用户名: 密码: 验证码:
基于GIS的我国主要土壤类型土壤有效含水量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有效含水量(AWC)在研究区域土壤湿度和灌溉管理、农业生态区划和评价作物生长潜力、模拟因受经济因素和气候变化影响的全球土地覆盖变化等方面有重要作用。通过实验的方法获得土壤有效含水量数据,不仅费用高、耗时多,而且往往因为研究尺度大,土壤在空间上高度变异而不可行。运用少量的已知数据,构建土壤AWC经验估算模型是一种较好的方法,简单可行。如再结合GIS技术,构建土壤AWC地理空间模型,对于区域土壤AWC进行定量评价、区域土壤耐旱性评价、指导农业灌溉和以土壤AWC为参数进行植物生产力的估算,有着重要的意义。
     本研究的目的:一是初步构建我国典型土壤类型以及区域土壤的土壤AWC经验估算模型,并进行土壤AWC估算;二是运用GIS技术,构建我国土壤AWC地理空间模型,并进行空间分异分析。
     研究中分别以黑土、褐土、区域综合土壤为对象,以收集到的土壤理化性状为基础,采用多元回归方法和曲线拟合的方法,对土壤AWC的估算模型进行了探讨。研究结果表明,不同土壤类型的土壤AWC估算模型,对于其它类型不一定适用。并且,对于不同的土壤类型的土壤AWC来说,不同的土壤参数的重要性不同。基于土壤质地和土壤有机质的数理统计模型对于模拟估算大尺度区域的土壤有效含水量很适用,操作简单可行。研究所得的土壤AWC估算模型,对于个别土壤类型不适用,但对于粗略地估算大区域范围的土壤水分常数是基本上可行的。
     将研究所得的土壤AWC估算模型,结合收集整理的土壤理化数据,进行我国主要土壤类型的土壤AWC估算。结果表明,我国土壤AWC相对比较集中,主要分布在16%-22%之间,土壤AWC高于25%和低于10%的土壤类型都很少。
     运用GIS技术,进行土壤AWC空间建模。土壤图的数字化,并结合收集整理的土壤类型理化数据,构建我国土壤AWC地理空间模型并进行分析。总体来说,我国土壤AWC的区域差异明显,东南部土壤AWC普遍高于西北部,但大区域范围内,也有小区域的局部变异;土壤的有效含水量一般在11-23%之间,而且相对集中在17-21%之间。
     研究中对基于土壤质地和土壤有机质的我国土壤AWC模型进行了空间分析。结果表明,我国主要土壤类型的土壤有效含水量主要集中分布在17.2-21.2%之间,其次是分布在12.0-15.0%之间。总体上来说,东部湿润土壤区域的土壤AWC分布较集中,集中在17.2-21.2%之间;西北干旱土壤区域以及西南高寒土壤区域的土壤AWC主要分布在12.0-21.2%之间,而且有相当大面积的土壤,其土壤AWC分布于12.0-15.0%之间。
     本研究的创新之处在于基于土壤理化性质估算我国主要土壤类型的土壤有效含水量,并运用GIS技术构建了我国土壤AWC地理空间模型。对于区域土壤AWC研究来说,它具有一定的理论和实践意义。
     本研究只是初步探索,在以后的土壤AWC研究中,估算模型的研究方法、参数的确定、地理空间模型的构建、模型精度等多个方面有待进一步研究。
Available water capacity (AWC) of soil is important for studying soil humidity, irrigation management, ecological agricultural planning, evaluation of crop growth potential and simulation of change of globe land cover under affection of economical factors and climate changes. The survey of soil AWC is expensive due to cost consuming and time-consuming. Moreover, it is probably unfeasible because of extension of study area and spatial changes of soil. It is better way to estimate the soil AWC through a few measured data. The geographic spatial models of AWC of soil, based on geographic information system (GIS), are essential for quantitative evaluation of AWC of soil in an area. AWC of soils is necessary parameters for evaluation of capacity of soil bearing drought, for irrigation and for evaluation of productive rate of plant.
    There are two goals of the study. The first one is to fabricate the estimating model of typical sort soils and region soils and simulate the soil AWC in china. The second is to compose spatial model of AWC of main soils and evaluate it in China.
    Based on physical and chemical characteristics of soils, the estimating models of soil AWC for the Black soils, Cinnamon soils and soils of the main sorts in China were researched by multiple regression and curve simulation in the study. The results showed that the estimating model of one sort of soil, droved by multiple regressions, was not adapted to others. Moreover, physical or chemical parameters of soils, which were vital to one sort of soil, were not significant to other sorts. The estimating models of the available water capacity (AWC) of main soils in China, which are based on texture and organic matter and droved by multiple regression or curve simulation, can be probably used to estimate the soil AWC of one large-scale area. When used for one certain sort of soil, it maybe inaccurate relatively. Statistical models cannot be explained with explicit theory, and it may be used to estimate soil water constant with lower precision. But they were simple and feasible for estimation of soil AWC in a large
    -scale area.
    The AWC of main sorts in China was estimated with the studied model and elementary soil physical and chemistry data. As showed in results, the data of soil AWC in China mainly rang from 16% to 22% and the values, higher than 25% or lower 10%, are few.
    Based on elementary soil physical and chemistry data and digital soil map, the spatial modes of AWC of soil in China were composed with GIS. The spatial models of AWC of soils presented the difference of soil AWC in China. As a whole, the difference of soil AWC was significant and the value of soil AWC in southeast is higher than that in northwest. In certain area, the value could be different according to the soil sorts. The value of AWC of soils ranges commonly from 11% to 23% and mainly from 17% to 21%.
    The spatial model of soil AWC in China, based on texture and organic matter, was analyzed. It was presented that the level of soil AWC was mostly between 17.2% and 21.2%, secondly between 12.0% and 15.0%. As a whole, the soil AWC of humid soil area of eastern China is mainly between 17.2% and 21.2%; The soil AWC of arid soil area of
    
    
    northwest of China and that of high and frigid soil area of southwest of China mostly range from 12% to 21.2%, and secondly rang from 12% to 15% in the two areas..
    The innovation of this study is to estimate the Available water capacity (AWC) of main soil types based on physical and chemical characteristics of soils and to model it with geographic information system (GIS) in China. It is valuable for practice and methods of studies on AWC of soil in some area in China.
    This is primary study of estimating models and spatial models of AWC of soil in China. There are more to do, such as methods of studies on estimating models, selection of parameters, construction of geographic spatial models and precision of models for research of AWC of soil in China in future.
引文
[1] Bregt, A.K. and Beemster, J.G.H.. Accuracy in predicting moisture deficits aud changes in yield from soil maps[J]. Geoderma, 1989, 43: 301-310.
    [2] Madsin, H.B., Hoist, K.A. and Mikkelsen, S.A.. The use of the EC soil map in modelling and mapping the root zone capacity and irrigation need: a case study from Dinmark. In: R.J.A. Jones and B. Biagi(Editors), Agriculture: Computerization of Land Use Data(C). Commission of the European Communities, Luxembourg, 1989, pp. 74-84.
    [3] Kern, J. S..Geographic patterns of soil-water holding capacity in the contiguous United States[J]. Soil Sci. Soc. Am. J., 1995, 59: 1126-1133.
    [4] FAO. Report on the Agro-ecological Zones Project (Vol. 1): Methodology and Results for Africa[R]. World Soil Report, 1978, 48/1, FAO, Rome.
    [5] Reinds, G.J., De Koning, G.H.J. and Bulens, J.D.. Crop production potential of rural area within the European Communities: Part Ⅲ. Soils, climate and administrative regions. Working Document 67, Netherlands Scientific Council for Government Policy, The Hague, 1992.
    [6] Luyten, J.C.. Sustainable world food Production and environment [R]. Report 37, Research Institute for Agrobiology and Soil Fertility (AB-DLO), Wageningen., 1995
    [7] Zuidema, O., Van den Born, G.J., Alcamo, J. And Kreileman, G.J.J., 1994. Simulation of global land cover changes as affected by economic factors and climate [J]. Water Air soil Pollut., 76: 163-198.
    [8] D.R. Scotter, Field capacity of water and Soil Available Water[J]. Soil Sci. Soc. Am. J., 1981, 45(5), 852-855.
    [9] Soil Survey Staff. Soil Survey Manual, rev. Ed.[M]. United States Department of Agriculture Handbook No. 18, USDA, Washington., 1993
    [10] gandon, J.R., 1991. Booker Tropical Soil Manual[N]. Longman, New York.
    [11] Brady, N.C.. The Nature and Properties of Soils. 9th ed. [M]. MacMillan, New York. 1984。
    [12] El-Swaify, S.A., Physical and mechanical properties of oxisols, in: Soil with variable charge[M]. New Zealand Society of Soil Science, Palmerston North, 1980, 303-322.
    [13] L.A. Manrique, C.A. Jones, and P.T. Dyke. Predicting soil water retention characteristics from soil physical and chemical properties. COMMUN. SOIL SCI. PLANT ANAL. [J], 1991, 22(17&18), 1847-1860.
    [14] [美]S.A.泰勒 著,华孟 等译.物理的土壤学—灌溉与非灌溉土壤的物理学[M].北京:农业出版社,1983,207—215.
    [15] [美]H.詹尼著,土壤资源起源与性状[M].北京:科学出版社.1988.51~56
    [16] N. H. Batjes. Development of a world data set of soil water retention properties using pedotransfer rules[J]. Geoderma, 1996, 71 (1): 31-52.
    [17] Vogel, A. W.. Compatibility of soil analytical data: determinations of cation exchange capacity, organic carbon, soil reaction, bulk density, and volume percent of water at selected pF values by different methods. Working Paper and Preprint 94/07, ISRIC, Wageningen, 1994.
    [18] Shouse, P.J., Russell, W. B., Burden, D.S., Selim, H.M., Sisson, J.B. and Van Genuchtin, M.Th.. Spatial variability of soil water retention functions in a silt loam[J]. Soil Sci., 1995, 159 (1): 1-12.
    [19] [日本] 土壤物理性测定委员会 编,翁德衡 译.土壤物理性测定法[M].重庆:科学技术文献出版社重庆分社.1979,172-174
    [20] [日本]土壤物理性测定委员会编,翁德衡译,朱东晓校。土壤物理性测定法[M]。重庆:科学技术文献出版社重庆分社.1979,P156-157.
    [21] AA.罗戴 著,巴逢辰,乔樵.孙励敬等译.土壤水[M].北京:科学出版社.1964,P332-339.
    
    
    [22] Richards, L. A., and Wadleigh, C. H. Soil water and plant growth. In "Soil Physical Conditions and Plant Growth," P. 13. Amer. Soc. Agron. Monograph 2. 1952.
    [23] 刘孝义 编著 土壤物理及土壤改良研究法[M].上海:上海科学技术出版社.1982,P200
    [24] 刘昌明,王会肖 著.土壤—作物—大气界面水分过程与节水调控[M].北京:科学出版社.1999,P101
    [25] 劳家柽 主编.土壤农化分析手册[M].北京:农业出版社.1988,208~228
    [26] D.希勒尔 著,华孟,叶和才译.土壤和水——物理原理和过程[M].北京:农业出版社.1981.1~4
    [27] 全国土壤普查办公室编.中国土壤.北京:中国农业出版社.1998.843-859
    [28] [美] L.D.贝弗尔,W.H.加德纳,W.R.加德纳 著,周传槐 译.土壤物理学[M].北京:农业出版社.1983,408-409.
    [29] [澳] T.J.马歇尔,J.M.霍姆斯 著,赵诚斋,徐松龄 译.土壤物理学[M],北京:科学出版社.1986,267-268.
    [30] Petersen, G..W., R.L. Cunningham, and R.P. Matelski. Moisture characteristics of Pennsylvania soils. Ⅱ. Soil factors affecting moisture retention characteristics within a textural class-silt loam[J]. Soil Sci. Soc. Am. Proc. 1968. 32: 866-870.
    [31] Cassel, D.K., L.F. Ratliff, and J.T. Ritchie. Models for estimating in-situ potential extractable water using soil physical and chemical soil properties[J]. Soil Sci. Soc. Am. J. 1983. 47:764-769.
    [32] Petersen, G.W., R.L. Cunningham, and R.P. Matelski. 1968. Moisture characteristics of Pennsylvania soils. Ⅰ. Moisture retention as related to texture[J]. Soil Sci. Soc. Am. Proc. 32: 271-275.
    [33] Lund, Z.F. Available water-holding capacity of alluvial soil in Louisiana[J]. Soil Sci. Soc. Am. Proc. 1959. 23:1-3.
    [34] Philipson, W.R. and M. Drosdoff. Relationships among physical and chemical properties of representative soils of the tropics from Puerto Rico[J]. Soil Sci. Soc. Am. Proc. 1972. 36:815-819.
    [35] Nettleton, W.D. and B.R. Brasher. Correlation of clay minerals and properties of soils in the western United States[J]. Soil Sci. Soc. Am. J. 1983, 47: 1032-1036.
    [36] Pidgeon, J.D. The measurement and prediction of available water capacity of ferralitic soils in Uganda[J]. J. Soil Sci. 1972. 23: 431-441.
    [37] Lugo-Lopez, M.A. Functional relationships between moisture at several equilibrium points and the clay content of tropical soils[J]. J. Agrec. Univ. Puerto Rico 1951. 35: 66-70.
    [38] Aina, P.O. and S.P. Periaswami. 1985. Estimating available water-holding capacity of western Nigerian soils from soil texture and bulk density, using core and sieved samples [J]. Soil Sci. 140: 55-58.
    [39] Daniel Hillel. Introduction to soil physics [M]. Academic Press. 1982. 247-248.
    [40] Rivers, E.D. and R.F. shipp. Available water capacity of sandy and gravelly North Dakota soils[J]. Soil Sci. 1972. 113:74-80.
    [41] McLean, A.H. and T.U. Yager. Available water capacity of Zambian soils in relation to pressure plate measurements and particle size analysis[J]. Soil Sci. 1972. 113 (1): 23-29.
    [42] L.A. Manrique, C.A. Jones, and P. T. Dyke. Predicting soil water retention characteristics from soil physical and chemical properties[J]. COMMUN. SOIL SCI. PLANT ANAL., 1991, 22(17&18), 1847-1860.
    [43] P.O. Aina and S. P. Periaswamy. Estimating available water-holding capacity of western nigerian soils from soil texture and bulk density, using core and sieved samples[J]. Soil Science. 1985. 140(1): 55-58.
    [44] E.D. Rivers and R.F. Shipp. Soil water retention as related to particle size in selected sands and loamy sands[J]. Soil Science, 1985, 126(2), 94-100.
    [45] G.W. Petersen, R.L. Cunningham, and R.P. Matelski. Moisture characteristics of Pennsylvania
    
    soils: Ⅰ. Moisture retention as related to texture[J]. Soil Sci. Soc. Am. Proceeding. 1968, Vol. 32, P271-275.
    [46] Berman D. Hudson. Soil organic matter and available water capacity[J]. Journal of soil and water conservation. 1994. 49(2): 189-194.
    [47] J.M. Hollis, R. J. A. Jones and R.C. Palmer. The effects of organic matter and particle size on the water-retention properties of some soils in the west midlands of England[J]. Geoderma, 1977. 17: 225-238.
    [48] Denmead, O. T., Shaw, R. H.: Availability of soil water to Plants as affected by soil moisture content and meteorological conditions[J]. Agron. J., 1962, 54:365~390.
    [49] Hillel, D.: Applications of soil physics[M]. Academic Press. N. Y., 1980
    [50] Peters, D B., Russell, M. B.: Ion uptake by corn seedlings as affected by temperature, ion concentration, moisture tension, and moisture content[M]. Int. Congr. Soil Sci. Trans 7th (Madison, Wis., USA.), 1960.
    [51] Peters, DB., Rankles, J. R.: Shoot and growth as affected by water availability[M]. In "Irrig. Of Agric. Lands". ed. By Hagan, R. M. Etc. Mad. Wis. USA, 1967.
    [52] Wosten J H M, Van Cenuchten M Th. Using texture and other soil properties to predict the unsaturated soil hydraulic functions[J]. Soil Sci. Soc. Am. J.,1988, 52:1762-1770
    [53] 陈振铎 编著,土壤水之理论与利用[M].台湾:国立编译馆出版,1980,54-71
    [54] 刘昌明,王会肖 著,土壤—作物—大气界面水分过程与节水调控[M].北京:科学出版社,1999,18-20
    [55] 王孟本.柴宝峰,李洪建等.黄土区人工林的土壤持水力与有效水状况[J].林业科学,1999,35(2):7-14
    [56] 姚贤良.红壤水问题及其管理[J].土壤学报,1996,33(1):13-20
    [57] 全斌,陈健飞,郭成达.福建赤红壤旱地土壤水分特性及调控[J].土壤,2001,33(5):232-238.
    [58] 张小泉,张清华。太行山北部中山幼林地土壤水分的研究[J]。林业科学,1994,30(3),193-200
    [59] 陈效民,潘根兴,沈其荣等。太湖地区主要水稻土的土壤水分参数研究[J]。水土保持学报,2001,15 (4),96-98
    [60] 聂俊华,聂宜民,王一川等。山东省主要土壤类型的水分状况[A]。见:庄季屏 主篇,全国第五届土壤物理学术讨论会论文集《土壤物理与农业持续发展》[C],北京:科学出版社,1995,9-15
    [61] 王荫槐,戴良香,李法政。冀东几种主要土壤水分有效性的研究[A]。见:庄季屏 主篇,全国第五届土壤物理学术讨论会论文集《土壤物理与农业持续发展》[C],北京:科学出版社。1995,16-20
    [62] 谢德体,魏朝富,杨剑虹等。紫色土水分常数及运动参数的研究[A]。见:庄季屏 主篇,全国第五届土壤物理学术讨论会论文集《土壤物理与农业持续发展》[C],北京:科学出版社。1995,113-118
    [63] 水建国,罗永进。红壤作物易旱与土壤物理性质关系的研究[A]。见:庄季屏 主篇,全国第五届土壤物理学术讨论会论文集《土壤物理与农业持续发展》[C],北京:科学出版社。1995,148-151
    [64] 赵聚宝,徐祝龄,钟兆站等,著。中国北方旱地农田水分平衡[M]。北京:中国农业出版社。2000,P88-104。
    [65] 孔祥旋,杨占平,王恒宇.砂质潮土农田土壤水分定位研究[J].干旱地区农业研究.2000,18(3):76-82
    [66] 杨必仁,赵惠莉。渭北旱塬土壤水分变化特点分析[J].干旱地区农业研究,1997,15(2),80-83
    [67] Rawls, W. J., T. J. Gish, and D. L. Brakensiek. Estimating soil water retention from soil physical properties and characteristics[J]. Adv. Soil Sci. 1991. 16:213-234.
    [68] Bill Krueger. Water Budget Irrigation Scheduling. ORCHARD FACTS. April 10, 2000. Vol. Ⅱ, No. 8.
    [69] R. De Jong, J.A. Shields, and W.K. Sly. Estimated soil water reserves applicable to a wheat-fallow rotation for generalized soil areas mapped in southern saskatchewan[J]. Can. J. Soil Sci.
    
    64:667-680.
    [70] 郭焱.李保国.预测土壤水分运动参数的PTFs法[A].见石元春等编.节奏农业应用基础研究进展[C].北京:中国农业出版社.1995,56-63
    [71] 卢振民.土壤水分特征曲线和非饱和导水率的数学模型[A].见中国科学院北京农业生态系统试验站编.农田作物环境实验研究[C].北京:气象出版社,1990.268-277
    [72] Tietje O, Tapkenhinrichs M. Evaluation of pedo-transfer functions[J]. Soil Sci. Soc. Am. J., 1993, 57:1088-1095
    [73] K.E. Saxton, W.J. Rawls, J.S. Romberger, and R. Ⅰ. Papendick. Estimating generalized soil-water characteristics from texture[J]. Soil Sci. Soc. Am. J.. 1986, 50(4): 1031-1036.
    [74] Arya L M. Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. S oil Sci. Soc. Am. J., 1981, 45:1023-1330
    [75] Vereeecken H, Diels J, Van orshoven J. Functional evaluation of pedotransfer function for the estimation of soil hydraulic properties[J]. Soil Sci. Soc. Am. J., 1992, 56:1371-1378
    [76] Puckett W E, Dane J B, Hajek B F. Physical and mineralogical date to determine soil hydraulic properties[J]. Soil Sci. Soc. Am. J., 1985, 49:831-836
    [77] Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation[J]. Soil Sci. Soc. Am. J., 1989, 53:987-996
    [78] Rieu M, and Sposito G. Fractal fragmentation, soil porosity, and soil water properties[J]. oil Sci. Soc. Am. J., 1991, 55:1231-1244
    [79] 黄元仿,李韵珠.土壤水分性质的估算——土壤转换函数[J].土壤学报.2002,39(4):517-523.
    [80] A. Bruand, D. Baize & M. Hardy. Prediction of water retention properties of clay soil: validity of relationships using a single soil characteristic [J]. Soil Use and Management. 1994, 10(1), 99-103.
    [81] J.M. Hollis, R.J.A Jones and R.C. Palmer. The effects of organic matter and particle size on the water-retention properties of some soils in the west midlands of England [J]. Geoderma, 1977, 170, 225-238.
    [82] R. DE. JONG, and LOEREL. K. Empirical relations between soil components and water retention at 1/3 and 15 atmosphere [J]. Can. J. Soil Sci. 1982. 62: 343-350.
    [83] S.C. Gupta and W. E. Larson. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density [J]. Water Resources Research. 1979, 15(6). 1633-1635.
    [84] Rawls, w.J., D.L Brakenseik, and K.E. Saxton. Estimation of soil water properties [J]. Trans. ASAE 1982, 25: 1316-1320.
    [85] I.S.Dahiya等.孙耀帮、冯延茹、李志国译,周惠珍校。根据土壤饱和含水率测定其田间持水量、凋萎点和有效持水量的统计方程[J]。土壤学进展,1990,Vol.12(1).p47-49。
    [86] Brooks, R.H., and A.T. Corey. Hydraulic properties of porous media. Hydrology paper no. 3. Colorado State University, For Collins. 1964.
    [87] http://www.bsyse.wsu.edu/saxton/soilwater/.
    [88] 陈述彭,鲁学军,周成虎编著.地理信息系统导论[M].北京:科学出版社.2000,1-2;6-8
    [89] Maguire D.J., Goodchild M. F. 1991. Geographic International Systems: Principle and application, hongman, London.
    [90] 刘高焕,刘庆生编著.信息技术与地理学[M].北京:人民教育出版社.2001,P116-130
    [91] 石元春.土壤学的数字化和信息化革命[J].土壤学报,2000,37(3):289-295
    [92] 周慧珍.土壤地理信息系统[J].土壤,1993,21(6):32-36
    [93] FAO. Soil Map of the World [1: 5M]. UNESCO. Pacis. 1971-1981, Vol. 110
    [94] FAO/ISRIC. FAO. ISRIC Soil Database [SDB][R]. world Soil Resources Reports. 1989, Vol. 64
    
    
    [95] FAO. World Soil Resources: An explanatory note on the FAO world soil resources map at 1: 25 000 000 scale [R]. World Soil Resources Reports. 1991, Vol. 66
    [96] 周慧珍.简介1:100万世界土壤与土地数字化数据库[J].土壤通报,1991,22(3):102-103
    [97] Oldeman L. R. VanEngelen V W P. A world soils and terrain digital database [SOTER]:an improved assessment to land resources[J]. Geoderma, 1993,60:309-325
    [98] 龚子同.面向21世纪的土壤地理学[J].土壤学进展.1995,23(1):18
    [99] Wbite J. G. Soil Zinc Map of USA usint Geostatistics and Geographic Information system [J]. Soil Sci. Soc. Am J. 1997, 61:185-194
    [100] Ernslron D. J. Enhanced soils information system from advances in computer technology[J]. Geoderma. 1993, 60: 327-441
    [101] 贺红土,侯彦林.区域微机土壤信息系统的建立和应用[J].土壤学报。1991,28(4):345-354
    [102] 国家自然科基金委编.土壤学[M].北京:科学出版社.1997
    [103] 南上所网站:中国1:100万土壤数据库的建设框架。http://www.issas.ac.cn
    [104] 雷志栋,杨诗秀.土壤特征空间变异性初步研究[J].水利学报.1985 (9):10-20
    [105] 史德明,石晓日,李德成等.应用遥感技术监测土壤侵蚀动态的研究[J].土壤学报.1996,33(1):48-58
    [106] 王安明,章孝灿,黄智才.浙江省水土流失遥感普查有关技术问题的研究[J].中国水土保持.1999,7:19-21
    [107] 王文中,李锐,张晓萍等.区域土壤侵蚀遥感调查与制图研究[J].水土保持通报.1998,18(5):28-31
    [108] 潘剑君,赵其国,张桃林.江西省兴国县、余江县土壤侵蚀时空变化研究[J].土壤学报.2002,39(1):58-64
    [109] 赵晓丽,张增祥,刘斌等.基于遥感和GIS的全国土壤侵蚀动态监测方法研究[J].水土保持通报.2002,22 (4):29-32
    [110] Wu J, Nellis M. D., Ransom M. D et al. Evaluating soil properties of CRP land using remote sensing and GIS in Finney County, Kansas[J]. Journal of Soil and Water Conservation. 1997, 52(5): 352-358
    [111] Lillesand T M, Kiefer R W. Remoty Sensing and Image Interpretation (the third edition). New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, Inc. 1994, 35-44
    [112] 马晓微,杨勤科.基于GIS的中国潜在水上流失评价指标研究[J].水土保持通报.2001,21(2):41-44
    [113] 史志华,蔡崇法.蔡强国等.GIS支持下土壤侵蚀潜在危险度的分级研究[J].长江流域资源与环境.2002,11(2):190-193
    [114] 孙波,张桃林,赵其国.我国东南丘陵山区土壤肥力的综合评价[J].土壤学报.1995,32(4):362-369。
    [115] 郭旭东.傅伯杰,马克明等.巧夺天工GIS和地统计学的土壤养分空间变异特征研究——以河北省遵化市为例[J].应用生态学报.2000,11(4):557-563
    [116] 周红艺,何毓蓉,张保华.长江上游典型地区SOTER数据库支持下的土壤肥力评价[J].山地学报.2002,20(6):748-751
    [117] 蔡崇法,丁树文,史志华等.GIS支持下乡镇域土壤肥力评价与分析[J].土壤与环境.2000,9(2):99-102
    [118] 王学军,空间分析技术与地理信息系统的结合[J].地理研究.1997,16(3):70-74
    [119] 梁春祥,姚贤良.华中丘陵红壤物理性质空间变异研究[J].土壤学报.1993,30(1):69-77
    [120] Blackmere BS. Precision farming: An introduction Outlook on Agriculture[J]. CABI 1994, 23:275-280
    [121] Reetx HF. Maintenance+buildup nutrient management for the 1990s. Better crops with plant food. 1994, 4:14-19
    [122] 盛建东,蒋平安,文启凯等.基于GIS的区域土壤养分管理与作物推荐施肥信息系统研究[J].土壤.2002,(2):77-81
    
    
    [123] 危常州,侯振安,朱各明等.基于GIS的棉田精准施肥和土壤养分管理系统的研究[J].中国农业科学.2002,35(6):678-685
    [124] 王效举,龚子同,张西森.红壤丘陵小区域水平不同时段土壤质量变化的评价和分析[J].地理研究.1997,17(2):141-149
    [125] 张学雷,张甘霖,龚子同.海南岛土壤质量的指标与量化表达研究[J].应用生态学报.2001,12(4):549-552
    [126] 侯文广,江聪世,熊庆文等.基于GIS的土壤质量评价研究[J].武汉大学学报信息科学版.2003,28(1):60-64
    [127] Mattha W G, Wansda B P. A geographic information system to predict non-point source pollution potential. Water Resources Bulletin [J]. 1987, 23(2):281-291
    [128] 王宁,朱颜明,徐崇刚.GIS用于流域径流污染物的量化研究[J].东北师在学报自然科学版.2002,34 (2):92-98
    [129] 尹君.基于GIS绿色食品基地土壤质量评价方法研究[J].农业环境保护.2001,20(6):446-448,456
    [130] 胡伟平,吴志峰,何建邦.RS与GIS支持下珠江三角洲城镇近期发展对土壤资源利用的影响分析[J].自然资源学报.2002,17(5):549-555
    [131] De Jong, R., Shields, J. A. and Sly, W. K. 1984. Estimated soil water reserves applicable to a wheat-fallow rotation for generalized soil areas mapped in southern Saskatchewan[J]. Can. J. Soil Sci. 64:667-680
    [132] http://www.nhq.nrcs.usda.gov/WSR/mapiadx/maps.htm
    [133] 全国土壤普查办公室编.中国土壤.北京:中国农业出版社.1998。P72
    [134] 高以信 等编著.中国土壤图与中国土壤资源利用改良区划.北京:科学出版社.1998,6-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700