用户名: 密码: 验证码:
高速硬盘微小型滑动轴承—主轴系统变温条件下的稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速的微小型旋转机械(如硬盘驱动器)对动态性能有非常高的要求。螺旋槽动压滑动轴承由于具有出色的动力学特性,得到广泛的应用。
     本论文以高速硬盘微小型滑动轴承—主轴系统变温条件下的稳定性为主要研究目标,首先对耦合径向和推力轴承的刚度和阻尼系数进行了分析计算,将径向和推力轴承的雷诺方程及其扰动方程转化为有限元方程,不仅考虑径向和推力轴承之间交界处压力和流量的连续性,还包括雷诺边界条件的数值分析以及空穴现象的模拟。分析表明:此方法可以高效稳定的计算耦合径向和推力轴承的动态特性系数。径向和推力轴承的耦合效应的研究还表明,此方法可以计算出径向推力轴承径向与轴向上交叉耦合动态特性系数。之后,在小偏心距条件下,推导出硬盘主轴系统稳定性判据以确定系统的临界转速和临界质量。
     通过求解硬盘主轴系统动压滑动轴承的雷诺方程以及系统的五自由度运动方程研究其动态特性。首先,应用有限元法求解雷诺方程确定油膜压力分布,得出油压分布规律;对油膜压力和剪切应力积分得支承力和摩擦力矩,然后使用Runge-Kutta法求解系统的非线性运动方程,确定了硬盘主轴的涡动及偏摆等动态特性。
     随着工作温度的升高,润滑油的粘度和轴承间隙显著减小。本文应用非线性膨胀理论精确计算轴承间隙,修正了热流体动力润滑模型。环境温度确定后计算相应的润滑油的粘度和轴承间隙,然后求解变温条件下的雷诺方程可得硬盘驱动器主轴轴承的静态和动态特性参数,得出主轴系统静、动态特性随温度变化的规律。结果表明,环境温度的变化是影响硬盘驱动器主轴轴承动态特性的重要因素。
A micro-rotating machinery such as hard disk drive (HDD) requires high efficiency and robust dynamics in high operating speed. Small-sized herringbone grooved journal bearings (HGJBs) are widely used for this application thanks to their excellent dynamic characteristics.
     The analysis herein on small-sized herringbone grooved journal bearings in hard disk drive is expected to distill design guidelines with main goals of reaching larger stability margin. To fulfill the aforementioned goal, the present study starts with proposing a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. Reynolds equations and their perturbation equations of journal and thrust bearings are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between the journal and the thrust bearings. It also includes the Reynolds boundary condition in the numerical analysis to simulate the cavitations phenomenon. The stiffness and damping coefficients of the proposed mathematical method are compared with those of the numerical differentiation of the bearing force with respect to finite displacements and finite velocities of bearing center. It shows that the proposed method can calculate the dynamic coefficients of a coupled journal and thrust bearing more numerically stable and computationally efficient than the differentiation method. It also investigates the coupling effect of the coupled journal and thrust bearing and it shows that the proposed method makes it possible to calculate the cross-coupled dynamic coefficients in the radial-axial direction of the coupled journal and thrust bearing. After the linearized stiffness and damping coefficients are evaluated, The threshold speed parameter and whirl frequency ratio are computed using the linearized stability analysis.
     This paper investigates the dynamic behavior of a HDD spindle system with fluid dynamic bearings (FDBs) by solving the Reynolds equation and the equations of a motion of a HDD spindle system in five degrees of freedom. FEM is used to solve the Reynolds equation in order to calculate the pressure distribution in fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors of a HDD spindle system, such as the whirling and the tilting motion, are determined by solving its nonlinear equations of motion with the Runge-Kutta method.
     Finally, this paper presents a method to investigate the characteristics of hydrodynamic bearings of a HDD spindle motor considering the variation of the clearance as well as the lubricant viscosity due to elevated temperature. This research shows that elevated temperature changes the clearance as well as the lubricant viscosity of the hydrodynamic bearings of a HDD spindle motor. In this article, the thermal expansion of the sleeve’s inner radius was determined by Luo Zai’s method. Once the viscosity and clearance of hydrodynamic bearings of a HDD spindle motor are determined, finite element analysis of the Reynolds equation is performed to investigate the static and dynamic characteristics of hydrodynamic bearings of a HDD spindle motor at elevated temperature. It shows that elevated temperature is an important design consideration which affects the dynamic characteristics of the hydrodynamic bearing of a HDD spindle motor.
引文
[1] Roger Wood. Future hard disk drive systems. Journal of Magnetism and Magnetic Materials, 2009, 321:555-561
    [2] Gantz J. The expanding digital universe, IDC White Paper sponsored by EMC, March2007, < /http://www.emc.com/about/destination/digital_ universe >
    [3] Schirle D K, Lieu. History and Trends in the Development of Motorized Spindles for Hard Disk Drives. Digests of the Asia-Pacific Magnetic Recording Conference, Singapore, 1995:139-142
    [4] Blount W C. Fluid dynamic spindle motors: Their future in hard disk drives. IBM Corp. White Paper 2001, IBM Storage Systems Group, San Jose, CA 95193
    [5] Edward Grochowski, Roger F Hoyt. Future trends in hard disk drives. IEEE Transactions on Magnetics, 1996, 32(3):850-854
    [6] Tarnopolsky G. Beyond magnetic areal density growth: evolution of the hard disk drive, in: Fourth Joint International Conference of IGNOIE-COE06 & SOIM-COE06, January 23-25, 2007, Sendai, Japan
    [7] Ono K. Analysis of non-repeatable radial vibration of magnetic disk spindles. Journal of Vibration and Acoustics, Trans. of ASME, 1991, 113:292-298
    [8] Jang G H, Chang J H, Hong D P, et al. Finite-element analysis of an electromechanical field of a BLDC motor considering speed control and mechanical flexibility, IEEE Trans. Magn., Mar. 2002, 38(2):945-948
    [9] Bouchard G, Lau, L, Talke, F E. An Investigation of Non-repeatable Spindle Runout. IEEE Trans. Magn., 1987, 23:3687-3689
    [10] Park J S, Shen I Y, Ku C P. A parametric study on rocking vibration of rotating disk/spindle systems with hydrodynamic bearings. Microsystem Technologies, 2002, 8:427-434
    [11] Shen I Y, Ku C P. A nonclassical vibration analysis of multiple rotating disk/spindle system. ASME J Appl Mech, 1997, 64:165-174
    [12] Tseng C W, Shen J Y, Shen I Y. Vibration of rotating-shaft HDD spindle motors with flexible stationary parts. IEEE Trans on Magn, 2003, 39:794-799
    [13] Swarm A C, Harrison J C, Talke F E. Non-repeatable Runout Measurement of Fluid Lubrication Spindle. IEEE Transactions on Magnetics, 1996, 32(3):1727-1732
    [14] Roger C P. Dynamic Characteristics of Hard Disk Drive Spindle Motors--Comparison between Ball Bearings and Hydrodynamic Bearings. Transactions of the ASME, Journal of Tribology, 1996, 118:402-406
    [15] Chen S X, Low T S, Lin H, et al. Design trends of spindle motors for high performance hard disk drives. IEEE Transactions on Magnetics, 1996, 32(5):3848-3850
    [16]孙大成.润滑力学讲义.北京:中国友谊出版公司,1991:126-145
    [17] Zhu J, Ono K. A Comparison Study on the Performance of Four Types of Oil Lubricated Hydrodynamic Thrust Bearings for Hard Disk Spindles. Trans. ASME, Journal of Tribology, 1999, 121(1):114-120
    [18] Roger C P. Comparison between Ball Bearings and Hydrodynamic Bearings. Trans. ASME, Journal of Tribology 1996, 118(2):402-406.
    [19] Bonneau D, Absi. J. Analysis of aerodynamic journal bearings with small number of herringbone grooves by finite element method. ASME J. Tribology, 1994, 116:698-704
    [20] Yabe H, Kaneshiro T, Hirayama T. Theoretical Investigation of Run-Out Characteristics of Spiral-Grooved Gas-Lubricated Journal Bearing. Proc. of the Int. Tribol. Conf. Nagasaki 2000:1675-1679
    [21] Hwang T, Ono K. Analysis and Design of Hydrodynamic Journal Air Bearings for High Performance HDD Spindle. Microsystem Technologies, 2003, 9:386-394
    [22] Foster D J, Carow D, Benson D. An Approximate Theoretical Analysis of the Static and Dynamic Characteristics of the Herringbone Grooved, Gas Lubrication Journal Bearing, and Comparison with Experiment. Transactions of the ASME, Journal of Lubrication Technology, 1969:25-35
    [23] Kogure K, Kaneko R, Ohtani K. A Study on Characteristics of Surface-Restriction Compensated Gas Bearing With T-Shaped Grooves. BULL. JSME, 1982, 25(210):2039
    [24] Chen S X, Low T S. Some Considerations in the Design of High Speed Spindle for Hard Disk Drives. Proceedings of IDEMA’s Beyond 10 Gb/in2 Symposium, 10 June 1998, the Decathlon Hotel, Minneapolis, MN USA.
    [25] Chen S X. Designing Spindle Motors for High-performance Drives. Data Storage Magazine, November/December, 1996:39-44
    [26] Schirle D K, Lieu. History and Trends in the Development of Motorized Spindles for Hard Disk Drives. Digests of the Asia-Pacific Magnetic Recording Conference, Singapore, 1995:139-142
    [27] Zhang Qide, Chen Shixin, Liu Zhejie. Design of A Hybrid Fluid Bearing System for HDD Spindles, APMRC’98, Suntec City Convention Centre, Singapore, July 29-31, 1998:239-245
    [28] Chen S X, Zhang Q D, Liu Z J, et al. Design of Fluid Bearing Spindle Motors with Controlled Unbalanced Magnetic Forces. IEEE Transactions on Magnetics, September 1997, 33(5):4317-4319
    [29] Chen S X,Low T S. Analysis of Spindle Motor Performance Sensitivity to Excitation Schemes. IEEE Transactions on Magnetics, September 1998, 34(5):4225-4229
    [30] Asada T, Saitou H, Asaida Y, et al. Characteristic analysis of hydrodynamic bearings for HDDs. IEEE Trans. on Magnetics, 2001,vol.37:810-814
    [31] Gregory M Frees. Disk drive spindle dynamics analysis and measurement. Advances in Information, 1995, 6:237-242
    [32] Kang K, Rhim Y, Sung K. A study of oil-lubricated herringbone grooved journal bearing, part one: numerical analysis. ASME J. Tribology, 1996, 118:906-911
    [33] Fleming D P, Cunningham R E, Anderson W J. Zero-Load Stability of Rotating Externally Pressurized Gas-Lubricated Journal Bearings. ASME J. Lubr. Technol., 1970, 92(2):325-334
    [34] Vohr J H, Chow C Y. Characteristics of herringbone grooved gas lubricated journal bearings. ASME J. Basic Eng, 1965, 87:568-578
    [35] Malanoski S B. The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing. Transactions of the ASME, Journal of Basic Engineering, 1965:547-558
    [36] Muijderman E A. Spiral Groove Bearings, McMillan, London ,1966
    [37] Murata S, Miyake Y, Kawabata N. Two-Dimensional Analysis of Herringbone Grooved Journal Bearings. Bull. JSME, 1980, 23(181):1980-1987
    [38] Kinouchi, K, Tanaka, K. Performance Characteristics of Herringbone Grooved Journal Bearings Using a Finite Element Method. Proceedings of the Japan International Tribology Conference, II, 1990:935-940
    [39] Kang K, Rhim Y, Sung K. A study of oil-lubricated herringbone grooved journal bearing, part one: numerical analysis. ASME J. Tribology, 1996, 118:906-911
    [40] Zirkelback N, San Andres L. Finite element analysis of herringbone grooved journal bearings, Aparameter study. ASME J. Tribology, 1998, 120:234-240
    [41] Kawabata N, Ozawa Y, Kamaya S, et al. Static Characteristics of the Regular and Reversible Rotation Type Herringbone Grooved Journal Bearing. Transactions of the ASME, Journal of Tribology, 1989, Vol.111:484-490
    [42] Hirs G G. The load capacity and stability characteristics of hydrodynamic grooved journal bearings. ASLE Trans, 1965, 8:296-305
    [43] Winoto S H, Hou Z Q, Zhang, Q D. Performance comparison of vertical herringbone grooved journal bearings, Journal of Flow Visualization and Image Processing, 2001, 8(2):203-212
    [44] Jang G H, Chang D I. Analysis of a hydrodynamic herringbone grooved journal bearing considering cavitations. ASME J Tribol, 2000, 122:103-109
    [45] Jang G H, Yoon JW. Nonlinear dynamic analysis of a hydrodynamic journal bearing due to the effect of a rotating or stationary herringbone groove. ASME J Tribol, 2002, 124:297-304
    [46] Lund J W, Thomsen K K. A Calculation Method and Data for the Dynamic Coefficients of Oil-lubricated Journal Bearings. Topics in Fluid Journal Bearing and Rotor Bearing System (ASME), 1978:1-28
    [47] Zheng T, Hasebe N. Calculation of equilibrium position and dynamic coefficients of a journal bearing using free boundary theory, ASME J. Tribol. 2000, 122(3):616
    [48] Yan Zang, Hatch, Michael R. Analysis of coupled journal and thrust hydrodynamic bearing using a finite-volume method. ASME Advances in Information Storage and Processing Systems, 1995:71-79
    [49] Rahman M, Leuthold J. Computer Simulation of a Coupled Journal and Thrust Hydrodynamic Bearing using a Finite-Element Method, Proceedings of 25th Annual IMCSD Symposium (The Society, San Jose, CA, 1996):103-112
    [50] Pai R, Majumdar B C. Stability of Submerged Oil Journal Bearings under Dynamic Load. Wear, 1991, 146:125-135
    [51] Jonnadula R, Majumdar B C, Rao N S. Stability Analysis of Flexibly Supported Rough Submerged Oil Journal Bearings. Tribol. Trans., 1997, 40(3):437-444
    [52] Raghunandana K, Majumdar B C. Stability of Journal Bearing Systems Using Non-Newtonian Lubricants: A Non-Linear Transient Analysis, Tribol. Int., 1999, 32:179-184
    [53] Kakoty S K, Majumdar B C. Effect of Fluid Inertia on Stability of Oil Journal Bearings. ASME J. Tribol., 2000, 122:741-745
    [54] Jakobsson B, Floberg L. The Finite Journal Bearing Considering Vaporization.Transaction of Chalmers University of Technology(Gothenburg in Sweden), 1957:190-198
    [55] Olssson K O. Cavitations in Dynamically Loaded Bearings[J].Transaction of Chalmers University of Technology(Gothenburg in Sweden), 1965:308-315
    [56] Elord H G, Adams M L. A Computer Program for Cavitations and Starvation Problems[C]. In: Cavitations and Related Phenomena in Lubrication, New York: Mechanical Engineering Publications,1974:33-41
    [57] Elord H G. Cavitation Algorithm. ASME J Lubrication Technology, 1981, 103(3):350-354
    [58] Mori A, Mori H. Re-examination of film rupture boundary condition in hydrodynamic lubrication under inertia effect, Trans. ASME, J. Tribology, 1991, 113:604-608
    [59]李安峰.螺旋槽液体润滑轴承的动力性能研究[硕士学位论文], 2002:8-9
    [60] Liu Z J, Howe D, Mellor P H, et al. Jenkins, Coupled thermal and electromagnetic analysis of a permanent magnet brushless dc servo motor. In Proc. 6th Int. Conf. Electrical Machines and Drives, Sep. 1993:631-635
    [61] Rajagopal M S, Seetharamu K N, Ashwathnarayana P A. Transient thermal analysis of induction motors. IEEE Trans. Energy Convers., 1998, 13(3):62-69
    [62] Sato I, Otani K, Mizukami M, et al. Characteristics of heat transfer in small disk enclosures at high rotation speeds. In Proc. Inter-society Conf. Thermal Phenomena in Electronic Systems, May 1990: 130-135
    [63] McCallion H, Yousif F, Lloyd T. The Analysis of Thermal Effects in a Full Journal Bearing. Transactions of the ASME, 1970, 92:578-587
    [64] Kita H, Uero Y, Obata S, et al. Numerical Analysis of Temperature of Lubrication Oil in HDB Spindle Motor. Proc. JSME Annu. Meeting, 2000:193-194
    [65] Matsuoka, K, Obata, S, Kita, H, et al. Development of FDB Spindle Motors for HDD Use. IEEE Trans. Magn., 2001, 37(2):783-788
    [66] Asada T, Saito H, Asaida Y, et al. Design of Hydrodynamic Bearings for High-Speed HDD. Microsystem Technologies, 2002, 8:220-226
    [67] Majumdar B C. The thermodynamic solution of oil journal bearing. Wear 1975, 31:287-94
    [68] Ferron J, Frene J, Boncompain R. A study of thermo-hydrodynamic performance of a plain journal bearing comparison between theory and experiments. Trans ASME,J Lub Technol 1983, 105:422-8
    [69] Ramesh J, Majumdar B C, Rao N S. Non-linear transient analysis of submerged oil journal bearings considering surface roughness and thermal effects. J Eng Tribol Proc Inst Mech Engrs London (Part J) 1995, 209:53-61
    [70] Banwait S S, Chandrawat H N. Study of thermal boundary conditions for a plain journal bearing. Tribol Int 1998, 31:189-96
    [71] Boncompain R, Fillon M, Fre?ne J. Analysis of Thermal Effects in Hydrodynamic Bearings. ASME J. Tribol., 1986,108:219-224
    [72] Khonsari M M, Wang S H. On the Fluid-Solid Interaction in Reference to Thermo-elastic-hydrodynamic Analysis of Journal Bearings. ASME J. Tribol., 1991,113:398-404
    [73] Shi F, Wang Q. A Method of Influence Functions for Thermal Analyses of Tribological Elements. Tribol. Trans., 1998, 41(3):350-358
    [74] Shi F, Wang Q. A Mixed-TEHD Model for Journal Bearing Conformal Contacts-Part 1: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact. ASME J. Tribol., 1998, 120:198-205
    [75] Wang Q, Shi F, Lee C S. A Mixed-TEHD Model for Journal Bearing Conformal Contacts-Part 2: Contact, Film Thickness and Performance Analyses. ASME J. Tribol., 1998, 120:206-213
    [76] Wang Y, Zhang C, Wang Q, et al. A Mixed-TEHD Analysis and Experiment of Journal Bearings Under Severe Operating Conditions. Tribol. Int., 2002, 35:395–407
    [77] Zhang C, Yi Z, Zhang Z. THD Analysis of High Speed Heavily Loaded Journal Bearings Including Thermal Deformation, Mass Conserving Cavitation, and Turbulent Effects. ASME J. Tribol., 2000, 122:597-602
    [78] Pierre I, Fillon M. Influence of Geometric Parameters and Operating Conditions on Thermo-hydrodynamic Behavior of Plain Journal Bearings. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 2000, 214:445-457
    [79] Maki E R, Ezzat H A. Thermally induced whirl of a rigid rotor on hydrodynamic journal bearings. Trans. ASME, 1980, 102(1):8-14
    [80] Craighead I A, Dowson D, Sharp R S, et al. The influence of thermal effects and shaft misalignment on the dynamic behavior of fluid film bearings. Proc. of 6th Leeds-Lyons Symposium on Tribology, September 1979:47-55
    [81] Khonsari M M. A review of thermal effects in hydrodynamic bearings, Part II: journal bearings. ASLE Trans., 1987, 30:26-33
    [82] Knight J D, Barrett L E. An approximate solution technique for multilobe journal bearings including thermal effects, with comparison to experiments. ASLE Trans., 26(4):501-508
    [83] Khonsari M M, Jang J Y, Fillon M. On the generalization of thermo-hydrodynamic analyses for journal bearings. J. Tribol., 1996, 118:571-579
    [84] Jang J Y, Khonsari M M. Design of bearings on the basis of thermo-hydrodynamic analysis. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology, 2004, 218:355-363
    [85] Jang G H, Kim K S, Lee H S, et al. Analysis of a Hydrodynamic Bearing of a HDD Spindle Motor at Elevated Temperature, ASME J. Tribol., 2004,126:353-359
    [86] Luo Zai, Fei Ye-tai, Miao En-ming. Study on Thermal Deformation of Hollow Piece in Steady Temperature Field. Transactions of Materials and Heat Treatment, 2004, 25(2):25-27
    [87]周桂如,马骥,金永昕.流体润滑理论.杭州:浙江大学出版社,1990
    [88]王云飞.气体润滑理论与气体轴承的设计.北京:机械工业出版社,1999:45-48
    [89] Sneck H J, Mcgrovern J F. Analytical Investigation of the Sprial Groove Face Seal. Transactions of the ASME, Journal of Lubrication Technology, 1973:499-510
    [90]黄其圣,费业泰.金属材料热变形的精确测定.应用科学学报, 2002, 20(1):109-110
    [91]刘永东,费业泰.零件材料精确热膨胀系数的测定.计量学报, 1998, 19(3):216-220
    [92]杨沛然.流体润滑数值分析.北京:国防工业出版社,1998:9-14
    [93]陶然,权晓波,徐建中等.微尺度流动研究中的几个问题.工程热物理学报,2001, 22(5):32-35
    [94] Kakoty S K, Majumdar B C. Effect of Fluid Inertia on Stability of Flexibly Supported Oil Journal Bearings: Linear Perturbation Analysis. Tribol. Int., 1999, 32:217-228.
    [95] Chen L W, Ku D M. Finite element analysis of natural whirl speeds of rotating shafts, Computers and Structures , 1991,40 (3):741-747
    [96] Klit P, Lund J W. Calculation of the Dynamic Coefficients of a Journal Bearing Using a Variational Approach. ASME J Tribol, 1986,108:421-425
    [97] Oscar Pinkus. The Reynolds centennial: a brief history of the theory of hydrodynamic lubrication. Transactions of the ASME, Journal of Tribology, 1987, 109:2-20
    [98] Liu C S, Chuo T C, Lin P H, et al. Effects of the Fluid Dynamic Bearing Design on Rotational Precision of a Spindle Motor. IEEE Trans. on Magnetics, 2007, 43(2):790-792
    [99] Constantinescu V N, Castelli V. On the Local Compressibility Effect in Spiral-Groove Bearings. Transactions of the ASME , Journal of Lubrication Technology, 1969:79-86
    [100] Constantinescu V N, Galetuse S. On Extending the Narrow Spiral-Groove Theory to Configurations of Interest Seals. Transactions of the ASME, Journal of Tribology, 1989,Vol.114:563-566
    [101] Lund J W. Review of the Concept of Dynamic Cofficients for Fluid Film Journal Bearings. Transactions of the ASME, Journal of Tribology, 1987, Vol.112:463-466
    [102]张文.转子动力学理论基础.北京:科学出版社, 1990:61-65
    [103]闻邦椿,顾家柳,夏松波等.转子动力学—理论、技术与应用.北京:机械工业出版社, 2000:73
    [104]陈伯贤,裘祖干,张慧生.流体润滑理论及其应用,北京:机械工业出版社, 1991:106
    [105] Etsion I, Ludwig L P. Observation of pressure variation in the cavitation region of submerged journal bearings. Trans. ASME, J. Lubric. Technol., 1982, 104:157-163
    [106]温诗铸.摩擦学原理.北京:清华大学出版社, 1990:1-7
    [107]曲庆文.薄膜润滑理论.北京:科技出版社, 1990:170-173
    [108]刘莹,温诗铸.微机电系统中微摩擦特性及控制研究.机械工程学报, 2002, 38(3):2-5
    [109]曲庆文,朱均.指数型粘度修正计算径向轴承特性.润滑与密封, 1999 (1) : 32-33
    [110] Liu Z J, Chen S X, Zhang Q D. Design of Brushless DC Spindle Motors for High Speed HDD Recording. IEEE Transactions on Magnetics, September 1998, 34(5):4313-4315
    [111] Chen S X, Low T S, Bruhl B. The Robust Design Approach for Reducing Cogging Torque in Permanent Magnet Motors. IEEE Transactions on Magnetics, July 1998, 34(4):2135-2137
    [112] Rodkiewicz C M, Kalita W. Experimental Investigation Regarding the Effects of Grooves on Conical Bearing Performance, Tribol. Trans., 1995, 38(1):178-182
    [113] Yoshimoto S, Anno Y, Tamura M, et al. Axial Load Capacity of Water-Lubricated Hydrostatic Conical Bearings with Spiral Grooves --On the Case of Rigid Surface Bearings. ASME J. Tribol., 1996,118(4): 893-899
    [114] Yoshimoto S, Kume T, Shitara T. Axial Load Capacity of Water-Lubricated Hydrostatic Conical Bearings with Spiral Grooves for High Speed Spindles --On the Case of a Compliant Surface Bearings. Tribol. Int., 1998, 31(6):331-338
    [115] Pan C H T. Spectral Analysis of Gas Bearing Systems for Stability Studies. Dynamics and Fluid Mechanics of Developments in Mechanics, Wiley, New York, 1965, 3(2):431-447
    [116] Oyama A, Obayashi S, Nakahashi K, et al. Aerodynamic Shape Optimization of a Three-Dimensional Wing by Genetic Algorithm. Journal of the Japan Society for Aeronautical and Space Sciences, 1998, 46:682-686
    [117] Rodrigues H, Guedes J M, Soto C A, et al. An Iterative Model to Design Optimal Two-Material Composite Structures. Applied Mechanics in the Americas, 1999, 6:251-254
    [118] Hashimoto H, Imai T. Tribo-Optimum-Design of High Speed Hydrodynamic Bearing Considering the Turbulent Flow in Lubricating Films. Proceedings of the Japan Society for Mechanical Engineers Dynamics and Design conference, A, 1995:220-223
    [119] Robert M P. Optimization of Self-Acting Gas Bearings for Maximum Static Stiffness. ASME J. Appl. Mech., 1990, 57:758-761
    [120] Robert M P. New Class of Sliders Numerically Designed for Maximum Stiffness. ASME J. Tribol., 1995, 117: 456-460
    [121] Khonsari M, Chang Y. Stability boundary of nonlinear orbits within clearance circle of journal bearings. ASME J. Vib. Acoust., 1993, 115:303-307
    [122] Tanaka K, Muraki H. Performance of Air-lubricated Hydrodynamic Bearing Spindles for Laser Scanners. ASME J. Tribol., 1991, 113:609-614
    [123] Rao J S. Instability of rotors mounted in fluid film bearings with a negative-cross coupled stiffness coefficient, Mechanism and Machine Theory,1985, 20:181-187
    [124] Raman R S R. Experimental Studies on Wear in Oil-impregnated Sintered Bearings. Wear, 1992, 155:73-81
    [125] Sato Y, Ono K. The Optimum Groove Geometry for Spiral Groove Viscous Pumps. ASME J. Tribol., 1990, 112:409-414
    [126] Winoto S H, Hou Z Q, Ong S K, et al. Effects of herringbone groove patterns on performance of vertical hydrodynamic journal bearings, Tribology Transactions, 2002, 45(3):318-323
    [127] Ferron J, Frene J, Boncompain R A. Study of the thermo-hydrodynamic performance of a plane journal bearing: comparison between theory and experiments. Trans ASME, J. Lubric Technol., 1983, 105:422-438
    [128] Kaneko S, Obara S. Experimental Investigation of Mechanism of Lubrication in Porous Journal Bearings: Part I—Observation of Oil Flow inPorous Matrix. ASME J. Tribol., 1990, 112:618-623
    [129] Bhat R B, Rao J S, Sankar T S. Optimum journal bearing parameters for minimum rotor unbalanceresponse in synchronous whirl, Journal of Mechanical Design Transactions of ASME 1982, 104:339-344
    [130] Safar Z S. A thermo-hydrodynamic solution for the finite journal bearings under dynamic loading conditions. Tribology Int., 1979:225-228
    [131] Khonsari M M, Beaman J J. Thermohydrodynamic analysis of laminar incompressible journal bearings. ASLE Trans., 1985, 29:141-150
    [132] Knight J D, Barrett L E. Analysis of axially grooved journal bearings with heat transfer effects. ASLE Trans., 1986, 30:316-323
    [133] Mistry K, Biswas S, Athre K. Study of thermal profile and cavitation in circular journal bearings. Wear, 1992, 159:79-87
    [134] Deihi M K I, Gethin D T. A thermohydrodynamic analysis of a twin axial groove bearing under different loading directions and comparison with experiment. Trans. ASME, J. Tribology, 1992, 114:304-310
    [135] Gandjalikhan Nassab S A, Moayeri M S. A two dimensional thermo-hydrodynamic analysis of journal bearings characteristics. Iranian J. Sci. Technol., 2000, 24:203-220
    [136] Tucker P G, Keogh P S. On the dynamic thermal state in a hydrodynamic bearing with a whirling journal using CFD techniques. Trans. ASME, J. Tribology, 1996, 118:356-363
    [137] Vijayaraghavan, D. An effective numerical procedure for thermo-hydrodynamic analysis of cavitating bearings. Trans. ASME, J. Tribology, 1996, 118:555-563
    [138] Knight J D, Niewiarowski A J. Effects of two film rupture models on the thermal analysis of a journal bearing. Trans. ASME, J. Tribology, 1990, 112:183-188
    [139] Mitsui J, Hori Y, Tanaka M. An experimental investigation on the temperature distribution in circular journal bearings. Trans. ASME, J. Tribology, 1986, 108:621-627
    [140] Tonnesen J, Hansen P K. Some experiments on the steady state characteristics of a cylindrical fluid-film bearing considering thermal effects. Trans. ASME, J. Lubric. Technol., 1981, 103:107-114
    [141] Fitzgerald M K, Neal P B. Temperature distributions and heat transfer in journal bearings. Trans. ASME, J. Tribology, 1992, 114:122-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700