用户名: 密码: 验证码:
黑龙江东安—汤旺河地区金矿地物化遥综合成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东安-汤旺河地区位于我国小兴安岭矿集区,是我国浅成低温热液矿床研究的热点区域之一。自上世纪以来,该区域先后发现团结沟金矿、张三沟金矿、高松山金矿、平顶山金矿等23个金矿床。不同的学者从成矿地质背景、控矿构造、控矿岩体、矿床成因、成矿时代等多个方向进行了研究。但是,该区域森林大面积覆盖,给地质工作带来困难。因此,在前人研究的基础上,加强矿集区区域物化遥信息的提取分析,加强典型矿床的剖析研究,对于浅成低温热液成矿系统的认识以及该矿集区找矿预测都具有重要的意义。
     水系沉积物分析结果表明,元素异常组合呈有规律的分布,高温元素异常组合分布在研究区西侧而低温元素异常组合出现在东侧。研究区东部寻找与中低温元素伴生的Au矿床的找矿潜力较大,并圈定出33个多元素异常组合。重磁边缘检测和遥感线环构造综合分析结果表明,矿集区具有3个层次的断裂。其中,F1-F4断裂是矿集区最重要的控岩构造。对于遥感资料,采用主成分分析提取了矿集区羟基异常和铁染异常。结合地质、物探以及已知矿点的信息,初步划分出4个找矿远景区,并总结了各个远景区的找矿特征。
     高松山金矿赋存于白垩纪下统的板子房组,受构造控制。矿床由4个矿体组成,总体上表现出浅成低温热液型矿床的特征。高松山式矿床的物化遥勘探以寻找磁平缓区,Au、Ag、Sb、As、Bi组合异常和羟基蚀变为主。本文在GIS平台下,综合各类资料,确定在高松山金矿外围,F1界面以北为主要找矿方向。
     团结沟金矿床的成矿母岩为中生代花岗斑岩。矿体受构造控制,由80多条矿体组成。总体上表现出斑岩型矿床的特征。通过电法有限元的理论计算,在矿区自有的地电模型下,存在识别宁远村组火山岩地层、花岗斑岩、片岩层区以及花岗斑岩接触带附近的蚀变带区域的条件。应用这个方法,对矿区外围15号勘探线和23号勘探线,进行了信息提取。其中,23号线具有进一步工作的价值。
     以矿集区23个已知矿点为目标,建立各个证据因子模型,通过拟神经网络运算,求得一组权重。在该组权重下,划分了6个找矿远景区。
Dongan-Tangwanghe Region located in Xiaoxing'anling ore district is a hotresearch area about epithermal deposite in China. Since last century,23gold depositsinclude Tuanjiegou gold deposit, Zhangsangou gold deposit, Gaosongshan golddeposit and Pingdingshan gold deposit have been found in this region. Differentscholars have studied this area from different directions such as metallogenicgeological background, ore-controlling structure, ore control rock, genesis of thedeposit, mineralization age and so on. However, it is hard to do geological work forlarge area of forest. Therefore, on the basis of previous studies, it has obvioussignificance to strengthen the study of regional geophysical, geochemical, remotesensing information and typical deposits for both epithermal metallogenic system andprospecting prediction in this area.
     The analytic result of stream sediments show systematic and regular elementdistributions. Anomalies of low-temperature elements and high-temperature elementsoccur in the western and eastern parts of the study area, respectively.The eastern areahas substantial potential for exploring Au deposits associated with middle-tolow-temperature elements, and this paper delineates33element anomaly associations.Combing edge detection of gravity and magnetic and linear ring structure of remotesensing, the faults of this area have been divided into3grades. Among all these faults,F1-F4fractures plays an important role in distribution of main rock and volcano rockstrata of this area. Though Principal component analysis, this paper extractsinformation of hydroxyl anomalies anomaly and iron staining anomaly. Combing theinformation of geology, geophysics and known deposits, this paper delineates4potential prospecting areas preliminary, and summarizes the prospecting features ofthese areas.
     Gaosongshan gold deposit occurs in the board room of Lower Cretaceous, andhas been controlled by faults. The deposit is made up of4ore bodies. Totally, thisdeposit has feature of Epithermal deposit. The prospecting feature of Gaosongshan gold deposit is to locate the area which have flat magnetic anomalies,Au-Ag-Sb-As-Bi element anomaly associations and hydroxyl anomalies. Under GISplatform, Combing all kind of datum, this paper has forecasted the most importantdirection for prospecting is the north of F1.
     The ore-forming mother rock of Tuanjiegou gold deposit is Mesozoic granites.The deposite is controlled by structure. Totally, this deposit has feature of Porphyrydeposit.Through calculation with method of finite element on electric prospecting, thegeoelectric model of this deposite has condition to distinguish the boundary ofNingyuancun group’ volcano rock strata, granite porphyry, schist layer and alterationzones which are nearby border of the granite porphyry. With this method, this paperhas extracted information of15th and23th exploratory line of periphery. And23thexploratory line has potential value.
     As the goal of23known deposite, through Bp, this paper have established allkind of evidence factor models, and acquired a group of weight. With this group ofweight, this paer have drew the probability map of prospecting, and delineates6potential prospecting areas.
引文
Allis R G. Geophysical anomalies over epithermal systems[J]. Journal of Geochemical exploration,1990,36(1):339-374.
    André-Mayer A S, Bailly L, Lerouge C, et al. Constraints on the ore fluids in the Sando AlcaldeAuAg epithermal deposit, southwestern Peru: fluid inclusions and stable isotope data[J].Comptes Rendus Geoscience,2005,337(8):745-753.
    Barnes, Hubert Lloyd, ed. Geochemistry of hydrothermal ore deposits. Wiley. com,1997.
    Beane R E, Titley S R. Porphyry copper deposits. Part II. Hydrothermal alteration andmineralization [J]. Economic geology75th anniversary volume,1981:235-269.
    Bonham~Cater, G.F and Cheng Q. M. Spatially weighted Principal Component analysis[N].Presented at IAMG2001Meeting, Cancun, Mexico, SePtember,2001:6-12.
    Bonham Jr H F. Models for volcanic-hosted epithermal precious metal deposits: a review[C]//International volcanological congress, symposium.1986,5:13-17.
    Bridges N J, Hanley J T, Mc Cammon R B. a computer program for eneoding regional explorationdata for use in charaeteristic anaysis[J]. ComPuters&Geoscienees,1985,11(5):513-519.
    Cheng Q. Spatial and scaling modelling for geochemical anomaly separation[J]. Journal ofGeochemical exploration,1999,65(3):175-194.
    Cheng Q. The perimeter-area fractal model and its application to geology[J]. MathematicalGeology,1995,27(1):69-82.
    Clark D A, French D H, Lackie M A, et al. Magnetic petrology: application of integrated rockmagnetic and petrological techniques to geological interpretation of magnetic surveys[J].Exploration Geophysics,1992,23(2):65-68.
    Clark I, ROKE. A computer program for nonlinear least squares deeomposition of mixtures ofdistributions[J]. ComPuters&GeosCienees,1977,3(2):245-256.
    Corinne A, Locke,Simon A, Johnson, John Cassidy, Jeffrey L. Mauk.Geophysical exploration ofthe Puhipuhi epithermal area, Northland, New Zealand[J]. Journal of GeochemicalExploration,1999,65:91-109.
    Criss R E, Champion D E, McIntyre D H. Oxygen isotope, aeromagnetic, and gravity anomaliesassociated with hydrothermally altered zones in the Yankee Fork mining district, CusterCounty, Idaho[J]. Economic Geology,1985,80(5):1277-1296.
    Garwin S. The geologic setting of intrusion-related hydrothermal systems near the Batu Hijauporphyry copper-gold deposit, Sumbawa, Indonesia[J]. SPECIAL PUBLICATION-SOCIETY OF ECONOMIC GEOLOGISTS,2002,9:333-366.
    Hedenquist J W, Arribas A R, Gonzalez-Urien E. Exploration for epithermal gold deposits[J].Reviews in Economic Geology,2000,13:245-277.
    Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion-centered hydrothermal system;Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. EconomicGeology,1998,93(4):373-404.
    Hemley J J, Cygan G L, Fein J B, et al. Hydrothermal ore-forming processes in the light of studiesin rock-buffered systems; I, Iron-copper-zinc-lead sulfide solubility relations[J]. EconomicGeology,1992,87(1):1-22.
    Holden E J, Fu S C, Kovesi P, et al. Automatic identification of responses from porphyryintrusive systems within magnetic data using image analysis[J]. Journal of AppliedGeophysics,2011,74(4):255-262.
    Hornby P, Boschetti F, Horowitz F G. Analysis of potential field data in the wavelet domain[J].Geophysical Journal International,1999,137(1):175-196.
    Hou Z, Yang Z, Qu X, et al. The Miocene Gangdese porphyry copper belt generated duringpost-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews,2009,36(1):25-51.
    Irvine R J, Smith M J. Geophysical exploration for epithermal gold deposits[J]. Journal ofGeochemical Exploration,1990,36(1):375-412.
    Izawa E, Urashima Y, Ibaraki K, et al. The Hishikari gold deposit: high-grade epithermal veins inQuaternary volcanics of southern Kyushu, Japan[J]. Journal of Geochemical Exploration,1990,36(1):1-56.
    Jensen E P, Barton M D. Gold deposits related to alkaline magmatism[J]. Rev Econ Geol,2000,13:279-314.
    Jimenez Jr F A, Yumul Jr G P, Maglambayan V B, et al. Shallow to near-surface, vein-typeepithermal gold mineralization at Lalab in the Sibutad gold deposit, Zamboanga del Norte,Mindanao, Philippines[J]. Journal of Asian Earth Sciences,2002,21(2):119-133.
    Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins, and geodynamic settings ofsupergiant gold metallogenic provinces[J]. Science in China Series D: Earth Sciences,2000,43(1):1-68.
    Lin Y P, Chang T K, Shih C W, et al. Factorial and indicator kriging methods using a geographicinformation system to delineate spatial variation and pollution sources of soil heavy metals[J].Environmental Geology,2002,42(8):900-909.
    Lindgren W. Mineral deposits[M]. McGraw-Hill Book Company, inc.,1933.
    Lippmann R P. Review of neural networks for speech recognition[J]. Neural computation,1989,1(1):1-38.
    Locke C A, De Ronde C E J. Delineation of gold-bearing hydrothermally altered rocks usinggravity data A New Zealand example[J]. Geoexploration,1987,24(6):471-481.
    Locke C A, Johnson S A, Cassidy J, et al. Geophysical exploration of the Puhipuhi epithermal area,Northland, New Zealand[J]. Journal of Geochemical Exploration,1999,65(2):91-109.
    Loughlin, W. P. Principal Component Analysis for alteration mapping[J]. Photogrammetric Engineering and Remote Sensing,1991(57):1163~1169.
    Lowell J D, Guilbert J M. Lateral and vertical alteration-mineralization zoning in porphyry oredeposits[J]. Economic Geology,1970,65(4):373-408.
    Miller H G, Singh V. Potential field tilt a new concept for location of potential field sources[J].Journal of Applied Geophysics,1994,32(2):213-217.
    Oldenburg D W, Li Y, Ellis R G. Inversion of geophysical data over a copper gold porphyrydeposit: a case history for Mt. Milligan[J]. Geophysics,1997,62(5):1419-1431.
    Robb L. Introduction to ore-forming processes[M]. Wiley. com,2009.
    Ruiz-Armenta J R, Prol-Ledesma R M. Techniques for enhancing the spectral response ofhydrothermal alteration minerals in Thematic Mapper images of Central Mexico[J].International Journal of Remote Sensing,1998,19(10):1981-2000.
    Seedorff E, Dilles J H, Proffett J M, et al. Porphyry deposits: characteristics and origin ofhypogene features[J]. Economic Geology100th Anniversary Volume,2005,29:251-298.
    Seward T M, Barnes H L. Metal transport by hydrothermal ore fluids[J]. Geochemistry ofhydrothermal ore deposits,1997,3:435-486.
    Sillitoe R H. Gold-rich porphyry deposits, Descriptive and genetic models and their role inexploration and discovery[J]. SEG Reviews,2000,13:315-345.
    Sim B L, Agterberg F P, Beaudry C. Determining the cut off between background and relativebase metal smeller contamination levels using multifractal[J]. Computer Geoscience,1999,25(9):1024-1041.
    Simmons S F, White N C, John D A. Geological characteristics of epithermal precious and basemetal deposits[J].2005.
    Verduzco B, Fairhead J D, Green C M, et al. New insights into magnetic derivatives for structuralmapping[J]. The Leading Edge,2004,23(2):116-119.
    Wannamaker P E. Resistivity structure of the northern Basin and Range[J]. The Role of Heat inthe Development of Energy and Mineral Resources in Northern Basin and Range,1983:345-362.
    Whitten E H T. Twenty-five years of mathematical geology: a new threshold[J]. MathematicalGeology,1983,15(2):237-243.
    Williams-Jones A E, Bowell R J, Migdisov A A. Gold in solution[J]. Elements,2009,5(5):281-287.
    Williams-Jones A E, Heinrich C A.100th Anniversary special paper: vapor transport of metalsand the formation of magmatic-hydrothermal ore deposits[J]. Economic Geology,2005,100(7):1287-1312.
    阿伯特伯格.地质数学[J].1980.
    边红业,陈满,刘洪利,等.黑龙江省逊克县高松山金矿床地质特征及成因分析[J].地质与资源,2009,18(2):91-95.
    蔡强,杨钦,陈其明.地质结构重叠域的限定Delaunay三角剖分研究[J].计算机辅助设计与图形学学报,2004,16(6):766-771.
    曹熹,党增欣,张兴洲.佳木斯复合地体[J].长春吉林科学技术出版杜,1992.
    陈根文,夏斌,肖振宇,等.浅成低温热液矿床特征及在我国的找矿方向[J].地质与资源,2001,10(3):165-171.
    陈述彭,鲁学军,周成虎.地理信息系统导论[M].科学出版社,1999.
    陈行时,徐文喜,张东才.黑龙江省东安—汤旺河地区金矿整装勘查[R].黑龙江省地质调查研究总院,2010.
    陈永清,汪新庆,陈建国,等.基于GIS的矿产资源综合定量评价[J].地质通报,2007,26(2):141-149.
    陈跃军,花艳秋,李林山.吉林敦化小蒲柴河地区张三沟岩组的建立[J].世界地质,2005,24(2):144-148.
    成秋明.多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J].地球科学,2001,26(2):162-167.
    成秋明.非线性成矿预测理论:多重分形奇异性~广义自相似性-分形谱系模型与方法[J]地球科学,2006,31(3):337-348.
    程军,边红业,段晓君,等.黑龙江嘉荫—萝北地区金矿构造控矿特征分析[J].黄金地质,2004,10(3):27-31.
    池顺都,周顺平. GIS支持下的地质异常分析及金属矿产经验预测[J].地球科学:中国地质大学学报,1997,22(1):99-103.
    樊战军,卿敏,于爱军,等. EH4电磁成像系统在金矿勘查中的应用[J].物探与化探,2007,31(B10):72-76.
    樊战军,于爱军,陈孝强,等. EH4连续电导率测量在森林覆盖区找矿中的应用效果——以黑龙江省嘉荫县张三沟金矿区为例[J].黄金科学技术,2011,15(1):48-53.
    范永香,阳正熙.成矿规律与成矿预测[M].中国矿业大学出版社,2003.
    范正国,赵玉刚,卢建忠.航空物探综合站测量在多宝山斑岩铜矿上的应用效果[J].地质与勘探,2004,40(4):60-63.
    方洪宾.1:250000遥感译技术指南[M].地质出版社,2010.
    郝社峰,刘汉湖,杨武年.多元信息成矿预测模型分析及实例应用[J].江苏地质,2005,29(4):234-238.
    黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993, l-734.
    侯敏,杜恒芳,等.小兴安岭南段—张广才岭成矿带主要金属矿床成矿系列的划分及区域成矿[J].黑龙江地质,1998(3):235-242.
    侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征,岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-1817.
    胡金星,潘懋,马照亭,等.高效构建Delaunay三角网数字地形模型算法研究[J].北京大学学报(自然科学版),2003,39(5):736-741.
    黄铁心,刘晓东.碧田金矿——石英—冰长石型浅成低温热液贵金属矿床[J].地质地球化学,1996(6):1-4.
    黄旭钊,徐昆,梁月明.利用MapInfo综合分析多源地学信息进行矿产预测[J].地球科学:中国地质大学学报,2001,26(2):189-191.
    江玉乐,雷宛.地球物理数据处理教程[M].地质出版社,2006.
    蒋甫玉,孟令顺,张凤旭.利用重力资料研究黑龙江省孙吴~嘉荫地区基底构造特征及油气远景[J].世界地质,2007,26(3):363-374.
    蒋敬业,程建萍.应用地球化学[M].中国地质大学出版社,2006.
    焦新华.重力与磁法勘探[M].地质出版社,2009.
    康斯坦丁诺夫. PM.评价金属矿床的逻辑信息方法[M].纪忠元译.北京:地质出版社,1982,1-6.
    李碧乐,王健.黑龙江团结沟金矿区花岗斑岩体与金矿化的关系[J].黄金,1998,19(3):3-6.
    李承东,张福勤,苗来成,等.华北陆块东北缘张三沟岩组SHRIMP锆石U-Pb年代学研究及其地质意义[J].地质学报,2009,83(5):642-650.
    李东.内蒙古北山地区矿化蚀变遥感异常提取研究及应用[D].北京:中国地质大学(北京),2008.
    李凤友,张生义.平顶山金矿床的稀土元素地球化学特征[J].世界地质,2000,19(4):334-337.
    李锦轶,牛宝贵,宋彪,徐文喜,等.长白山北段地壳的形成与演化[M].北京:地质出版社,1999,1-136.
    李景强,周坤,金同和.黑龙江团结沟金矿床地质特征及矿床成因探讨[J].黄金,2008,29(6):19-24.
    李牧,闫继红,李戈.自适应Canny算子边缘检测技术.哈尔滨工程大学学报,2007,28(9):1002-1007.
    李双林,迟效国,戚长谋.中国满洲里-绥芬河断面域构造地球化学与构造演化[J].地质地球化学,1996,6:45-51.
    李晓晖,袁峰,白晓宇,等.典型矿区非正态分布土壤元素数据的正态变换方法对比研究[J].地理与地理信息科学,2010,26(6):102-105.
    刘秉光,易善锋.基底岩系对火山岩型金矿成矿的意义[J].贵金属地质,1995,4(2):81-85.
    刘超,周激流,何坤.基于Canny算法的自适应边缘检测方法.计算机工程与设计,2010,31(18):4036-4039.
    刘二永,郭科等.分形技术用于查证化探异常[J].成都理工大学学报,2002,29(4):444-447.
    刘二永,唐菊兴.分形技术用于查证化探异常[J].成都理工大学学报,29(4):444-447.
    刘福来,田丽华.平顶山金矿石英的找矿矿物学研究[J].黄金,1996,17(4):3l7.
    刘桂阁,王恩德,常春郊,等.黑龙江逊克县高松山金矿成因探讨[J].有色矿冶,2006,22(4):1-4.
    刘金兰,李庆春,赵斌.位场场源边界识别新技术及其在山西古构造带与断裂探测中的应用研究[J].工程地质学报,2007,15(4):213-217.
    刘树才,刘志新,姜志海,等.矿井直流电法三维正演计算的若干问题[J].物探与化探,2004,28(2):170-172.
    刘燕君.遥感找矿的原理和方法[M].北京:冶金工业出版社,1991.
    毛先成.三维数字矿床与隐伏矿体定量预测研究[博士学位论文].长沙:中南大学,2006.
    潘军.多元地学空间数据融合及可视化研究[D].长春:吉林大学博士论文,2005.
    祁进平,陈衍景, Franco Pirajno.东北地区浅成低温热液矿床的地质特征与构造背景[J].矿物岩石,2005,25(2):47-59.
    申维.分形混沌与矿产预测[M].北京:地质出版社,2002.
    施俊法.浙江省诸暨地区元素地球化学分布与标度律[J].地球科学,2001,26(2):167-171.
    石永生.概率论与数理统计[M].河南大学出版社,2003.
    史衍淮,郭常政.利用重力资料确定断层构造的方法和效果[A].区域重力调查方法技术中心,1985:62-74.
    宋彪,牛宝贵,李绵轶,徐文喜.牡丹江一鸡西花岗岩类同位素地质年代学研究.岩石矿物学杂志[J],1994,13(3):204-213.
    沙德铭,毋瑞身,田昌烈,等.西天山吐拉苏-也里莫墩矿带金矿成矿条件与成矿规律[A][J].九五”全国地质科技重要成果论文集,2000.
    孙凤兴,李景强,杨鹏.团结沟地质金矿模型[J].吉林地质,1996,15(2):52-60.
    孙雄.浅成低温热液型矿床地球化学勘查方法[J].云南煤炭,2012,4:54-58.
    唐菊兴,邓世林,郑文宝,等.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,2011,30(2):179-196.
    唐克东,王莹,何国琦,邵济安.中国东北及邻区大陆边缘构造[J].地质学报,1995,69〔1):16-29.
    唐忠,叶松青,杨言辰.黑龙江逊克高松山金矿成因模式[J].世界地质,2010,29(3):400-407.
    童庆禧,等.中国典型地物波谱及特征分析[M].北京:科学出版社,1990.
    涂光炽.中国火山岩型金矿床[M].中国金矿床研究新进展.第一卷(上篇).北京:地震出版社,1994,65-82.
    万天丰.中国大地构造学纲要[M].地质出版社.
    王福同,庄道泽,胡建卫,等.物探在新疆土屋地区铜矿找矿中的应用[J].中国地质,2001,28(3):40-46.
    王可勇,任云生,程新民.黑龙江团结沟金矿床流体包裹体研究及矿床成因[J].大地构造与成矿学,2004,28(2):171-178.
    王少怀,裴荣富.菲律宾拉拉布金矿床围岩蚀变与成矿作用[J].大地构造与成矿学,2008,32(1):81-91.
    王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2000.
    王艳忠,边红业,于明军,等.黑龙江乌云盆地典型金矿床地质特征及下步找矿方向[J].中国西部科技,2009,08(30):01-03.
    王艳忠,郎利国,于明军.高松山金矿区地质、物化探特征及找矿方向[J].吉林地质,2006,25(2):36-41.
    王艳忠,纪奎森,陈桂虎.黑龙江省逊克县高松山矿区金矿普查报告[R].中国人民武装警察部队黄金第一支队一中队,2008.
    王应钧.东北北部斑岩型矿床物化探综合找矿模式[J].地质与勘探,1985,10:009.
    邬伦,刘瑜,张军等.地理信息系统原理、方法和应用[M].北京:科学出版社,2001,3-13.
    毋瑞身.低温浅成热液金矿若干问题探讨[J].贵金属地质,1993,2(1):47-53.
    吴国学.大功率激电法在团结沟金矿外围找矿中的应用[J].黄金,1995,16(6):2-5.
    吴国学,尹学义,李凤友,等.黑龙江团结沟金矿成矿地质条件分析及电法勘查评价[J].世界地质,2008,27(2):183-187.
    吴华,何政伟,张庭斌,等.遥感异常信息在西藏铁、铜、铅锌、金等矿种中的应用.《第十七届中国遥感大会摘要集》,2010年.
    向忠林.基于GIS的沂南金矿成矿地质条件分析及成矿预测[学位论文].中国地质大学,2008.
    谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    谢淑云,鲍征宇.地球化学场的连续多重分形模式[J].地球化学,31(2):191-200.
    徐国彬.黑龙江省嘉荫县平顶山金矿控矿构造及找矿方向[J].黄金地质,1995,1(2):26-29.
    徐世浙.点电源二维电场问题中付氏反变换的波数k的选择[J].物探化探计算技术,1988,3:006.
    闫芳.基于GIS的桂西—滇东南锰矿资源预测及靶区圈定[D].中南大学,2011.
    严加永.长江中下游成矿带深部背景综合地球物理研究[学位论文].北京:中国地质大学,2010.
    阎积慧.等. TM图像地质应用原理与方法[M].北京:冶金工业出版社,1995.
    杨茂森,黎清华,杨海巍.分形方法在地球化学异常分析中的运用研究-以胶东矿集区为例[J].地球科学进展,2005,20(7):809-814.
    杨振亚,白治江,王成道.自适应Canny边缘检测算法.上海海运学院学报,2003,24(4):373-377.
    杨中宝.基于GIS的矿床空间定位预测研究—以铜陵凤凰山矿田为例[博士学位论文].长沙:中南大学,2004.
    尹冰川,冉清昌,等.小兴安岭-张广才岭地区区域成矿演化[J].矿床地质,1997,16(3):235-242.
    袁庭佐,马家骏.黑龙江省东部变质岩和变质作用研究[J].黑龙江地质,1992,3(2):l-20.
    张炳熹.浅谈矿床研究与勘查实践[J].地学前缘,1999,6(1):1-11.
    张沧江.黑龙江省嘉荫县张三沟矿区岩金普查[R].中国人民武装警察部队黄金第一总队,2010.
    张德全,李大新,赵一鸣,等.福建紫金山矿床-我国大陆首例石英-明矾石型浅成低温热液铜-金矿床[J].地质论评,1991,37(6):481-491.
    张高楼,贾国志,王振忠.黑龙江省嘉荫县平顶山岩金矿区勘探地质报告[R].中国人民武装警察部队黄金第五支队,1993.
    张兴洲.黑龙江岩系-古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992:94-101.
    张兴洲,张元厚.蓝片岩与绿片岩共存:龙江岩系构造演化的新证据[J].长春地质学院学报,1991,21(3):277-282.
    张贻侠等.中国满洲里~绥芬河地学断面简介[A].长春地质学院地质研究所文集.地震出版社,1992,41-47.
    张玉君,杨建民.基于裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,(2):46-53.
    张重泽,任启江.团结沟花岗闪长斑岩与金矿化的关系[J].地质地球化学,1992,67(5),68-70.
    赵鹏大,胡旺亮,李紫金.矿床统计预测(第二版)[M].北京:地质出版社,1994.
    周建波,张兴洲, Simon A WILDE,等.黑龙江杂岩的碎屑错石年代学及其大地构造意义[J].岩石学报,2009,25(8):1924-1936.
    周熙襄,钟本善.电法勘探数值模拟技术[M].成都:四川科学技,1986.
    周熙襄,钟本善,严忠琼,等.点源二维电法正演的有限单元法[J].物化探电子计算技术,1983,3:002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700