用户名: 密码: 验证码:
基于液晶自适应光学的高对比度视网膜微血管成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过视网膜微血管形态检查可以早期诊断内分泌疾病。但是,由于人眼像差的存在,使临床所用检眼镜的分辨率大幅下降,不能直接看到10μm以下的微细血管。自适应光学技术能够实时补偿人眼像差,得到接近衍射极限的视网膜视觉细胞图像,但对视网膜微细血管成像时还存在一些问题。本论文针对准确定位微细血管困难、图像对比度难以达到临床要求等问题,结合人眼的光学特性,进行了一系列光学系统的创新设计。
     采用视标盯视方法进行眼底方位定位。根据人眼焦深、调节误差、视觉锐度和对颜色的敏感度,设计视标的位置、形状、照明波长等:确定眼前1D处的视标满足准确性、普适性的要求;设计马耳他十字视标,调节支臂可满足不同视力的人眼盯视;采用人眼最敏感的绿光照射视标,有利于提高人眼盯视能力。根据视网膜结构,定位方法分三步:1)选择小凹中心为定位的基准,2)横向定位之后,按照系统放大倍率,将成像相机进行轴向位移,聚焦到位于视网膜内部几层的血管,3)找到较粗血管后,可沿血管走势有意识控制横向定位,直至寻找到10μm以下微细血管。
     设计了具有微细血管搜寻定位的自适应光学成像系统。根据视网膜血管的吸收波长,确定了高对比度视网膜血管的成像方法:1)先用785nm红外光搜寻,以避免绿光长时曝光对人眼的强烈刺激,2)再使用561nm绿光数毫秒曝光成像。
     通过理论计算得到具体的有利于提高对比度的途径。利用血液与周围组织结构偏振性的差异,设计液晶偏振自适应光学系统,利用微细血管的消偏光成像,对比度达到0.25,较原来提高约1.2倍。针对实际光路中由于光学器件的加工和光学系统装调中的误差,极限分辨率远远达不到理想设计值的问题,设计简易化自适应光学系统,大大减少所使用的光学元器件的个数。在保证系统校正功能的基础上,提高了系统的能量利用率和调制传递函数。利用图像配准与叠加消除噪声以提高对比度,使得获得的图像具有更高的临床使用价值。
Fundus examination is a necessary step to diagnos many diseases, for that themorphology of retinal vessels can early represent many endocrine diseases.However, due to the existence of ocular aberrations, the resolution of the traditionalophthalmoscope is not so high to observe changes of vascular subtle timely.Adaptive optics is a novel technology to compensate aberrations of human eye forretinal imaging, which can reach close to the diffraction limit. This research grouphas been employed a liquid crystal adaptive optics system successfully for highresolution imaging of retinal photoreceptor cells. However, there are still someproblems on human vascular imaging, including accurate positioning of microvascular difficulties, not specifically for vascular imaging adaptive optics system, theimage contrast is difficult to achieve the clinical application. In this paper, combinedwith the optical properties of the eye, several measures would be taken on theinnovation design a series of optical system.
     For non-paralysis eye, a target was employed for eyes staring. According tohuman focal depth, the eye accommodation error, visual acuity and color sensitivity,the visual target location, shape, illumination wavelength were identified anddesigned. The distance of1D target from the human pupil met the accuracyrequirements of the system. The design of Malta cross target shape, regulating arm can meet different visual acuity eyes stare. The most sensitive wavelength is greenlighting. Even if a faint green light was illuminated to the target, the human eye canalso clearly distinguish details, which is beneficial to improve the ability to stare.Based on retinal structures, the location method was determined to divide into threesteps:1) selecting foveal most center positioning reference,2) lateral positioning,in accordance with the system magnification, the imaging camera axial displacement,focusing in the inner layers of the retina blood vessel; this is a process of axial.3)Find the vessel position, along the vascular trend conscious control of lateralpositioning, in order to find the location of the lesion, splicing and processing alsohas the benefit of late vascular.
     An adaptive optical imaging system with micro vascular searching and locatingwas designed. According to the distribution characteristics of vessels, a stare systemcan realize large range for searching vessels. According to the optical characteristicsof retinal blood vessels, the illumination system contains two sources, includingdetection and imaging light source. In order to achieve good imaging results, thelinkage of light source and camera should be realized. With the analyzed statistics ofthe human eye axis data and calculated axial magnification, the movement of sourceand camera can be confirmed accurately.
     Specific ways to improve images contrast had been theoretical calculated anddiscussed. Using the difference polarization characteristics between blood and othertissues, a polarization liquid crystal adaptive optics system had been designed. Withthe help of polarized light imaging of micro blood vessels, the imaging contrast canbe improved to0.25, which was increased by about1.2times and basically reachedthe requirements for clinical use. In view of the actual optical path due to theprocessing and optical devices installed in the resolution limit error adjustment, asfar from the ideal design value, design of simple adaptive optical system, greatlyreduce the number of optical components used in the. Based on obtained retinalvascular images, a variety of image processing methods were used for improvingcontrast. Image registration was employed for noise elimination to improve contrast. In accordance with the blood flow, the vascular morphology was reconstructed,which made the obtained images with higher clinical value.
引文
[1]姚毅,赵军平.糖尿病眼底病防治指南[J].中国实用眼科杂志,2001,19(2):83-95
    [2]张承芬.糖尿病性视网膜病变临床与发病机制研究进展[J].中国实用眼科杂志,1998,16(4):198-201
    [3]刘艳,罗志忠.糖尿病性视网膜病变与糖尿病控制状态研究[J].中国糖尿病杂志,2002,10(1):37-39
    [4] X. Wu, R. Wang, Q. Jiang, et al. Determination of amino acid neurotransmittersin rat hippocampi by HPLC‐UV using NBD‐F as a derivative [J]. BiomedicalChromatography,2013
    [5] M. Rynders, B. Lidkea, W. Chisholm, et al. Statistical distribution of fovealtransverse chromatic aberration, pupil centration, and angle psi in a population ofyoung adult eyes [J]. J Opt Soc Am A Opt Image Sci Vis,1995,12(10):2348-2357
    [6] J. Tabernero, A. Benito, E. Alcon, et al. Mechanism of compensation ofaberrations in the human eye [J]. J Opt Soc Am A Opt Image Sci Vis,2007,24(10):3274-3283
    [7]赵秋玲,王肇圻.非球面和梯度折射率在眼光学成象中的作用[J].光子学报,2002,31(11):1409-1412
    [8] S. Guidarelli. Off-axis Imaging in the Human Eye [J]. Atti d. Fond. G. Ronchi1972,27:449-460
    [9]刘瑛,颜世龙,叶秀兰, et al.我国正常中青年暗适应下的瞳孔大小[J].眼科新进展,2005,25(1):43-45
    [10]刘爱珍,王小兵,彭彧华.人眼调节机制的生物力学研究[J].医用生物力学,2007,22(3):320-322
    [11] Y. Le Grand. Physiological optics [M], Springer series in optical sciences v13(Berlin; New York: Springer-Verlag),1980.64-66
    [12] H. H. Emsley. Visual Optics [M],5th ed.(London: Hatton Press),1953
    [13] E. R. Kandel, J. H. Schwartz. Principles of neural science [M],2nd ed.(New York: Elsevier),1985.344-355
    [14]蔡兆明,陈瑞华.视网膜中央动脉对视神经血供关系的研究[J].解剖学杂志,1993,16(6):538-541
    [15] D. Vaughan, T. Asbury. Vaughan&Asbury's general ophthalmology [M](New York: Lange Medical Books/McGraw-Hill),2004
    [16] S. Wild, G. Roglic, A. Green, et al. Global prevalence of diabetes-Estimatesfor the year2000and projections for2030[J]. Diabetes Care,2004,27(5):1047-1053
    [17] D. R. Whiting, L. Guariguata, C. Weil, et al. IDF Diabetes Atlas: Globalestimates of the prevalence of diabetes for2011and2030[J]. Diabetes Research andClinical Practice,2011,94(3):311-321
    [18]丁小燕,欧杰雄,马红婕, et al.糖尿病性视神经病变的临床分析[J].中国实用眼科杂志,2006,23(12):1269-1274
    [19]贾朝京.糖尿病及高血压患者眼血流动力学研究[J].眼科新进展,2002,22(4):277-278
    [20]徐辉雄,张青萍.三维超声成像在眼科的初步应用[J].放射学实践,1998,13(2):66-70
    [21]丛淑珍,徐辉雄.三维超声成像在眼部疾病中的应用[J].中国超声医学杂志,2002,18(5):384-385
    [22]杨加强,程德文,王庆丰, et al.新型大视场消杂光眼底相机光学系统的设计[J].光学学报,2013,32(11):204-210
    [23]李灿,宋淑梅,刘英, et al.折反式眼底相机光学系统设计[J].光学精密工程,2012,20(8):1710-1717
    [24] R. H. Webb, G. W. Hughes, F. C. Delori. Confocal scanning laserophthalmoscope [J]. Appl Opt,1987,26(8):1492-1499
    [25] J. M. Bueno, M. C. Campbell. Confocal scanning laser ophthalmoscopyimprovement by use of Mueller-matrix polarimetry [J]. Opt Lett,2002,27(10):830-832
    [26]程少园,曹召良,胡立发, et al.液晶自适应光学扫描激光检眼镜的光学系统设计[J].红外与激光工程,2011,40(002):253-257
    [27] K. Mori, T. Abe, S. Yoneya. Dome-shaped detachment of premacular vitreouscortex in macular hole development [J]. Ophthalmic Surg Lasers,2000,31(3):203-209
    [28] J. Kim, D. T. Miller, E. Kim, et al. Optical coherence tomography specklereduction by a partially spatially coherent source [J]. J Biomed Opt,2005,10(6):064034
    [29] S. Marcos, S. Ortiz, P. Perez-Merino, et al. Three-dimensional evaluation ofaccommodating intraocular lens shift and alignment in vivo [J]. Ophthalmology,2014,121(1):45-55
    [30] V. Sheth, I. Gottlob, S. Mohammad, et al. Diagnostic potential of iriscross-sectional imaging in albinism using optical coherence tomography [J].Ophthalmology,2013,120(10):2082-2090
    [31] Y. Wang, J. Xia, L. V. Wang. Deep-tissue photoacoustic tomography ofForster resonance energy transfer [J]. J Biomed Opt,2013,18(10):101316
    [32] V. Tsytsarev, B. Rao, K. I. Maslov, et al. Photoacoustic and optical coherencetomography of epilepsy with high temporal and spatial resolution and dual opticalcontrasts [J]. J Neurosci Methods,2013,216(2):142-145
    [33] X. Wang, Y. Xu, M. Xu, et al. Photoacoustic tomography of biological tissueswith high cross-section resolution: reconstruction and experiment [J]. Med Phys,2002,29(12):2799-2805
    [34]刘永基,王肇圻,方志良, et al.人眼模型中各折射面对人眼像差的贡献[J].光子学报,2006,34(10):1554-1556
    [35]姜宝光,穆全全,曹召良, et al.液晶空间光调制器对真实人眼畸变波前的校正[J].光学精密工程,2009,17(11):2651
    [36]江扬子,王勤美.波前像差技术及其在屈光手术中的应用[J].眼视光学杂志,2001,3(4):250-252
    [37] W. N. Souter. Handbook of optics for students of ophthalmology [M](NewYork, London,: The Macmillan company),1899
    [38] W. G. Driscoll, W. Vaughan, Optical Society of America. Handbook of optics
    [M](New York: McGraw-Hill),1978
    [39] H. von Helmholtz. Popular Scientific Lectures [J]. Dover Publications,1962
    [40]全薇,宋贵才,王肇圻, et al.人眼大视场波前像差特性研究[J].光子学报,2007,36(6):1102-1105
    [41]王杨,王肇圻,刘铭, et al.基于个性化人眼模型的大视场波像差特性的研究[J].光学学报,2006,26(11):1727-1733
    [42]全薇,凌宁,王肇圻, et al.哈特曼传感器测量人眼波像差的特性研究[J].光电工程,2003,30(3):1-5
    [43] J. Porter, A. Guirao, I. G. Cox, et al. Monochromatic aberrations of thehuman eye in a large population [J]. J Opt Soc Am A Opt Image Sci Vis,2001,18(8):1793-1803
    [44] L. N. Thibos, X. Hong, A. Bradley, et al. Statistical variation of aberrationstructure and image quality in a normal population of healthy eyes [J]. J Opt Soc AmA Opt Image Sci Vis,2002,19(12):2329-2348
    [45]姜宝光,穆全全,曹召良, et al.液晶波前校正器校正水平方向上的大气湍流[J].液晶与显示,2009,24(3):396-398
    [46]曹召良,穆全全,胡立发, et al.600mm望远镜液晶自适应系统成像光路设计[J].光学学报,2009,28(6):1147-1150
    [47]刘超,胡立发,穆全全, et al.校正水平湍流波面的自适应光学系统的带宽需求[J].光学精密工程,2010,18(10):2137
    [48]曹召良,李小平,宣丽, et al.液晶自适应光学的研究进展[J].中国光学,2012,5(1):12-19
    [49] L. Wang, D. D. Koch. Ocular higher-order aberrations in individuals screenedfor refractive surgery [J]. J Cataract Refract Surg,2003,29(10):1896-1903
    [50] T. O. Salmon, C. van de Pol. Normal-eye Zernike coefficients androot-mean-square wavefront errors [J]. J Cataract Refract Surg,2006,32(12):2064-2074
    [51] S. J. Hashemian, M. Soleimani, A. Foroutan, et al. Ocular higher-orderaberrations and mesopic pupil size in individuals screened for refractive surgery [J].Int J Ophthalmol,2012,5(2):222-225
    [52] X. Cheng, A. Bradley, X. Hong, et al. Relationship between refractive errorand monochromatic aberrations of the eye [J]. Optom Vis Sci,2003,80(1):43-49
    [53] W. C. Kwan, S. P. Yip, M. K. Yap. Monochromatic aberrations of the humaneye and myopia [J]. Clin Exp Optom,2009,92(3):304-312
    [54] S. Amano, Y. Amano, S. Yamagami, et al. Age-related changes in corneal andocular higher-order wavefront aberrations [J]. Am J Ophthalmol,2004,137(6):988-992
    [55] H. Cheng, J. K. Barnett, A. S. Vilupuru, et al. A population study on changesin wave aberrations with accommodation [J]. J Vis,2004,4(4):272-280
    [56] J. Porter, G. Yoon, D. Lozano, et al. Aberrations induced in wavefront-guidedlaser refractive surgery due to shifts between natural and dilated pupil center locations[J]. Journal of Cataract and Refractive Surgery,2006,32(1):21-32
    [57] S. Pantanelli, S. MacRae, T. M. Jeong, et al. Characterizing the WaveAberration in Eyes with Keratoconus or Penetrating Keratoplasty Using a High–Dynamic Range Wavefront Sensor [J]. Ophthalmology,2007,114(11):2013-2021
    [58] H. Hofer, P. Artal, B. Singer, et al. Dynamics of the eye's wave aberration [J].Journal of the Optical Society of America a-Optics Image Science and Vision,2001,18(3):497-506
    [59] L. Diaz-Santana, C. Torti, I. Munro, et al. Benefit of higher closed-loopbandwidths in ocular adaptive optics [J]. Opt Express,2003,11(20):2597-2605
    [60] D. L. Fried. Anisoplanatism in Adaptive Optics [J]. J Opt Soc Am,1982,72(1):52-61
    [61] P. Bedggood, M. Daaboul, R. Ashman, et al. Characteristics of the humanisoplanatic patch and implications for adaptive optics retinal imaging [J]. J BiomedOpt,2008,13(2):024008
    [62] M. S. Smirnov. Measurement of the wave aberration of the human eye [J].Biofizika,1961,6:776-795
    [63] H. W. Babcock. The possibility of compensating astronomical seeing [J]. Pub.of the astronomical soc. of the pacific,1953,65:229-236
    [64] F. W. Campbell, D. G. Green. Optical and retinal factors affecting visualresolution [J]. J Physiol,1965,181(3):576-593
    [65] P. Artal, R. Navarro. High-resolution imaging of the living human fovea:measurement of the intercenter cone distance by speckle interferometry [J]. Opt Lett,1989,14(20):1098-1100
    [66] D. T. Miller, D. R. Williams, G. M. Morris, et al. Images of conephotoreceptors in the living human eye [J]. Vision Res,1996,36(8):1067-1079
    [67] A. W. Dreher, J. F. Bille, R. N. Weinreb. Active optical depth resolutionimprovement of the laser tomographic scanner [J]. Appl Opt,1989,28(4):804-808
    [68] J. Liang, B. Grimm, S. Goelz, et al. Objective measurement of waveaberrations of the human eye with the use of a Hartmann-Shack wave-front sensor [J].J Opt Soc Am A Opt Image Sci Vis,1994,11(7):1949-1957
    [69] J. Liang, D. R. Williams, D. T. Miller. Supernormal vision andhigh-resolution retinal imaging through adaptive optics [J]. J Opt Soc Am A OptImage Sci Vis,1997,14(11):2884-2892
    [70] F. Rigaut, B. L. Ellerbroek, M. J. Northcott. Comparison of curvature-basedand Shack-Hartmann-based adaptive optics for the Gemini telescope [J]. Appl Opt,1997,36(13):2856-2868
    [71] Q. Mu, Z. Cao, L. Hu, et al. An adaptive optics imaging system based on ahigh-resolution liquid crystal on silicon device [J]. Opt Express,2006,14(18):8013-8018
    [72] E. Li, Y. Dai, H. Wang, et al. Application of eigenmode in the adaptive opticssystem based on a micromachined membrane deformable mirror [J]. Appl Opt,2006,45(22):5651-5656
    [73] Y. Zhang, B. Cense, J. Rha, et al. High-speed volumetric imaging of conephotoreceptors with adaptive optics spectral-domain optical coherence tomography [J].Opt Express,2006,14(10):4380-4394
    [74] Y. Zhang, S. Poonja, A. Roorda. MEMS-based adaptive optics scanning laserophthalmoscopy [J]. Opt Lett,2006,31(9):1268-1270
    [75] D. Merino, C. Dainty, A. Bradu, et al. Adaptive optics enhanced simultaneousen-face optical coherence tomography and scanning laser ophthalmoscopy [J]. OptExpress,2006,14(8):3345-3353
    [76] Y. Zhang, S. Poonja, A. Roorda. MEMS-based adaptive optics scanning laserophthalmoscopy [J]. Opt Lett,2006,31(9):1268-1270
    [77] J. Wang, T. R. Candy. Higher order monochromatic aberrations of the humaninfant eye [J]. J Vis,2005,5(6):543-555
    [78] A. S. Vilupuru, A. Roorda, A. Glasser. Spatially variant changes in lenspower during ocular accommodation in a rhesus monkey eye [J]. J Vis,2004,4(4):299-309
    [79] M. Nicolle, T. Fusco, G. Rousset, et al. Improvement of Shack-Hartmannwave-front sensor measurement for extreme adaptive optics [J]. Opt Lett,2004,29(23):2743-2745
    [80] E. Bloemhof, J. Wallace. Simple broadband implementation of a phasecontrast wavefront sensor for adaptive optics [J]. Opt Express,2004,12(25):6240-6245
    [81] H. Cheng, J. K. Barnett, A. S. Vilupuru, et al. A population study on changesin wave aberrations with accommodation [J]. J Vis,2004,4(4):272-280
    [82] R. W. Wilson, N. J. Wooder, F. Rigal, et al. Estimation of anisoplanatism inadaptive optics by generalized SCIDAR profiling [J]. Monthly Notices of the RoyalAstronomical Society,2003,339(2):491-494
    [83] B. J. Wilson, K. E. Decker, A. Roorda. Monochromatic aberrations providean odd-error cue to focus direction [J]. J Opt Soc Am A Opt Image Sci Vis,2002,19(5):833-839
    [84] J. Porter. Adaptive optics for vision science: principles, practices, design,and applications [M], Wiley series in microwave and optical engineering (Hoboken,NJ: Wiley-Interscience),2006
    [85] J. Rha, R. S. Jonnal, K. E. Thorn, et al. Adaptive optics flood-illuminationcamera for high speed retinal imaging [J]. Opt Express,2006,14(10):4552-4569
    [86] R. Liu, D. Li, M. Xia, et al. Laser beacon adaptive optics ophthalmoscope forretinal multilayer imaging [C].2nd International Symposium on Bioelectronics andBioinformatics,2011:135-138
    [87] H. Hofer, N. Sredar, H. Queener, et al. Wavefront sensorless adaptive opticsophthalmoscopy in the human eye [J]. Opt Express,2011,19(15):14160-14171
    [88] N. Kong, C. Li, M. Xia, et al. Optimization of the open-loop liquid crystaladaptive optics retinal imaging system [J]. J Biomed Opt,2012,17(2):026001
    [89] Q. Mu, Z. Cao, C. Li, et al. Accommodation-based liquid crystal adaptiveoptics system for large ocular aberration correction [J]. Opt Lett,2008,33(24):2898-2900
    [90] R. Liu, Y. Qi, X. Zheng, et al. Flood-illuminated adaptive opticsophthalmoscope with a single curved relay mirror [J]. Photonics Research,2013,1(3):124-129
    [91] S. G. Rosolen, B. Lamory, F. Harms, et al. Cellular-resolution in vivoimaging of the feline retina using adaptive optics: preliminary results [J]. VetOphthalmol,2010,13(6):369-376
    [92] H. Bao, C. Rao, Y. Zhang, et al. Hybrid filtering and enhancement ofhigh-resolution adaptive-optics retinal images [J]. Opt Lett,2009,34(22):3484-3486
    [93] B. Xue, S. S. Choi, N. Doble, et al. Photoreceptor counting and montaging ofen-face retinal images from an adaptive optics fundus camera [J]. J Opt Soc Am A OptImage Sci Vis,2007,24(5):1364-1372
    [94] J. I. Wolfing, M. Chung, J. Carroll, et al. High-resolution retinal imaging ofcone-rod dystrophy [J]. Ophthalmology,2006,113(6):1019e1011
    [95] J. M. Harazny, R. E. Schmieder, J. Welzenbach, et al. Local application oftropicamide0.5%reduces retinal capillary blood flow [J]. Blood Press,2013
    [96] J. Xia, C. Huang, K. Maslov, et al. Enhancement of photoacoustictomography by ultrasonic computed tomography based on optical excitation ofelements of a full-ring transducer array [J]. Opt Lett,2013,38(16):3140-3143
    [97] S. Zayit-Soudry, J. L. Duncan, R. Syed, et al. Cone structure imaged withadaptive optics scanning laser ophthalmoscopy in eyes with nonneovascularage-related macular degeneration [J]. Invest Ophthalmol Vis Sci,2013,54(12):7498-7509
    [98] K. Takayama, S. Ooto, M. Hangai, et al. High-resolution imaging of theretinal nerve fiber layer in normal eyes using adaptive optics scanning laserophthalmoscopy [J]. PLoS One,2012,7(3): e33158
    [99] J. Tam, A. Roorda. Speed quantification and tracking of moving objects inadaptive optics scanning laser ophthalmoscopy [J]. J Biomed Opt,2011,16(3):036002
    [100] Y. Chen, A. Roorda, J. L. Duncan. Advances in imaging of Stargardt disease[J]. Adv Exp Med Biol,2010,664:333-340
    [101] M. K. Yoon, A. Roorda, Y. Zhang, et al. Adaptive optics scanning laserophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation [J].Invest Ophthalmol Vis Sci,2009,50(4):1838-1847
    [102] K. Grieve, A. Roorda. Intrinsic signals from human cone photoreceptors [J].Invest Ophthalmol Vis Sci,2008,49(2):713-719
    [103] A. Roorda, Y. Zhang, J. L. Duncan. High-resolution in vivo imaging of theRPE mosaic in eyes with retinal disease [J]. Invest Ophthalmol Vis Sci,2007,48(5):2297-2303
    [104] A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, et al. Adaptive opticsscanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa [J]. J Opt SocAm A Opt Image Sci Vis,2007,24(5):1417-1425
    [105] D. C. Chen, S. M. Jones, D. A. Silva, et al. High-resolution adaptive opticsscanning laser ophthalmoscope with dual deformaMe mirrors for large aberrationcorrection-art. no.64261L [J]. Ophthalmic Technologies XVII,2007,6426:L4261-L4261
    [106] A. Roorda, C. A. Garcia, J. A. Martin, et al. What can adaptive optics do for ascanning laser ophthalmoscope?[J]. Bull Soc Belge Ophtalmol,2006(302):231-244
    [107] C. R. Vogel, D. W. Arathorn, A. Roorda, et al. Retinal motion estimation inadaptive optics scanning laser ophthalmoscopy [J]. Opt Express,2006,14(2):487-497
    [108] S. Poonja, S. Patel, L. Henry, et al. Dynamic visual stimulus presentation inan adaptive optics scanning laser ophthalmoscope [J]. J Refract Surg,2005,21(5):S575-580
    [109] F. Romero-Borja, K. Venkateswaran, A. Roorda, et al. Optical slicing ofhuman retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope[J]. Appl Opt,2005,44(19):4032-4040
    [110] B. Hermann, E. J. Fernandez, A. Unterhuber, et al. Adaptive-opticsultrahigh-resolution optical coherence tomography [J]. Opt Lett,2004,29(18):2142-2144
    [111] Y. Zhang, J. Rha, R. Jonnal, et al. Adaptive optics parallel spectral domainoptical coherence tomography for imaging the living retina [J]. Opt Express,2005,13(12):4792-4811
    [112] E. J. Fernandez, B. Povazay, B. Hermann, et al. Three-dimensional adaptiveoptics ultrahigh-resolution optical coherence tomography using a liquid crystal spatiallight modulator [J]. Vision Res,2005,45(28):3432-3444
    [113] R. J. Zawadzki, S. M. Jones, S. S. Olivier, et al. Adaptive-optics opticalcoherence tomography for high-resolution and high-speed3D retinal in vivo imaging[J]. Opt Express,2005,13(21):8532-8546
    [114] E. J. Fernandez, B. Hermann, B. Povazay, et al. Ultrahigh resolution opticalcoherence tomography and pancorrection for cellular imaging of the living humanretina [J]. Opt Express,2008,16(15):11083-11094
    [115] D. P. Han, J. A. Croskrey, A. M. Dubis, et al. Adaptive optics andspectral-domain optical coherence tomography of human photoreceptor structure aftershort Pascal macular grid and panretinal laser photocoagulation [J]. Arch Ophthalmol,2012,130(4):518-521
    [116] R. S. Jonnal, O. P. Kocaoglu, Q. Wang, et al. Phase-sensitive imaging of theouter retina using optical coherence tomography and adaptive optics [J]. Biomed OptExpress,2012,3(1):104-124
    [117] H. Rouger, Y. Benard, R. Legras. Effect of monochromatic inducedaberrations on visual performance measured by adaptive optics technology [J]. JRefract Surg,2010,26(8):578-587
    [118] X. Zhou, P. Bedggood, A. Metha. Limitations to adaptive optics imagequality in rodent eyes [J]. Biomed Opt Express,2012,3(8):1811-1824
    [119] J. Liang, D. R. Williams. Aberrations and retinal image quality of the normalhuman eye [J]. J Opt Soc Am A Opt Image Sci Vis,1997,14(11):2873-2883
    [120] A. Uji, M. Hangai, S. Ooto, et al. The source of moving particles inparafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy [J].Invest Ophthalmol Vis Sci,2012,53(1):171-178
    [121] Q. Wang, O. P. Kocaoglu, B. Cense, et al. Imaging retinal capillaries usingultrahigh-resolution optical coherence tomography and adaptive optics [J]. InvestOphthalmol Vis Sci,2011,52(9):6292-6299
    [122] A. Roorda, D. R. Williams. The arrangement of the three cone classes in theliving human eye [J]. Nature,1999,397(6719):520-522
    [123] A. Dubra, Y. Sulai, J. L. Norris, et al. Noninvasive imaging of the human rodphotoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope [J].Biomed Opt Express,2011,2(7):1864-1876
    [124] A. Roorda, D. R. Williams. Optical fiber properties of individual humancones [J]. J Vis,2002,2(5):404-412
    [125] K. Y. Li, A. Roorda. Automated identification of cone photoreceptors inadaptive optics retinal images [J]. J Opt Soc Am A Opt Image Sci Vis,2007,24(5):1358-1363
    [126] N. M. Putnam, H. J. Hofer, N. Doble, et al. The locus of fixation and thefoveal cone mosaic [J]. J Vis,2005,5(7):632-639
    [127] R. S. Jonnal, J. Rha, Y. Zhang, et al. In vivo functional imaging of humancone photoreceptors [J]. Opt Express,2007,15(24):16141-16160
    [128] A. Phan, A. Elsner, T. Chui, et al. In vivo microvascular changes in diabeticpatients without clinically severe diabetic retinopathy [C].2012ARVO AnnualMeeting—Association for Research in Vision and Ophthalmology,2012
    [129] T. Y. Chui, D. A. Vannasdale, S. A. Burns. The use of forward scatter toimprove retinal vascular imaging with an adaptive optics scanning laserophthalmoscope [J]. Biomed Opt Express,2012,3(10):2537-2549
    [130] P. Godara, C. Siebe, J. Rha, et al. Assessing the photoreceptor mosaic overdrusen using adaptive optics and SD-OCT [J]. Ophthalmic Surg Lasers Imaging,2010,41Suppl: S104-108
    [131] G. Querques, C. Kamami-Levy, A. Georges, et al. Appearance of regressingdrusen on adaptive optics in age-related macular degeneration [J]. Ophthalmology,2014,121(2):611-612
    [132]郑贤良,刘瑞雪,夏明亮, et al.液晶自适应光学视网膜校正成像技术研究[J].中国光学,2014(1)
    [133]齐岳,孔宁宁,李大禹, et al.高分辨率开环液晶自适应光学视网膜成像系统[J].光学学报,2012,32(10):1011003
    [134] F. Reinitzer. Beitr ge zur Kenntniss de s Cholesterins [J]. Monatshefte fürChemie,1888(9):421-441
    [135] A. Vasil'ev, A. Zhinduils, I. Kompanets, et al. Optically controlledtransparency in the form of a ferroelectric ceramic-photoconductor structure [J].Soviet Journal of Quantum Electronics,1979,9(6):757-761
    [136] A. Vasil'ev, I. Kompanets, A. Parfenov. Progress in the development andapplications of optically controlled liquid crystal spatial light modulators [J]. SovietJournal of Quantum Electronics,1983,13(6):689-695
    [137] G. D. Love. Wave-front correction and production of Zernike modes with aliquid-crystal spatial light modulator [J]. Appl Opt,1997,36(7):1517-1524
    [138] G. D. Love, J. V. Major, A. Purvis. Liquid-crystal prisms for tip-tilt adaptiveoptics [J]. Opt Lett,1994,19(15):1170-1172
    [139] G. D. Love, N. Andrews, P. Birch, et al. Binary adaptive optics: atmosphericwave-front correction with a half-wave phase shifter [J]. Appl Opt,1995,34(27):6058-6066
    [140] D. Dayton, S. Sandven, J. Gonglewski, et al. Adaptive optics using a liquidcrystal phase modulator in conjunction with a Shack-Hartmann wave front sensor andzonal control algorithm [J]. Opt Express,1997,1(11):338-346
    [141] D. C. Dayton, S. L. Browne, S. P. Sandven, et al. Theory and laboratorydemonstrations on the use of a nematic liquid-crystal phase modulator for controlledturbulence generation and adaptive optics [J]. Appl Opt,1998,37(24):5579-5589
    [142] T. Shirai. Liquid-crystal adaptive optics based on feedback interferometry forhigh-resolution retinal imaging [J]. Appl Opt,2002,41(19):4013-4023
    [143] R. Dou, M. K. Giles. Closed-loop adaptive-optics system with aliquid-crystal television as a phase retarder [J]. Opt Lett,1995,20(14):1583-1585
    [144] L. N. Thibos, A. Bradley. Use of liquid-crystal adaptive-optics to alter therefractive state of the eye [J]. Optom Vis Sci,1997,74(7):581-587
    [145] F. Vargas-Martin, P. M. Prieto, P. Artal. Correction of the aberrations in thehuman eye with a liquid-crystal spatial light modulator: limits to performance [J]. JOpt Soc Am A Opt Image Sci Vis,1998,15(9):2552-2562
    [146] M. A. A. Neil, M. J. Booth, T. Wilson. Closed-loop aberration correction byuse of a modal Zernike wave-front sensor [J]. Opt Lett,2000,25(15):1083-1085
    [147] K. Takeno, T. Shirai. Chromatic aberration free liquid crystal adaptive opticsfor flood illuminated retinal camera [J]. Opt Commun,2012,285(12):2967-2971
    [148] S. Ooto, M. Hangai, K. Takayama, et al. High-resolution imaging of thephotoreceptor layer in epiretinal membrane using adaptive optics scanning laserophthalmoscopy [J]. Ophthalmology,2011,118(5):873-881
    [149] T. Yamaguchi, N. Nakazawa, K. Bessho, et al. Adaptive optics fundus camerausing a liquid crystal phase modulator [J]. Optical Review,2008,15(3):173-180
    [150] H. Huang, T. Inoue, H. Tanaka. Stabilized high-accuracy correction of ocularaberrations with liquid crystal on silicon spatial light modulator in adaptive opticsretinal imaging system [J]. Opt Express,2011,19(16):15026-15040
    [151] E. J. Fernandez, I. Iglesias, P. Artal. Closed-loop adaptive optics in the humaneye [J]. Opt Lett,2001,26(10):746-748
    [152] S. H. Eng, F. Reinholz, D. Chai. Twisted-nematic liquid-crystal-on-siliconadaptive optics aberrometer and wavefront corrector [J]. J Biomed Opt,2009,14(4):044014
    [153]蔡冬梅,凌宁,姜文汉.反射型LCOS显示板用于人眼波前像差校正的研究[J].光电子.激光,2008,19(7):992-995
    [154]全薇,王肇圻,宋贵才, et al.反射型LCOS显示板用于人眼波前像差校正的研究[J].光电子激光,2008,19(7):992-995
    [155] Q. Mu, Z. Cao, D. Li, et al. Liquid Crystal based adaptive optics system tocompensate both low and high order aberrations in a model eye [J]. Opt Express,2007,15(4):1946-1953
    [156]吕帆,瞿佳.紫外光线损伤人眼的机理及其防护[J].中国眼镜科技杂志,1997,2:59
    [157] Z. Cao, Q. Mu, L. Hu, et al. Optimal energy-splitting method for anopen-loop liquid crystal adaptive optics system [J]. Opt Express,2012,20(17):19331-19342
    [158] Q. Mu, Z. Cao, L. Hu, et al. Novel spectral range expansion method forliquid crystal adaptive optics [J]. Opt Express,2010,18(21):21687-21696
    [159] C. Li, M. Xia, Q. Mu, et al. High-precision open-loop adaptive optics systembased on LC-SLM [J]. Opt Express,2009,17(13):10774-10781
    [160] S. Ooto, M. Hangai, K. Takayama, et al. Photoreceptor Damage and FovealSensitivity in Surgically Closed Macular Holes: An Adaptive Optics Scanning LaserOphthalmoscopy Study [J]. Am J Ophthalmol,2012
    [161] D. Merino, J. L. Duncan, P. Tiruveedhula, et al. Observation of cone and rodphotoreceptors in normal subjects and patients using a new generation adaptive opticsscanning laser ophthalmoscope [J]. Biomed Opt Express,2011,2(8):2189-2201
    [162] Y. Chen, K. Ratnam, S. M. Sundquist, et al. Cone photoreceptorabnormalities correlate with vision loss in patients with Stargardt disease [J]. InvestOphthalmol Vis Sci,2011,52(6):3281-3292
    [163] C. Li, N. Sredar, K. M. Ivers, et al. A correction algorithm to simultaneouslycontrol dual deformable mirrors in a woofer-tweeter adaptive optics system [J]. OptExpress,2010,18(16):16671-16684
    [164] J. A. Martin, A. Roorda. Pulsatility of parafoveal capillary leukocytes [J].Exp Eye Res,2009,88(3):356-360
    [165] L. L. Chao, J. C. Rothlind, V. A. Cardenas, et al. Effects of low-levelexposure to sarin and cyclosarin during the1991Gulf War on brain function and brainstructure in US veterans [J]. Neurotoxicology,2010,31(5):493-501
    [166] A. Hicks, R. Goodnow, Jr., G. Cavallo, et al. Effects of LTB4receptorantagonism on pulmonary inflammation in rodents and non-human primates [J].Prostaglandins Other Lipid Mediat,2010,92(1-4):33-43
    [167] F. Qi, A. Li, Y. Inagaki, et al. Chinese herbal medicines as adjuvant treatmentduring chemo-or radio-therapy for cancer [J]. Biosci Trends,2010,4(6):297-307
    [168] Y. F. Ma, M. Stimpel, H. Liang, et al. Impact of antihypertensive therapy onthe skeleton: effects of moexipril and hydrochlorothiazide on osteopenia inspontaneously hypertensive ovariectomized rats [J]. J Endocrinol,1997,154(3):467-474
    [169] S. Marcos, E. Moreno, R. Navarro. The depth-of-field of the human eye fromobjective and subjective measurements [J]. Vision Res,1999,39(12):2039-2049
    [170] J. Tucker, W. N. Charman. The depth-of-focus of the human eye for Snellenletters [J]. Am J Optom Physiol Opt,1975,52(1):3-21
    [171] K. N. Ogle, J. T. Schwartz. Depth of focus of the human eye [J]. J Opt SocAm,1959,49(3):273-280
    [172] F. W. Campbell. The depth of focus of the human eye [J]. J Physiol,1954,125(1):29-30P
    [173] F. W. Campbell, J. B. Weir. The depth of focus of the human eye [J]. JPhysiol,1953,120(4):59P-60P
    [174] B. J. Seyedahmadi, D. Vavvas. In vivo high-resolution retinal imaging usingadaptive optics [J]. Semin Ophthalmol,2010,25(5-6):186-191
    [175] H. J. Hofer, J. Blaschke, J. Patolia, et al. Fixation light hue bias revisited:implications for using adaptive optics to study color vision [J]. Vision Res,2012,56:49-56
    [176] A. Dubra, Z. Harvey. Registration of2D Images from Fast ScanningOphthalmic Instruments [J]. Biomedical Image Registration,2010,6204:60-71
    [177] P. Mouroulis, T. G. Kim, G. Zhao. Transverse color tolerances for visualoptical systems [J]. Appl Opt,1993,32(34):7089-7094
    [178] M. Koomen, R. Scolnik, R. Tousey. A Study of Night Myopia [J]. J Opt SocAm,1951,41(2):80-90
    [179] W. N. Charman, J. A. Jennings, H. Whitefoot. The refraction of the eye in therelation to spherical aberration and pupil size [J]. Br J Physiol Opt,1978,32:78-93
    [180] M. Stakenburg. Accommodation without Pupillary Constriction [J]. VisionRes,1991,31(2):267-273
    [181] N. J. Phillips, B. Winn, B. Gilmartin. Absence of Pupil Response toBlur-Driven Accommodation [J]. Vision Res,1992,32(9):1775-1779
    [182] S. Kasthurirangan, A. Glasser. Age related changes in the characteristics ofthe near pupil response [J]. Vision Res,2006,46(8-9):1393-1403
    [183] D. A. Atchison, S. W. Fisher, C. A. Pedersen, et al. Noticeable, troublesomeand objectionable limits of blur [J]. Vision Res,2005,45(15):1967-1974
    [184] K. J. Ciuffreda, A. Selenow, B. Wang, et al."Bothersome blur": a functionalunit of blur perception [J]. Vision Res,2006,46(6-7):895-901
    [185] G. M. Byram. The physical and photochemical basis of visual resolvingpower Part I The distribution of illumination in retinal images [J]. J Opt Soc Am,1944,34(10):571-591
    [186] U. Hallden. Diffraction and visual resolution. I. The resolution of two pointsources of light [J]. Acta Ophthalmol (Copenh),1973,51(1):72-79
    [187] F. W. Campbell. A method for measuring the depth of field of the human eye[J]. J Physiol,1954,125(1):11P
    [188] W. N. Charman, J. Tucker. Dependence of accommodation response on thespatial frequency spectrum of the observed object [J]. Vision Res,1977,17(1):129-139
    [189]缪天荣,包廷钊,叶恬恬.《标准对数视力表》中的5分记录[J].眼视光学杂志,2006,7(4):217-219
    [190]祁媛媛,张丰菊,于芳蕾, et al.人眼对比敏感度的相关影响因素及评价分析[J].眼视光学杂志,2007,9(5):328-331
    [191]甘晓玲.弱视的定义,分类及疗效评价标准[J].中国斜视与小儿眼科杂志,1996,4(3):97-97
    [192]孙晓辉,张劲松,马立威, et al.三种视力表视力测量差异研究[J].国际眼科杂志,2007,7(2):442-443
    [193]吕帆,瞿佳,周翔天.汉字视标视力表研究的焦点问题及其剖析[J].中华眼科杂志,2009,44(7):581-583
    [194]栗改云,贾亚丁,张棉花.黄斑区视网膜光敏感度与视力的相关性分析[J].中国实用眼科杂志,2006,23(12):1281-1283
    [195]夏德昭,吴景天,黄凯, et al.固视(视力)性质分析在眼科临床上的应用树立两种视力(固视)观并以此指导临床[J].中国实用眼科杂志,1989,10:000
    [196]陈荣,许少峰.血液吸收光谱与激光照射疗法[J].中国激光医学杂志,1997,6(3):142-145
    [197]陈荣,林爱珍.中国人血液的组织光学参数[J].光电子.激光,2002,13(1):92-93
    [198]陈潇,何书喜.光污染对人眼视觉质量的影响[J].国际眼科杂志,2010,10(3):530-532
    [199]王肇圻,许妍.基于眼模型的数字眼底相机设计[J].光学精密工程,2008,16(9):1567
    [200]李琪,卢荣胜,刘宁, et al.多GigE相机高速视觉系统的架构与处理速度研究[J].电子测量与仪器学报,2010,24(4):371-378
    [201]惠延年,王琳.糖尿病视网膜病变和黄斑水肿的国际临床分类法[J].国际眼科杂志,2004,4(1):56-59
    [202]杨红,汪周陵,王志涛.双眼特发性黄斑旁中心凹毛细血管扩张症视网膜脉络膜血管造影[J].国际眼科杂志,2006,6(1):242-244
    [203]张季瑾,韩梅.黄斑旁中心凹毛细血管扩张症的临床特征及治疗[J].国际眼科杂志,2011,11(001):164-165
    [204] D. A. Atchison, G. Smith. Chromatic dispersions of the ocular media ofhuman eyes [J]. J Opt Soc Am A Opt Image Sci Vis,2005,22(1):29-37
    [205] J. G. Sivak, T. Mandelman. Chromatic dispersion of the ocular media [J].Vision Res,1982,22(8):997-1003
    [206] T. Mandelman, J. G. Sivak. Longitudinal chromatic aberration of thevertebrate eye [J]. Vision Res,1983,23(12):1555-1559
    [207] L. N. Thibos, A. Bradley, D. L. Still, et al. Theory and measurement of ocularchromatic aberration [J]. Vision Res,1990,30(1):33-49
    [208] Y. Qi, S. Li, Z. Pi, et al. Metabonomic study of Wu-tou decoction inadjuvant-induced arthritis rat using ultra-performance liquid chromatography coupledwith quadrupole time-of-flight mass spectrometry [J]. J Chromatogr B Analyt TechnolBiomed Life Sci,2014,953-954:11-19
    [209] M. Palamar, Z. Alkan, S. Egrilmez, et al. Influences of tropicamide onanterior segment parameters with pentacam in healthy individuals [J]. J OculPharmacol Ther,2013,29(3):349-352
    [210] S. Qayum, T. Sullivan, S. C. Park, et al. Structure and Clinical Significanceof Central Optic Disc Pits [J]. Ophthalmology,2013,120(7):1415-1422
    [211] A. M. Dubis, C. D. Subramaniam, P. Godara, et al. Subclinical MacularFindings in Infants Screened for Retinopathy of Prematurity with Spectral-DomainOptical Coherence Tomography [J]. Ophthalmology,2013,120(8):1665-1671
    [212] A. Bruce, I. E. Pacey, J. A. Bradbury, et al. Bilateral Changes in FovealStructure in Individuals with Amblyopia [J]. Ophthalmology,2013,120(2):395-403
    [213] M. Ho, D. T. L. Liu, V. C. K. Chan, et al. Choroidal Thickness Measurementin Myopic Eyes by Enhanced Depth Optical Coherence Tomography [J].Ophthalmology,2013,120(9):1909-1914
    [214] H. Zou, H. Liu, X. Xu, et al. The impact of persistent visually disablingvitreous floaters on health status utility values [J]. Qual Life Res,2013,22(6):1507-1514
    [215] J. R. Rajian, R. Li, P. Wang, et al. Vibrational Photoacoustic Tomography:Chemical Imaging beyond the Ballistic Regime [J]. J Phys Chem Lett,2013,4(19)
    [216] X. Cai, Y. Zhang, L. Li, et al. Investigation of neovascularization inthree-dimensional porous scaffolds in vivo by a combination of multiscalephotoacoustic microscopy and optical coherence tomography [J]. Tissue Eng Part CMethods,2013,19(3):196-204
    [217] J. Xia, W. Chen, K. Maslov, et al. Retrospective respiration-gatedwhole-body photoacoustic computed tomography of mice [J]. J Biomed Opt,2014,19(1):16003
    [218] N. Barot, R. J. McLean, I. Gottlob, et al. Reading Performance in InfantileNystagmus [J]. Ophthalmology,2013,120(6):1232-1238
    [219] Q. Dai, Y. Li, R. N. Wu, et al. Investigation of the laser action in a dye-dopedcholesteric liquid crystal wedge cell [J]. Acta Physica Sinica,2013,62(4)
    [220] B. Huang, J. Xia, K. Maslov, et al. Improving limited-view photoacoustictomography with an acoustic reflector [J]. J Biomed Opt,2013,18(11):110505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700