用户名: 密码: 验证码:
溶液法制备的空穴传输层和注入层对有机电致发光器件性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLED)在显示和照明等领域具有广泛的应用前景。虽然其在很多方面都具有优异的性能,但器件性能的进一步提高和器件机理的深入探索仍然是研究者努力的方向。空穴注入和传输能力是影响器件性能的重要因素,溶液法制备的空穴功能层可以简化器件的制备工艺并节省大量的能源。本论文系统研究了溶液法制备的V2O5、CuTCPc和PCDTBT空穴注入层或传输层对有机电致发光器件性能的提高及其原因,主要工作内容如下:
     1、研究了利用V205饱和水溶液处理ITO对器件空穴注入能力的影响,并对器件性能提高原因的进行了探索。与紫外臭氧处理的器件相比,V205饱和水溶液处理后器件的电流密度和亮度相对较低,但其效率得到了提升。这主要是源于V205的存在对电荷传输平衡的影响,即V205在一定程度上增加空穴的注入,又防止空穴过度注入而造成的载流子不平衡。另外,交流阻抗测试表明,饱和V205水溶液浸泡处理ITO后器件的串联电阻明显变大,大于未做任何处理的器件以及紫外臭氧处理的器件。串联电阻的增大导致V2Os层分担了器件中的一部分电压,有利于空穴的隧穿注入。
     2、研究了2,9,16,23-tetracarboxylic copper phthalocyanine (CuTCPc)空穴传输层对NPB/Alq3结构的有机电致发光器件性能的影响。CuTCPc空穴传输层的插入,不但提高器件了空穴的注入和传输能力,增加了器件的电流密度和亮度,还提高了器件的效率。一般认为,在NPB/Alq3结构的器件中,空穴载流子是多数载流子,空穴的增加将导致载流子不平衡从而降低器件效率;但是在此处采用CuTCPc器件中,增加空穴却仍然能提高器件的效率,这主要是由于器件驱动电压的降低。
     同时,为了进一步探明电子或空穴注入对NPB/Alq3结构的有机电致发光器件性能的影响,我们利用一系列结构为NPB/Alq3:C545T/Alq3的器件,研究了器件中载流子复合区域的变化。结果发现,器件的发光没有出现光谱的变化,这表明注入的电子和空穴能较好的在掺杂层复合。并且发现不论增加电子注入,还是增加空穴输入,或者电子和空穴的注入都增加,都能提高器件的效率。
     3、研究了PCDTBT作为空穴功能层材料在有机电致发光器件中的作用。PCDTBT为有机太阳能电池中常用的给体材料,利用PCDTBT:PVK作为空穴传输层,大幅度的提高PVK层的空穴传输能力,显著提高了器件的发光亮度,并且明显降低了器件的启亮电压。与未掺杂的器件相比,相同电流密度下器件亮度的提高达5倍之多。PCDTBT:PVK空穴传输层对器件的光谱有一定的影响,随着掺杂浓度的提高,器件中PCDTBT中发光峰的相对强度逐渐增强。并且,研究了PCDTBT掺杂PVK对有机电致发光器件中电场分布的影响,发现PCDTBT的掺杂不但增加了器件的电流,还减小了有机层中的电场强度。空穴的注入增多和器件中电场强度的降低,同样有利于器件效率的提高。
     为了防止PCDTBT发光峰对器件性能的影响,又制备了ITO/PCDTBT/NPB/A1q3/LiF/Al结构的器件。当PCDTBT浓度较低时可以增加器件的电流密度和亮度,但是当其浓度过高时器件的电流密度和亮度下降。低浓度的PCDTBT修饰ITO导致器件电流增高是因为PCDTBT的能级结构可以形成阶梯势垒,有利于空穴的注入;高浓度PCDTBT修饰导致器件电流下降是由于PCDTBT迁移率相比于NPB要低,导致器件电阻变大不利于器件空穴的传输。
     本文中共有图62幅,表7个,参考文献145篇。
Organic light emitting diodes (OLEDs) have been broadly used for displaying and lighting. Although OLEDs possess excellent properties, the improvement of device performance and the investigation in device physics are still hotpots and focuses in this research field. Hole injection and transporting are two of key factors determining the performances of OLEDs. Hole injection or transport layers prepared by a solution method can save a lot of energy, In this paper, various hole transport materials, including V2O5, CuTCPc and PCDTBT, are prepared from solutions. Meanwhile, the role of these materials and their effects on device performance are also investigated. The experiment results are obtained and listed as follows:
     Firstly, the effect of indium tin oxide (ITO) modified by vanadium penoxide (V2O5) saturation solution was studied. It is found that the V2O5solution-treated devices have a much higher current density compared to the device with bare ITO and a higher current efficiency compared with UV-ozone-treated device. Series resistances were derived by fitting the current-voltage curves and monitoring the AC impedance. The influence of series resistances were also taken into account in this section.
     Secondly, the effects of a hole-transport layer2,9,16,23-tetracarboxylic copper phthalocyanine (CuTCPc) using a spin-coating way was investigated The insertion of the CuTCPc between ITO and N,N'-biphenyl-N,N'-bis (1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine (NPB) significantly reduces the operating voltage and thereby increases the current efficiency. The hole is considered to be the main carrier in NPB/Alq3structure devices, but the increase of hole-transporting can still improve the efficiency of the devices. In this case, the use of the hole transport layer CuTCPc can greatly abate the average field intensity in the devices, thus diminish the negative impact of carrier imbalance.
     The effect of the device structure of NPB/A1Q3:C545T/AlQ3was also studied. Considering that the hole is the major carrier in this structure, the enhanced hole injection is attributed to the imbalance of different carriers and lower efficiency. However, in our study, it indicates that the current efficiency increases with the increasing of the hole concentration. We speculate that the increased current efficiency comes from a lower average electric field due to the hole transport layer CuTCPc in the devices.
     Finally, we doped PCDTBT (Poly [[9-(l-octylnonyl)-9H-carbazole-2,7-diyl]-2, 5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), a kind of Poly carbazole compounds, into the commonly used hole transport layer (HTL) PVK. The doped PCDTBT in PVK can significantlyenhance the luminance and reduce the turn-on voltage of the devices. The proportion of the PCDTBT peak becomes gradually larger along with the increase of the doping concentration of PCDTBT, and the device with the largest doped concentration achieved five times higher brightness compared to the as-spun device.
     In order to prevent the luminescence of PCDTBT, we studied the devices with the structure of ITO/PCDTBT/NPB/Alq3/LiF/Al. We found that the turn-on voltage was reduced with increasing PCDTBT concentration. At a high voltage, the current density first increased and then decreased with the increase of PCDTBT concentration implying that the inserted PCDTBT layer improved the hole injection ability but reduced its hole transport ability.
引文
[1]苗英恺,陈佳,OLED平板显示技术原理与应用,通信技术,41(2009)165-167.
    [2]黄永春,郑江淮,谭洪波,杨以文,后发地区发展战略性新兴产业的时机选择与赶超路径——以平板显示技术的赶超实践为例,科学学研究,30(2012)1031-1038.
    [3]张芳,我国平板显示技术现状及发展趋势,中国科技财富,(2011).
    [4]吴国光,液晶显示器及其偏光板的研发新进展,影像技术,(2012)10-16.
    [5]钱慰宗,孙鉴,彩色等离子体显示器的新进展,真空电子技术,(2002)18-22.
    [6]林志贤,郭太良,场致发射显示器研究与进展,光电子技术,26(2006)1-5.
    [7]A. Dodabalapur, Organic light emitting diodes, Solid state communications,102 (1997) 259-267.
    [8]F.G. Celii, S.J. Jacobs, Organic light emitting diodes, in, Google Patents,2001.
    [9]J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, A. Holmes, Light-emitting diodes based on conjugated polymers, nature,347 (1990) 539-541.
    [10]S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, RE. Burrows, S.R. Forrest, M.E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes:synthesis, photophysical characterization, and use in organic light emitting diodes, Journal of the American Chemical Society,123 (2001) 4304-4312.
    [11]C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Applied Physics Letters,51 (1987)913-915.
    [12]李政远,孟宪伟,唐芳琼,电子纸显示器及组装工艺研究进展,过程工程学报,10(2010).
    [13]李福文,金伟其,邵喜斌,王霞,张丽蕾,张凯亮,基于LED背光源区域控制的高动态范围液晶显示技术进展,光学技术,(2009)835-839.
    [14]蒋峰,朱向冰,液晶自动立体显示技术研究进展,光学与光电技术,5(2007).
    [15]姚远,不断突破性能极限:液晶显示技术的新进展,新电脑,31(2007)46-51.
    [16]李宏,张家田,液晶显示器件应用技术,机械工业出版社,2004.
    [17]R. Dawson, M. Kane, Pursuit of Active Matrix Organic Light Emitting Diode Displays, in: SID Symposium Digest of Technical Papers, Wiley Online Library,2012, pp.372-375.
    [18]P. Wellmann, M. Hofmann, O. Zeika, A. Werner, J. Birnstock, R. Meerheim, G. He, K. Walzer, M. Pfeiffer, K. Leo, High-efficiency p-i-n organic light-emitting diodes with long lifetime, Journal of the Society for Information Display,13 (2012) 393-397.
    [19]L. Hu, J. Li, J. Liu, G. Gruner, T. Marks, Flexible organic light-emitting diodes with transparent carbon nanotube electrodes:problems and solutions, Nanotechnology,21 (2010) 155202.
    [20]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, nature,492 (2012) 234-238.
    [21]H.D. Kim, J.K. Jeong, H.J. Chung, Y.G. Mo, Technological Challenges for Large-Size AMOLED Display, in:SID Symposium Digest of Technical Papers, Wiley Online Library,2012, pp.291-294.
    [22]J.-S. Park, H. Chae, H.K. Chung, S.I. Lee, Thin film encapsulation for flexible AM-OLED: a review, Semiconductor Science and Technology,26 (2011) 034001.
    [23]陈金鑫,黄孝文,梦幻显示器OLED材料与元件,in,台湾:五南出版社,2006.
    [24]B. A., C. M., V. P., A new method of emission of light by certain organic compounds, Journal of Chemical Physics,50 (1953) 64-68.
    [25]M. Pope, H. Kallmann, P. Magnante, Electroluminescence in organic crystals, The Journal of Chemical Physics,38 (1963) 2042-2043.
    [26]J. Dresner, Double injection electroluminescence in anthracene, RCA rev,30 (1969) 322.
    [27]C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Organic electroluminescent device with a three-layer structure, Jpn. J. Appl. Phys,27 (1988) 713-715.
    [28]C. Tang, S. VanSlyke, C. Chen, Electroluminescence of doped organic thin films, Journal of applied physics,65 (1989) 3610-3616.
    [29]G Gustafsson, Y. Cao, G. Treacy, F. Klavetter, N. Colaneri, A. Heeger, Flexible light-emitting diodes made from soluble conducting polymers, nature,357 (1992) 477-479.
    [30]A. Brown, K. Pichler, N. Greenham, D. Bradley, R. Friend, A. Holmes, Optical spectroscopy of triplet excitons and charged excitations in poly (p-phenylenevinylene) light-emitting diodes, Chemical physics letters,210 (1993) 61-66.
    [31]M. Baldo, D. O'brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, S. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, nature,395 (1998) 151-154.
    [32]宋丹丹,磷光OLEDs的效率和效率roll-off特性的影响因素及改进方法,in,北京交通大学,2011.
    [33]吴世康,有机电子学概论,化学工业出版社,2010.
    [34]M. Klaus, U. Scherf, Organic Light Emitting Devices:Synthesis, Properties and Applications, Wiley-VCH,2006.
    [35]Z. Wang, Y. Lou, S. Naka, H. Okada, Temperature dependence of carrier injection in small molecular organic light emitting device with a mixed single layer, Chemical physics letters,501 (2010) 75-79.
    [36]Z. Wang, S. Naka, H. Okada, Performance improvement of rubrene-based organic light emitting devices with a mixed single layer, Applied Physics A:Materials Science & Processing,100 (2010) 1103-1108.
    [37]Z. Wang, S. Naka, H. Okada, Investigation of carrier injection mechanism in small molecular organic light emitting device with a mixed single organic layer, Applied Physics A: Materials Science & Processing,102 (2011) 681-687.
    [38]G. Malliaras, J. Salem, P. Brock, C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes, Physical Review B,58 (1998) 13411-13414.
    [39]S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. Seidler, W. Riess, Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation, Physical Review B,60 (1999) 8791.
    [40]M. Goes, J.W. Verhoeven, H. Hofstraat, K. Brunner, OLED and PLED Devices Employing Electrogenerated, Intramolecular Charge-Transfer Fluorescence, ChemPhysChem,4 (2003) 349-358.
    [41]J.G. Simmons, Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems, Physical Review,155 (1967) 657.
    [42]Z. Deng, S. Lee, D. Webb, Y. Chan, W. Gambling, Carrier transport in thin films of organic electroluminescent materials, Synthetic metals,107 (1999) 107-109.
    [43]GG Malliaras, Y. Shen, D.H. Dunlap, H. Murata, Z.H. Kafafi, Nondispersive electron transport in Alq3, Applied Physics Letters,79 (2001) 2582-2584.
    [44]L. Pingree, B. Scott, M. Russell, T. Marks, M. Hersam, Negative capacitance in organic light-emitting diodes, Applied Physics Letters,86 (2005) 073509-073509-073503.
    [45]T. Ogawa, D.-C. Cho, K. Kaneko, T. Mori, T. Mizutani, Numerical analysis of the carrier behavior of organic light-emitting diode:comparing a hopping conduction model with a SCLC model, Thin Solid Films,438 (2003) 171-176.
    [46]P. Burrows, S. Forrest, Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices, Applied Physics Letters,64 (1994) 2285-2287.
    [47]H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe, C. Adachi, Extremely-high-density carrier injection and transport over 12000 A/cm into organic thin films, Applied Physics Letters,86 (2005)083502.
    [48]A. Nesterov, G. Paasch, S. Scheinert, T. Lindner, Simulation study of the influence of polymer modified anodes on organic LED performance, Synthetic metals,130 (2002) 165-175.
    [49]C.D. Blades, A.B. Walker, Simulation of organic light-emitting diodes, in: Optoelectronics'99-Integrated Optoelectronic Devices, International Society for Optics and Photonics,1999, pp.35-44.
    [50]S. Van Mensfoort, S. Vulto, R. Janssen, R. Coehoorn, Hole transport in polyfluorene-based sandwich-type devices:Quantitative analysis of the role of energetic disorder, Physical Review B,78 (2008)085208.
    [51]L. Zou, V. Sawateev, J. Booher, C.-H. Kim, J. Shinar, Combinatorial fabrication and studies of intense efficient ultraviolet-violet organic light-emitting device arrays, Applied Physics Letters,79 (2001) 2282-2284.
    [52]G. Malliaras, J. Scott, The roles of injection and mobility in organic light emitting diodes, Journal of applied physics,83 (1998) 5399-5403.
    [53]J. Van der Holst, F. Van Oost, R. Coehoorn, P. Bobbert, Electron-hole recombination in disordered organic semiconductors:Validity of the Langevin formula, Physical Review B,80 (2009) 235202.
    [54]张国林,郭海清,啜玉涛,邹德春,一种新型红色三线态喹喔啉铱(Ⅲ)配合物的合成及发光性质,化学学报,63(2005)143-147.
    [55]Q. Yang, Y. Hao, Z. Wang, Y. Li, H. Wang, B. Xu, Double-emission-layer green phosphorescent OLED based on LiF-doped TPBi as electron transport layer for improving efficiency and operational lifetime, Synthetic metals,162 (2012) 398-401.
    [56]J. Shi, C.W. Tang, K.P. Klubek, Electroluminescent device with antracene derivatives hole transport layer, in, EP Patent 2,270,897,2011.
    [57]N. Chopra, V. Seshadri, J. Wang, J. Muehlbauer, R. Swisher, C. McGuiness, S. Li, B. Woodworth, C. Brown, M. Mathai,33.2:Solution Processed Hole Injection and Hole Transport Layers:Design Features for OLED Manufacturing, in:SID Symposium Digest of Technical Papers, Wiley Online Library,2012, pp.438-440.
    [58]M.T. Lloyd, C.H. Peters, A. Garcia, I.V. Kauvar, J.J. Berry, M.O. Reese, M.D. McGehee, D.S. Ginley, D.C. Olson, Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics, Solar Energy Materials and Solar Cells,95 (2011) 1382-1388.
    [59]C. Wu, C. Wu, J. Sturm, A. Kahn, Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices, Applied Physics Letters,70 (1997) 1348-1350.
    [60]Y. Park, V. Choong, Y. Gao, B. Hsieh, C. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy, Applied Physics Letters,68 (1996) 2699-2701.
    [61]T. Osada, T. Kugler, P. Broms, W. Salaneck, Polymer-based light-emitting devices: investigations on the role of the indium—tin oxide (ITO) electrode, Synthetic metals,96 (1998) 77-80.
    [62]M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Improvement of organic electroluminescent device performance by in situ plasma treatment of indium-tin-oxide surface, Journal of Luminescence,87 (2000) 1165-1167.
    [63]H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, M.-R. Yang, Z.-L. Tseng, Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer, Journal of Alloys and Compounds,479 (2009) 520-524.
    [64]D. DiMaria, E. Cartier, D. Buchanan, Anode hole injection and trapping in silicon dioxide, Journal of applied physics,80 (1996) 304-317.
    [65]W. Hu, K. Manabe, T. Furukawa, M. Matsumura, Lowering of operational voltage of organic electroluminescent devices by coating indium-tin-oxide electrodes with a thin CuOx layer, Applied Physics Letters,80 (2002) 2640-2641.
    [66]G. Murdoch, M. Greiner, M. Helander, Z. Wang, Z. Lu, A comparison of CuO and CuO hole-injection layers for low voltage organic devices, Applied Physics Letters,93 (2008) 083309.
    [67]C. Qiu, Z. Xie, H. Chen, M. Wong, H.S. Kwok, Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes, Journal of applied physics,93 (2003)3253-3258.
    [68]T. Matsushima, Y. Kinoshita, H. Murata, Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers, Applied Physics Letters,91 (2007) 253504-253504-253503.
    [69]C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, B.P. Rand, Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells, ACS applied materials & interfaces,3 (2011)3244-3247.
    [70]V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells, Applied Physics Letters,88 (2006) 073508-073508-073503.
    [71]F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Riihle, D. Cahen, Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes:Indication for electron injection from higher excited dye states, The Journal of Physical Chemistry B,105 (2001) 6347-6352.
    [72]H. Jiang, Y. Zhou, B.S. Ooi, Y. Chen, T. Wee, Y.L. Lam, J. Huang, S. Liu, Improvement of organic light-emitting diodes performance by the insertion of a Si3N4 layer, Thin Solid Films,363 (2000) 25-28.
    [73]S. Jonsson, J. Birgerson, X. Crispin, G Greczynski, W. Osikowicz, A. Denier Van Der Gon, W.R. Salaneck, M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly (3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films, Synthetic metals,139 (2003) 1-10.
    [74]S.-F. Chen, C.-W. Wang, Influence of the hole injection layer on the luminescent performance of organic light-emitting diodes, Applied Physics Letters,85 (2004) 765-767.
    [75]Y. Kijima, N. Asai, S.-i. Tamura, A blue organic light emitting diode, Japanese journal of applied physics,38 (1999) 5274.
    [76]马昌期,王雪松,张宝文,曹怡,有机电致发光空穴传输材料研究进展,化学进展,15(2003)495-504.
    [77]H. Zhang, W.C. Choy, Highly efficient organic light-emitting devices with surface-modified metal anode by vanadium pentoxide, Journal of Physics D:Applied Physics,41 (2008)062003.
    [78]X. Sun, L. Cheng, M. Liu, L. Liao, N. Wong, C. Lee, S. Lee, Photoelectron spectroscopic study of iodine-and bromine-treated indium tin oxides and their interfaces with organic films, Chemical physics letters,370 (2003) 425-430.
    [79]T. Kugler, W. Salaneck, H. Rost, A. Holmes, Polymer band alignment at the interface with indium tin oxide:consequences for light emitting devices, Chemical physics letters,310 (1999)391-396.
    [80]X.Zhu,J.Sun,H.Peng,M.Wong,H.S.Kwok,P-128:Inverted Top-Emitting OrganicLight-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer, in:SID Symposium Digest of Technical Papers, Wiley Online Library,2012, pp.793-795.
    [81]K. Kato, K. Takahashi, K. Suzuki, T. Sato, K. Shinbo, F. Kaneko, H. Shimizu, N. Tsuboi, T. Tadokoro, S. Ohta, Organic light emitting diodes with nanostructured ultrathin layers at the interface between electron-and hole-transport layers, Current Applied Physics,5 (2005) 321-326.
    [82]A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Electron transport materials for organic light-emitting diodes, Chemistry of materials,16 (2004) 4556-4573.
    [83]S.J. Su, T. Chiba, T. Takeda, J. Kido, Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs, Advanced Materials,20 (2008) 2125-2130.
    [84]N.D. Nguyen, M. Schmeits, H.-P. Loebl, Determination of charge-carrier transport in organic devices by admittance spectroscopy:Application to hole mobility in a-NPD, Physical Review B,75 (2007) 075307.
    [85]S. Roy, S. Kundu, S. Roy, A.J. Pal, Impedance characteristics of layer-by-layer electrostatic self-assembled films of evans blue, Materials chemistry and physics,77 (2003) 784-790.
    [86]A. Rihani, N. Boutabba, L. Hassine, S. Romdhane, H. Bouchriha, Conduction and transport in the ITO/AVB/AL light emitting diode, Synthetic metals,145 (2004) 129-134.
    [87]M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, N. Shimoji, Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure, Applied Physics Letters,85 (2004) 5769-5771.
    [88]J. Shi, C.W. Tang, Anthracene derivatives for stable blue-emitting organic electroluminescence devices, Applied Physics Letters,80 (2002) 3201-3203.
    [89]C.-H. Liao, M.-T. Lee, C.-H. Tsai, C.H. Chen, Highly efficient blue organic light-emitting devices incorporating a composite hole transport layer, Applied Physics Letters,86 (2005) 203507-203507-203503.
    [90]Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, T. Usuki, Red organic light-emitting diodes using an emitting assist dopant, Applied Physics Letters,75 (1999) 1682-1684.
    [91]X. Cai, A.B. Padmaperuma, L.S. Sapochak, P.A. Vecchi, P.E. Burrows, Electron and hole transport in a wide bandgap organic phosphine oxide for blue electrophosphorescence, Applied Physics Letters,92 (2008) 083308-083308-083303.
    [92]J. Hwang, F. Amy, A. Kahn, Spectroscopic study on sputtered PEDOT-PSS:Role of surface PSS layer, Organic electronics,7 (2006) 387-396.
    [93]Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai, Multilayered organic electroluminescent device using a novel starburst molecule,4,4',4' tris (3-methylphenylphenylamino) triphenylamine, as a hole transport material, Applied Physics Letters,65 (1994) 807-809.
    [94]J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material, Applied Physics Letters,73 (1998) 729-731.
    [95]T.-Y. Cho, C.-L. Lin, C.-C. Wu, Microcavity two-unit tandem organic light-emitting devices having a high efficiency, Applied Physics Letters,88 (2006) 111106-111106-111103.
    [96]Y. Divayana, B.J. Chen, X.W. Sun, T.K.S. Wong, K.R. Sarma, X. Hu, Hole injection or blocking? The role of CuPc in Alq3-based organic light-emitting devices, Journal of Crystal Growth, 288 (2006)105-109.
    [97]S.M. Tadayyon, H.M. Grandin, K. Griffiths, P.R. Norton, H. Aziz, Z.D. Popovic, CuPc buffer layer role in OLED performance:a study of the interfacial band energies, Organic electronics, 5(2004)157-166.
    [98]I.G. Hill, A. Kahn, Combined photoemission/in vacuo transport study of the indium tin oxide/copper phthalocyanine/N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'biphenyl-4,4" diamine molecular organic semiconductor system, Journal of applied physics,86 (1999) 2116-2122.
    [99]H. Vestweber, W. Rieβ, Highly efficient and stable organic light-emitting diodes, Synthetic metals,91 (1997)181-185.
    [100]H. Aziz, Z.D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, Degradation mechanism of small molecule-based organic light-emitting devices, Science,283 (1999) 1900-1902.
    [101]T. Zhang, L. Piao, S. Zha, C. Jiang, Z. Xu, L. Gao, Q. Wu, C. Kong, Soluble Copper Phthalocyanine Applied for Organic Solar Cells, Journal of Nanoscience and Nanotechnology,11 (2011)9641-9644.
    [102]J.W. Huh, J. Moon, J.W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C.W. Joo, J.-I. Lee, H.Y. Chu, Organic/metal hybrid cathode for transparent organic light-emitting diodes, Organic Electronics,14 (2013) 2039-2045.
    [103]M. Mahajeri, M. Voigt, R.N. Klupp Taylor, A. Reindl, W. Peukert, Evaluation of the film formation and the charge transport mechanism of indium tin oxide nanoparticle films, Thin Solid Films,518 (2010) 3373-3381.
    [104]M. Uchida, Y. Ohmori, T. Noguchi, T. Ohnishi, K. Yoshino, Color-variable light-emitting diode utilizing conducting polymer containing fluorescent dye, JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS,32 (1993) L 921-L 921.
    [105]J. Cao, L. Wang, J.-h. Zhang, Examining micro-cavity parameters of top emission organic light-emitting diode with low-order resonant modes, Journal of Shanghai University (English Edition),15 (2011) 235-238.
    [106]Y. Guang, Z. Su-Ling, X. Zheng, Z. Fu-Jun, K. Chao, Z. Hai-Na, S. Dan-Dan, X. Xu-Rong, Electroluminescence quenching mechanism in Rubrene doped host—guest system, Chinese Physics B,19 (2010) 037804.
    [107]Y. Guang, Z. Suling, X. Zheng, Z. Fujun, K. Chao, L. Xiaodong, G. Wei, X. Xurong, The effect of PCBM doping on the electroluminescent performance of organic light-emitting diodes, in: Vacuum Electron Sources Conference and Nanocarbon (IVESC),2010 8th International, IEEE,2010, pp.292-293.
    [108]G. Yan, S. Zhao, Z. Xu, F. Zhang, C. Kong, L. Gao, X. Xu, The enhanced performance of organic light-emitting diodes by using PCBM as the anode modification layer, Physica B: Condensed Matter,406 (2011) 1845-1848.
    [109]杨辉,王振交,席曦,艾凡凡,乔琦,季静佳,李果华,缓冲层ZnPc对有机电致发光器件特性的影响,JOURNAL OF SYNTHETIC CRYSTALS,36 (2007) 1363-1366.
    [110]E. Breval, H. Mckinstry, D. Agrawal, New [NZP] materials for protection coatings. Tailoring of thermal expansion, Journal of materials science,35 (2000) 3359-3364.
    [111]D. Berner, H. Houili, W. Leo, L. Zuppiroli, Insights into OLED functioning through coordinated experimental measurements and numerical model simulations, physica status solidi (a), 202 (2005) 9-36.
    [112]J. Chen, D. Ma, Investigation of charge-carrier injection characteristics in NPB/Alq3 heterojunction devices, Chemical physics,325 (2006) 225-230.
    [113]A. Uddin, C. Lee, X. Hu, T. Wong, Interface injection-limited carrier-transport properties of Alq 3, Applied Physics A:Materials Science & Processing,78 (2004) 401-405.
    [114]J. Huang, Z. Xu, S. Zhao, Z. Zhang, P. Wang, Z. Zheng, Exciton dissociation in solid-state cathodoluminescence, Physica B:Condensed Matter,404 (2009) 1595-1597.
    [115]H.N. Zhu, Z. Xu, F.J. Zhang, S.L. Zhao, Z.B. Wang, D.D. Song, Y.F. Zhang, Study on Photoluminescence Quenching of Quantum Well Structure Devices under Reverse Voltage, Spectroscopy and Spectral Analysis,30 (2010) 304-307.
    [116]S.W. Feng, C.T. Chung, C.I. Wu, M.C. Shih, C. Huang, P-194:Studies of Carrier Dynamics and Luminescence Mechanisms of C545T-doped Alq3, in:SID Symposium Digest of Technical Papers, Wiley Online Library,2012, pp.957-960.
    [117]Y. Luo, H. Aziz, Correlation Between Triplet-Triplet Annihilation and Electroluminescence Efficiency in Doped Fluorescent Organic Light-Emitting Devices, Advanced Functional Materials,20 (2010) 1285-1293.
    [118]J.-H. Lee, J. Huang, C.-C. Liao, P.-J. Hu, Y. Chang, Operation lifetimes of organic light-emitting devices with different layer structures, Chemical physics letters,402 (2005) 335-339.
    [119]T.-Y. Chu, O.-K. Song, Hole mobility of N,N[sup [prime]]-bis(naphthalen-1-yl)-N,N[sup [prime]]-bis(phenyl)benzidine investigated by using space-charge.limited currents,Applied Physics Letters,90(2007)203512-203513.
    [120]S.W.Culligan,A.C.A.Chen,J.U.Wallace,K.P. Klubek,C.W:Tang,S.H.Chen,Effect of Hole Mobility Through Emissive Layer on Temporal Stability of Blue Organic Light-Emitting Diodes,Advanced Functional Materials,16(2006)1481-1487.
    [121]H.Mu,D.Klotzkin,A.de Silva,H.P.Wagner,D.White,B.Sharpton,Temperature dependence of electron mobility,electroluminescence and photoluminescence of Alq3 in OLED, Journal of Physics D:Applied Physics,41(2008)235109.
    [122]H.Mu,D.Klotzkin,Measurement of Electron Mobility in Alq3 From Optical Modulation Measurements in Multilayer Organic Light-Emitting Diodes,Display Technology,Joumal of, 2 (2006)341-346.
    [123]H.Park,D.-S.Shin,H.-S.Yu,H.-B.Chae,Electron mobility in tris(8-hydroxyquinoline) aluminum(Alq3)films by transient electrolumineseence from single layer organic light emitting diodes,Applied Physics Letters,90(2007)202103-202103-202103.
    [124]N.Blouin,A.Michaud,D.Gendron,S.Wakim,E.Blair,R.Neagu-Plesu,M.Belletete,G. Durocher,Y. Tao,M.Leclere,Toward a Rational Design of Poly(2,7-Carbazole)Derivatives for Solar Cells,Journal ofthe Ameticall Chemical Society,130(2007)732-742.
    [125]N.Blouin, A.Michaud,M.Leclerc,A Low-Bandgap Poly(2,7-Carbazole)Derivative for Use in High-Performance Solar Cells,Advanced Materials,19(2007)2295-2300.
    [126]K.X.Steirer,P.F.Ndione,N.E.Widjonarko,M.T. Lloyd,J.Meyer,E.L.Ratcliff,A.Kahn, N.R.Armstrong,C.J.Curtis,D.S.Ginley,J.J.Berry,D.C.Olson,Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers,Advanced Energy Materials,1 (2011)813-820.
    [127]M.Valadares,I.Silvestre,H.D.R.Calado,B.R.A.Neves,P.S.S.Guimaraes,L.A.Cury, BEHP-PPV and P3HT blends for light ernitting devices,Materials Science and Engineering:C,29 (2009)571-574.
    [128]D.Romero,M.Schaer,L.Zuppiroli,B.Cesar,B.Francois,Effects of doping in polymer light-emitting diodes,Applied Physics Letters,67(1995)1659-1661.
    [129]A.Roige,M.Campoy-Quiles,J.Osso,M.Alonso,L.Vega,M.Garriga,Surface vs bulk phase transitions in semiconducting polymer films for OPV and OLED applications,Synthetic metals,161(2012)2570-2574.
    [130]X.Feng,C.Huang,V. Lui,R.Khangura,Z.Lu,Ohmic cathode for low-voltage organic light-emitting diodes,Applied Physics Letters,86(2005)143511-143511-143513.
    [131]J.Y.Lee,J.H.Kwon,Enhanced hole transport in C60-doped hole transport layer,Applied Physics Letters,88(2006)183502-183502.183503.
    [132]J.Y. Lee,Efficient hole injection in organic light-emitting diodes using C60 as a buffer layer for Al reflective anodes,Applied Physics Letters,88(2006)073512-073512-073513.
    [133]M.B.Khalifa,D.Vaufrey,A.Bouazizi,J.Tardy,H.Maaref,Hole injection and transport in ITO/PEDOT/PVK/Al diodes,Materials Science and Engineering:C,21(2002)277-282.
    [134]T.H.Lee,K.L.Tong,S.K.So,L.M.-L.Leung,High-mobility hole.transporting polymers for electroluminescence applications,Japanese journal of applied physics,44(2005)543.
    [135]Y. Li,B.-X.Li,W.-Y Tan,Y. Liu,X.-H.Zhu,F.-Y.Xie,J.Chen,D.-G. Ma,J.Peng,Y. Cao, Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic-light emitting diodes, Organic electronics, (2012).
    [136]M. Pfeiffer, K. Leo, X. Zhou, J.S. Huang, M. Hofmann, A. Werner, J. Blochwitz-Nimoth, Doped organic semiconductors:Physics and application in light emitting diodes, Organic electronics, 4(2003)89-103.
    [137]M. Pfeiffer, S.R. Forrest, K. Leo, M.E. Thompson, Electrophosphorescent pin organic light-emitting devices for very-high-efficiency flat-panel displays, Advanced Materials,14 (2002) 1633-1636.
    [138]M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules:A systematic Seebeck and conductivity study, Applied Physics Letters,73 (1998) 3202-3204.
    [139]M. Leclerc, J.-F. Morin, Design and synthesis of conjugated polymers, Wiley-VCH,2010.
    [140]S. Cho, J.H. Seo, S.H. Park, S. Beaupre, M. Leclerc, A J. Heeger, A thermally stable semiconducting polymer, Advanced Materials,22 (2009) 1253-1257.
    [141]闫光,赵谡玲,徐征,张福俊,孔超,刘晓东,龚伟,高利岩,一种新型稀土配合物Eu(TTA)(2NH-2-Phen)3的发光特性研究,光谱学与光谱分析,29(2009).
    [142]岳欣,徐征,张福俊,赵谡玲,宋丹丹,闫光,胡涛,S.Wageh,两种磷光材料在聚合物掺杂体系中的发光特性研究,光谱学与光谱分析,(2010)599-602.
    [143]F. Li, Z. Chen, C. Liu, Q. Gong, Improvement in performance of organic light-emitting diodes by adjusting charge-carrier mobility in organic/inorganic hybrid hole transporting layer, Chemical physics letters,412 (2005) 331-335.
    [144]S.J. Martin, G.L. Verschoor, M.A. Webster, A.B. Walker, The internal electric field distribution in bilayer organic light emitting diodes, Organic electronics,3 (2002) 129-141.
    [145]T. Beierlein, B. Ruhstaller, D. Gundlach, H. Riel, S. Karg, C. Rost, W. Riess, Investigation of internal processes in organic light-emitting devices using thin sensing layers, Synthetic metals,138 (2003) 213-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700