用户名: 密码: 验证码:
溶液式动态制冰系统性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球工业的迅猛发展,能源问题越来越为人们所关注,人们的节能意识也不断增强,从而使蓄能研究的重要性迅速突出。相变蓄能系统以其蓄能密度较高和性能良好等优点,已经成为了蓄能系统的基本方式。
     相变材料的相变传热是一个强非线性问题。相变材料凝固和融化过程中的传热问题一直是国内外的研究热点。本文对封闭在烧杯内的乙二醇溶液进行了实验研究和数值模拟。
     通过实验研究分析和对比,从而初步了解了液浴温度、溶液浓度对制冰的影响规律。本文同时根据实验条件建立了一个关于液固相变的二维的数学模型,并通过GAMBIT生成均分网格,由FLUENT6.2.16软件进行数值计算,得到了各实验工况下不同时刻的温度场和相界面的位置。和实验结果相比,通过数值模拟得出的等温线和界面移动规律形状都与实际情况相差不大。
     本文的研究结果将为动态制冰系统的开发与改造打下基础。
With the rapid development of global industry, the problem of energy running short has been paid more attention to, and the sense of energy saving has been strengthened gradually, which makes the research on energy storage to be more important. Phase change energy storage system has become a basic mode of energy storage because of its high density of energy storing and some other advantages.
     Phase change heat transfer of the phase change materials is a strong nonlinear problem, and the heat transfer of solidification and melting has always been focused on domestic and overseas. In this paper, experimental research and simulation of the glycol packed in a beaker are done.
     By experimental analysis and contrast, the influence rules of influence factors on ice making are obtained, including the temperature of the liquid bath and the concentration of the solution. Meanwhile a bidimensional mathematics model of liquid-solid phase change is constructed according to the experiment conditions, grids with equal interval are built by GAMBIT and the results are calculated by FLUENT6.2.16. Temperature field and phase interface varying with time under different experimental conditions are obtained. Compare with the results obtained from the experiment, isotherm and the rule of phase interface moving obtained from the simulation are almost the same.
     The result in this paper will make a good foundation for developing and rebuilding the dynamic ice making system.
引文
[1] 许肖飞,周光辉.我国新型冰蓄冷空调技术的发展现状.中原工学院学报,2006,17(1):55-58
    [2] 华泽钊,刘道平,吴兆琳.蓄冷技术及其在空调工程中的应用.北京:科学出版社,1997
    [3] 严德隆,张维君.空调蓄冷应用技术.北京:中国建筑工业出版社,1997
    [4] 张国利,端木琳.冰蓄冷低温送风与工位空调结合的探讨.安装,2006,2:47-48
    [5] 何国庚,王忠衡.冰浆流体流动与换热研究综述.制冷学报,2005,26(4):1-5
    [6] 刘传聚,陆琼文,李伟业,刘东,胡稚鸿.区域供冷系统经济运行研究及实践—浦东国际机场区域供冷系统经济运行研究总结.能源技术,2005,2:81-83
    [7] 范庆,叶水泉,陈永林.蓄能中央空调系统在区域供热供冷(DHC)中的应用.制冷空调与电力机械,2005,1:38-45
    [8] R Stamatiou, J W Meewisse, M Kawaji. Ice slurry generation involving moving parts. International Journal of Refrigeration, 2005, 28:60-72
    [9] 梁明坤.动态蓄冷空调系统及其应用.蓄能技术,2004,3:50-53
    [10] 方贵银.蓄冷空调工程实用新技术.北京:人民邮电出版社,2005.63-65
    [11] 曲凯阳,江亿.过冷水动态制冰的研究.暖通空调,2001,31(2):44-47
    [12] 曲凯阳,江亿.高新能过冷水连续制冰系统.太阳能学报,2002,23(3):317-321
    [13] 于震,曲凯阳,江亿.二次冷媒式过冷水动态蓄冰空调系统的实验研究.暖通空调,2003,33(4):1-4
    [14] Y Kozawa, N Aizawa, M Tanino. Study on ice storing characteristics in dynamic-type ice storage system by using supercooled water. International Journal of refrigeration, 2005, 28: 73-82
    [15] T lnaba, X Zhang, A Yabe, Y Kozawa. Active control of phase change from supercooled water to ice by ultrasonic vibration 1.Control of freezing temperature. International Journal of Heat and Mass transfer, 2001, 44:4523-4531
    [16] X Zhang, T Inaba, A Yabe, S Lu, Y. Kozawa. Active control of phase change from supercooled water to ice by ultrasonic vibration 2. Generation of ice slurries and effect of bubble nuclei. International Journal of Heat and Mass transfer, 2001, 44:4533-4539
    [17] M Chuard, J P Fortuin. COLDECO-a new technology system for production and storage of ice Proceedings of the First Workshop on Ice Slurries of the International Institute of Refrigeration. Yverdon-les-Bains, Switzerland: 1999, 5:140-146
    [18] N E Wijeysundera, M N A Hawlader, C W B Andy, M K Hossain. Ice-slurry production using direct contact heat transfer. International Journal of refrigeration, 2004, 27:511-519
    [19] S Subbaiyer, T M Andhole, W A Helmer. Computer simulation of a vapor-compression ice generator with direct contact evaporator. ASHRAE Transactions, 1991, Part1: 118-2
    [20] T Kiatsiriroat, K N Thalang, S Dabbhasuta. Ice formation around a jet stream of refrigerant. Energy Conversion and Management, 2000, 41:213-221
    [21] 袁竹林.制取流体冰新方法及高效冰蓄冷研究.研究与探讨,2004,4:36-40
    [22] 方贵银.蓄冷空调工程实用新技术.北京:人民邮电出版社,2000:31-56
    [23] 谷波,孙涛,田树波.蓄冷节能发展综述.节能,2001,(2):6-9
    [24] Abhat, A.Low temperature latent heat thermal energy storage; Heat Storage Materials. Solar EnergS, 1983,(30):313-332
    [25] 徐伟亮.常低温固一液相变材料的研制和应用.现代化工,1998,(4):14-16
    [26] 张寅平,胡汉平,孔祥东,苏跃红.相变贮能一理论和应用.第一版.中国科技大学出版社,1996:Ⅰ-Ⅲ
    [27] 郭开华,张奕,舒碧分.HFC152a/HCFC141b混合气体水合物相平衡特性研究.工程热物理学报,1997,18(6):657-660
    [28] 郭开华,舒碧分,张奕.HFC134a/HCFC141b混合气体水合物相平衡特性.工程热物理学报,1998,19(4):406-409
    [29] 赵永利,郭开华,张奕,舒碧分.混合制冷气体水合物生成及融解过程实验研究.工程热物理学报,1998,19(4):480-483
    [30] 赵永利,郭开华,樊栓狮,舒碧分.气体水合物结品引导时间和结晶区域的实验研究.制冷,2001,20(2):1-5
    [31] 王怀信,李海龙,刘方.HCFC22及其HC/阻燃剂替代物的变工况空调循环性能.工程热物理学报,2003,24(2):190-193
    [32] 张远平,吕树申,高学农.气体水合物蓄冷技术的实验研究.华南理工大学学报(自然科学版),1999,27(2):110-115
    [33] 童明伟,林昆,黎家胜.在引射方式下气体水合物的形成与蓄冷特性.重庆大学学报(自然科学版),2000,23(3):91-93
    [34] Inaba, Hideo, Tu, Ping. Transient heat characteristics of a rectangular heat storage vessel packed with shape-stabilized phase change material (effect of various factors on heat release process). Transactions of the Japan Society of Mechanical Engineers, Part B, Jul, 1996:2790-2797
    [35] Inaba, Tu, Ping. Evaluation of thermop 琢 sical characteristics on shape-stabilized paraffin as a solid-liquidphase change material. Heat and Mass Transfer, 1997,32(4): 307-312
    [36] 徐洲,姚寿山.材料加工原理.科学出版社,2003.45-57
    [37] 王福军.计算机流体动力学分析.北京:清华大学出版社,2006
    [38] Shamsunder, N. and Sparrow, E.M.. Analysis of Multidimensional Conduction Phase Change via the Enthalpy Model. ASME.J. Heat Transfer, 1975, 97:333-340
    [39] M.Costa, D.Buddhi, A.Oliva. Numerical Simulation of a Heat Thermal Energy Storage System with Enhanced Heat Conduction. Energy Conversion, 1998, 39(34): 319-330
    [40] Mills. Anthony F. Heat Transfer, 1992.183-223
    [41] 陶文铨.数值传热学.西安:西安交通大学出版社,1995
    [42] 王剑锋.组合式相变材料蓄热系统中相变温度分布研究.太阳能学报,1998,19(3):294-298
    [43] V.R.Voller. An Overview of Numerical Methods For Solving Phase Problems. Advances in Numerical Heat Transfer Volume Ⅰ, Edited by WJ.Minkowycz and E.M.Sparrow, 1997. 341-380
    [44] 康艳兵,张寅平,朱颖心,江亿.相变蓄热同心套管传热模型和性能分析.太阳能学报,1999,20(1):20-25
    [45] Hoseon Yoo. Analytisaal Solutions to the Unsteady Close-contact Melting on a Flat Plate. International Journal of Heat and Mass Transfer, 2000, 43:1457-1467
    [46] K.Ravindran, R. W.Lewis. Finite Element Modeling of Solidification Effects Mould Filling. Finite Element in Analysis and Design, 1998, 31:99-116
    [47] Bogdan Horbaniuc, Gheorghe Dumitrascu, Aristotel Popescu. Mathematical Models for the Study of Solidification Within a Longitudinally Finned Heat Pipe Latent Heat Thermal Storage System. Energy Conversion&Management, 1999, 40:1765-1774
    [48] 韩占忠,王敬.FLUENT流体工程仿真计算实力与应用.北京:北京理工大学出版社,2004
    [49] 郭茶秀,熊辉东.共品盐蓄冷球凝固过程的数值模拟研究.暖通空调,2006,36(3):17-21
    [50] 王瑞金,张凯,王刚.Fluent技术基础与应用实例.北京:清华大学出版社,2007.165-175
    [51] 周敬思,梁光兴,王起斌.环氧乙烷与乙二醇生产.北京:化学工业出版社,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700