(9):1577-1591
    Petty G W.1994. Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part Ⅱ:Algorithm implementation [J]. Meteorol Atmos Phys,54,101-121
    Rossow W B and R A Schiffer.1991. ISCCP Cloud Data Products [J]. Bull Amer Meteorol Soc, 72(1):2-20
    Rossow W B and R A Schiffer.1999. Advances in understanding clouds from ISCCP [J]. Bull Amer Meteorol Soc,80(11):2261-2287
    Rossow W B, F Mosher, E Kinsella, et al.1985. ISCCP cloud algorithm intercomparison [J]. J Clim Appl Meteorol,24(877-903).
    Rossow W B, L C Garder.1993. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP [J]. J Clim,6(12):2341-2369.
    Rossow W B, Walker A W, Garder L C.1993. Comparison of ISCCP and other cloud amounts [J]. J Clim,6(12):2394-2418
    Sanderson V L, Kidd C, McGregor G R.2006. A comparison of TRMM microwave techniques for detecting the diurnal rainfall cycle [J]. J Hydrometeorol,7:687-704
    Schumacher C, Houze R A Jr.2003a. Stratiform Rain in the Tropics as Seen by the TRMM Precipitation Radar [J]. J Clim,16:1739-1756.
    Schumacher C, Houze R A Jr.2003b. The TRMM Precipitation Radar's View of Shallow, Isolated Rain [J]. J Appl Meteor,42,1519-1524
    Schumacher C, Houze R A Jr.2006. Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM [J]. Q J R Meteorol Soc,132: 2235-2255
    Short D A, Nakamura K.2000. TRMM radar observations of shallow precipitation over the tropical oceans [J]. J Clim,13:4107-4124
    Simpson J, Halverson J, Pierce H, et al.1998. Eyeing the eye:Exciting early stage science results from TRMM [J]. Bull Amer Meteor Soc,79:1711
    Smith E A, X Xiang, A Mugnai, et al.1994. Design of an inversion-based precipitation profile retrieval algorithm using an explicit cloud model for initial guess microphysics [J]. Meteorol Atoms Phys,54,53-78
    Sorooshian S, Gao X, Hsu K, et al.2002. Diurnal Variability of Tropical Rainfall Retrieved from Combined GOES and TRMM Satellite Information [J]. J Clim,15:983-1001
    Steiner M, Houze R A Jr, Yuter S E.1995. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data [J]. J Appl Meteorol,34: 1978-2007
    Szoke E J, Zipser E J, Jorgensen D P.1986. A radar study of convective cells in mesoscale systems in GATE. Part I:Vertical profile statistics and comparison with hurricanes [J]. J Atmos Sci, 43:182-197
    Takayabu Y N.2002. Spectral representation of rain profiles and diumal variations observed with TRMM PR over the equatorial area [J]. Geophys Res Lett,29(12),1584, doi:10.1029/ 2001GL0 14113
    Tao W K, Lang S, Simpson J, et al.1993. Retrieval algorithms for estimating the vertical profiles of latent heat release:Their applications for TRMM [J]. J Meteorol Soc Jpn,71:685-700
    Trenberth K E, Dai A, Rasmussen R M, et al.2003:The changing character of precipitation [J]. Bull Amer Meteorol Soc,84:1205-1217
    Ushio T, Heckman S J, Boccippio D J, et al.2001. A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data [J]. J Geophys Res,106(D20):24,089-24,095
    Wallace J M.1975. Diurnal variations in precipitation and thunderstorm frequency over the conterminous united states [J]. Mon Weather Rev,103:406-419
    王成刚,葛文忠,魏鸣.2003TRMMPR雷达与阜阳雷达降水资料的对比研究[J].遥感学报,7(4):332-336
    王可丽,江灏,陈世强.2001.青藏高原地区的总云量—地面观测、卫星反演和同化资料的对比分析[J].高原气象,20(3):252-257
    Wetherald R T, Manabe S.1988. Cloud feedback processes in a general circulation model [J]. J Atmos Sci,45:1397-1415
    翁笃铭,韩爱梅.1998.我国卫星总云量与地面总云量分布的对比分析[J].应用气象学报,9(1):32-37
    Wilheit T T, Chang A T C, Rao M S V, et al.1977. A satellite technique for quantitatively mapping rainfall rates over the oceans [J]. J Appl Meteorol,16,551-560
    Xie Shangping, Xu Haiming, Saji N H, et al.2006. Role of narrow mountains in large scale organization of Asian monsoon convection [J]. J Clim,19:3420-3429
    Yamamoto M K, Furuzawa F A, Higuchi A, et al.2008. Comparison of diurnal variations in precipitation systems observed by TRMM PR, TMI, and VIRS [J]. J Clim,21:4011-4028
    Yang G Y, Slingo J.2001. The diurnal cycle in the tropics [J]. Mon Weather Rev,129:784-801
    Yang S, Smith E A.2006. Mechanisms for diurnal variability of global tropical rainfall observed from TRMM [J]. J Clim,19:5190-5226
    Yang S, Smith E A.2008. Convective-stratiform precipitation variability at seasonal scale from 8yr of TRMM observations:Implications for multiple modes of diurnal variability [J]. J Clim, 21:4087-4114
    原韦华.2011.中国副热带地区夏季降水日变化特征分析研究[D].中国科学院研究生院博士学位论文
    Yu R, Zhou T, Xiong A, et al.2007. Diurnal variations of summer precipitation over contiguous China [J]. Geophys Res Lett,34(L01704), doi:10.1029/2006GL028129
    Yu R, Yuan W, Li J, et al.2010. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China [J]. Clim Dyn,35(4):567-576
    郑媛媛,傅云飞,刘勇,等.2004.热带降水测量卫星对淮河一次暴雨降水结构与闪电活动的研究[J].气象学报,62(6):790-802
    Zhang C. Double ITCZs [J]. J Geophys Res,2001,106(D11), doi:10.1029/2001JD900046
    Zhou T J, Yu R C, Chen H M, et al.2008. Summer Precipitation Frequency, Intensity, and Diurnal Cycle over China:A Comparison of Satellite Data with Rain Gauge Observations [J]. J Clim, 21,3997-4010
    Zipser E J, Lutz K R.1994. The vertical profile of radar reflectivity of convective cells:A strong indicator of storm intensity and lightning probability [J]. Mon Weather Rev,122:1751-175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700