用户名: 密码: 验证码:
HCFC-141b/HFC-134a混合气体水合物蓄、放冷实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力供应高峰不足而低谷过剩矛盾的日益突出,迫切需求一种能够将低谷过剩的电转移至高峰不足时使用的技术。空调蓄冷技术就是一项利用夜间电网低谷时将冷量储存起来,待白天电网高峰用电时再将冷量释放出去的技术,它能有效的实现“移峰填谷”、均衡电网,已成为解决电力供应问题的重要途径。
     蓄冷介质的开发一直是制约空调蓄冷技术发展的首要问题。制冷剂气体水合物作为新一代的蓄冷介质,它克服了冰、水、共晶盐等蓄冷介质的弱点。其相变温度在5~12℃之间,适合常规空调冷水机组;蓄冷密度与冰相当;蓄/放冷过程传热效率高;比冰蓄冷空调节能20%~30%;是一种比较理想的蓄冷介质。
     本文在搭建一台可视化实验装置的基础上,根据混合工质性能互补的特点,对高压制冷剂HFC-134a、低压制冷剂HCFC-141b与水组成的蓄冷介质进行配比实验,得出不同配比情况下该蓄冷介质的蓄、放冷性能特性,并对该蓄冷介质在不同温度、有无扰动和有无添加剂等不同条件下进行蓄、放冷实验研究,观测该蓄冷介质在不同条件下的蓄冷特性及其蓄、放冷过程变化规律与蓄冷能力。
     研究结果表明:(1)当水和HCFC-141b的质量相同时,HFC-134a的加入量的增多可以提高蓄冷密度,减少蓄冷时间;(2)当HCFC-141b/HFC-134a质量组分相同时,增加水的质量会“降低”该蓄冷介质的相变温度和蓄冷密度,提高蓄冷速率,改变放冷过程曲线;(3)扰动是气体水合物生成的重要影响因素,扰动强度越大,蓄冷密度和蓄冷速率的就越大,反之亦然;(4)加入适量的乙二醇作为添加剂可以提高蓄冷介质的蓄冷密度和蓄冷速率;(5)重复实验对蓄冷介质的蓄冷特性和蓄冷能力几乎没有影响;(6)对于HCFC-141b17Kg、HFC-134a 1.1Kg、H20 80Kg组成的蓄冷介质,其相变温度在6.5℃~8.6℃之间,蓄冷槽内压力在-46KPa~65KPa之间变化,蓄冷密度在348KJ/Kg左右。
With the contradiction that lack of electric power during peak while overmuch during off-peak more and more prominent, it needs a technology that can transfer electricity from off-peak to peak time. Air-condition cool storage uses off-peak electricity to store coolness during nighttime and discharges it during on-peak on daytime. It has become one of the most important approaches to solve the electric serve because that it can shift peaking load efficiently and equilibrate the electric load.
     The exploitation of cool storage material is the first problem of aircondition cool storage technology. Gas hydrate, as a new generation air conditioning material, conquers the drawbacks of ice, water and eutectic salt. It is considered a kind of ideal cool storage material with the advantages of phase changing temperature between 5~12℃, which makes it compatible with the conventional air conditioner; comparative latent, heat as that of the ice; high boiling coil surface temperature during charged and discharged process; saving 20%~30% energy compared to ice cool storage system.
     On the basic of established an installation of a visually experimental cool storage tank, according to advantage of mixture gas hydrate, the paper does some experiment of mixture refrigerant of high pressure refrigerant HFC-134a, low pressure refrigerant HCFC-141b and water, studies the charged and discharged process with different quality, then investigates the properties under different conditions such as different temperature, disturbance and additives, thought the experimental phenomena finds that the law of charged and discharged process and its capacity. The results show that: (1) more quality of HFC-134a when the quality of HCFC-141b and water are the same can enhance the cool storage capacity, reduce cool storage time; (2)more water can low down the temperature of phase change and cool storage capacity when the quality of HCFC-141b and HFC-134a are the same; (3) disturbance, a vital factor to the generation of gas hydrate, the more strength the higher cool storage capacity and rate; (4)some suitable glycol as additive can enhance the cool capacity and rate of cool storage material; (5)there is no fluence to the cool storage material's properties or capacity when repeat experiments; (6)to the cool storage material HCFC-141b 17Kg、HFC-134a 1.1Kg and water 80Kg, its phase change temperature is between 6.5℃~8.6℃, pressure in the cool storage tank is between -46KPa~65KPa and its capacity is about 348KJ/Kg.
引文
[1] 李兴仁,低温相变蓄冷材料及其蓄冷特性的实验研究,重庆大学硕士学位论文,2004年5月
    [2] http://stock.163.com
    [3] 方贵银,空调用制冷蓄冷系统及其特性的研究,中国科学技术大学博士学位论文,2000年3月
    [4] 方贵银等编著,蓄冷空调技术,北京:机械工业出版社,2006.6
    [5] 樊栓狮,梁德青,杨向阳等编著,储能材料与技术,北京:化学工业出版社,2004.8
    [6] Akio Saito. Recent advances in research on cold thermal energy storage. International Journal of Refrigeration, 2002(25)
    [7] 郭开华,舒碧芬,空调蓄冷及气体水合蓄冷技术,制冷,1995(4)
    [8] 赵永利,制冷剂气体水合物结晶生成过程及其形态学实验研究,中国科学技术大学博士学位论文,2001年5月
    [9] Sloan E D, Clathrate Hydrate of Natural Gases, New York, Marcel Dekker, 1997
    [10] Tomlison J J. Heat Pump Cool Storage in a Clathrate of Freon, in Proc.of the 17th IECEC, America, 1982, 4;
    [11] Richard A, McCormack. Use of Clathrates for 'Off- Peak'Thermal Energy Storage , Proc. of the 25th IECEC, America, 1990.
    [12] H.Davy, "The Bakerian Lecture. On Some of the Combinations of Oxymuriatic Gas And Oxygene, and on the Chemical Relations of These Principles to Inflammable Bodies", Philos Trans. R.Soc.London. 1811 (101)
    [13] D.W.Davison, "Clathrate Hydrate", Water-A Comprehensive Treatise ED.F.Franks, Vol.Ⅱ ,Plenum Press,New York. 1973
    [14] 章学来,李瑞阳,蓄冷空调及其在我国的应用前景.
    [15] M.Faraday. "On Fluid Chlorine", Philos. Trans.R.Soc.London. 1823(113)
    [16] E.G.Hammerschmidt."Formation of Gas Hydrates in Natural Gas Transmission Lines" Ind.Eng. Chem.1934(26)
    [17] M.Von Stachelgerg and H.R Muller, "On the Structure of Gas Hydrates", J.Chem.Phys. 1951
    [18] W.F.Claussen and Erratum, "Suggested Stuctures of Water in Inert Gas Hydrates", J.Chem.Phys. 1951 (19)
    [19] W.F.Claussen, "A Second Water Structure for Inert Gas Hydrate", J.Chem.Phys. 1951
    [20] J.A.Ripmeester, J.S.Tse, C.I.Ratcliffe and B.M.Powell, "A New Clathrate Hydrate Structure", Nature, 1987, Vol.325
    [21] Ng H.J.,Robinson D.B.,Hydrate Formation in Systems Containing Methane,Ethane, Propane, Carbon Dioxide or Hydrogen Sulfide in the Presence of Methanol, Fluid Phase Equilibria, 1985,21
    [22] Robinson D.B., Ng H.J., Hydrate Formation and Inhibition in Gas or Gas Condensate Streams, Journal of Canada Petroleum Technology, 1986, 25(4)
    [23] Englezos P., Bishnoi P. R.,Experimental Study on the Equilibrium Ethane Hydrate Formation Conditions in .Aqueous Electrolyte Solutions, Industry & Engineering Chemical Research, 1991,30(7)
    [24] Bishnoi R R., Dholabhai P.D., Experimental Study on Propane Hydrate Equilibrium Conditions in Aqueous Electrolyte Solutions, Fluid Phase Equilibria, 1993, 83
    [25] Dholabhai P.D., Bishnoi RR., Hydrate Equilibrium Conditions in Aqueous Electrolyte Solutions: Mixture of Methane and Carbon Dioxide, Journal of Chemical and Engineering Data, 1994, 39(1)
    [26] Mei D .H., Liao J .,Yang J .T. ,etc., Hydrate Formation of a Synthetic Nature Gas Mixture in Aqueous Solutions Containing Electrolyte , Methanol,and(Electrolyte +Methanol),Journal of Chemical & Engineering Data,1998,43(2)
    [27] 廖健,梅东海,王璐现,等,含盐和甲醇体系中气体水合物的相平衡研究—Ⅰ平衡生成条件的测定,石油学报,1998,14(3)
    [28] Lederhos J. P., Mehta A. R, Nyberg G. B., etc., Structure H Clathrate Hydrate Equilibrium of Methane and Adamantane, AIChE Journal, 1992,38 (7)
    [29] 曾丽,郭开华,赵永利等,制冷剂简单气体水合物相平衡计算,工程热物理学报,2000,21(1)
    [30] 曾丽,郭开华,赵永利等,二元制冷剂气体水合物相平衡计算,工程热物理学报,2000,21(3)
    [31] Oowa M, Nakaiwa M, Akiya T. Formation of CFC Alternative R134a Gas Hydrate. Proc. of the 25th IECEC, America,1990
    [32] Takaji A, Tomio S, Masaru O. Phase Equilibria of Some Aternative Refrigerants Hydrates and Their Mixtures using for Cool Storage Material . Proc. of the 32nd IECEC, America, 1997
    [33] 郭开华,舒碧芬,张弈等,HFC134a/HFC141b混合气体水合物相平衡特性,工程热物理学报,1998,19(4)
    [34] 郭开华,舒碧芬,张弈等,HFC152a/HFC141b混合气体水合物相平衡特性,工程热物理学报,1997,18(6)
    [35] Fan S S, Liang D Q, Guo K H.Hydrate Equilibrium Conditions for Cyclopentane and a Quaternary Cyclopentane-rich Mixture .J.Chem.Eng. Data., 2001,46
    [36] Liang D Q , Guo K H , Fan S S. Pridiction of Refrigerant Gas Hydrates Formation condition .Thermal. Sci.,2001, 10 (1)
    [37] 梁得青,新型蓄冷介质制冷剂气体水合物相平衡热力学研究,上海交通大学博士学位论文,2001年10月
    [38] 王胜杰,沈建东,郝妙丽等;气体水合物增长动力学的研究现状,石油化工,2004,33(4)
    [39] Mori Y H, Mori T. Characterization of gas hydrate formation in direct-contact cool storage process .Int.J. Refrig., 1989,12(5)
    [40] 陈晶贵,HFC141b水合物蓄冷过程及结晶影响因素实验研究,中国科学研究院硕士学位论文,2004年6月
    [41] Ethirajan A, Najafi M. Mathematical Modeling and Simulation of Latent Heat Cool Storage System. Proc. of the 28th IECEC, America, 1993
    [42] 刘文倩,气体水合物蓄冷和放冷过程的数值模拟研究,天津大学硕士学位论文,1998
    [43] 舒碧芬,郭开华,蒙宗信等,新型“暖冰”蓄冷技术及其蓄冷空调应用方式,工程热物理学报,1999,20(5)
    [44] 吕树申,王世平,邓颂九,气体水合物蓄冷技术,节能技术,1995(4)
    [45] 姚连增,晶体生长基础,合肥:中国科学技术大学出版社,1994
    [46] 王勇,气体水合物蓄冷的实验研究,重庆大学硕士论文,2000.7
    [47] 曾丽,新型气体水合物蓄冷介质相平衡实验及计算,中国科学院广州能源研究所硕士毕业论文,1999
    [48] 付里,王怀信,牛莹,制冷剂与制冷剂气体水合物相平衡计算,中国工程热物理学会工程热力学与能源利用学术会议论文集,杭州,1998
    [49] John V.T., Papadopoulos K.D., Holder G.D., A Generalized Model for Predicting Equilibrium Conditions for Gas Hydrates, AIChE.J., 1985,31 (2)
    [50] Avlonitis D., The Determination of Kihara Potential Parameters from Gas Hydrate Data, Chem. Eng.Sci., 1994, 49(8)
    [51] Tomlison J J.Heat Pump Cool Storage in a Clathrate of Freon. in Proc. of the 17th IECEC, America, 1982(4)
    [52] 舒碧芬,郭开华,蒙宗信等,新型“暖冰”蓄冷技术及其蓄冷空调应用方式,制冷学报,2000(3)
    [53] 谢应明,梁德青,郭开华等,气体水合物蓄冷技术研究现状与展望,暖通空调,2004(9)
    [54] 徐新亚,刘道平,黄文件等,气—液界面处水合物膜形成过程的传热分析,上海理工大学学报,2005(6)
    [55] 孙长宇,黄强,陈光进,气体水合物形成的热力学与动力学研究进展,化工学报,2006(5)
    [56] 林微,陈光进,气体水合物分解动力学研究现状,过程工程学报,2004(2)
    [57] 赵永利,郭开华,樊栓狮等,气体水合物结晶引导时间和结晶区域的实验研究,制冷,2001(6)
    [58] 赵建忠,石定贤,赵阳升,水合物生成影响因素与实验研究,辽宁工程技术大学学报,2006(6)
    [59] 韩学松,直接接触式气体水合物蓄冷特性的理论及实验研究,上海海事大学硕士论文,2004(6)
    [60] 陈光进,马庆兰,郭开民,气体水合物生成机理和热力学模型的建立,化工学报,2000(10)
    [61] 李金平,王立璞,梁得青等,表面活性剂对气体水合物生成过程的影响,中国科学技术大学学报,2006(4)
    [62] 刘勇,郭开华,梁得青等,混合制冷剂水合物晶体生成和分解过程研究,哈尔滨工业大学学报,2004(2)
    [63] 刘文倩,张启,吕灿仁等,气体水合物生成条件的理论计算,天津大学学报,1999(5)
    [64] 孙始财,刘玉峰,樊栓狮等,气体水合物蓄冷系统设计,制冷,2005(12)
    [65] 林怡辉,王世平,气体水合物蓄冷技术的研究动态及其发展方向,江汉石油学院学报,2000(3)
    [66] 同济大学普通化学及无机化学教研室编著,普通化学,上海:同济大学出版社,2000(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700