用户名: 密码: 验证码:
竹炭净化文物保存微环境中低浓度二氧化硫工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然室内环境中二氧化硫浓度很低但依然会对文物产生极大损伤,而且还可能增强其他污染物对文物的损伤。因此,研究适用于馆臧文物保存环境空气净化的技术需予以特别关注
     本文围绕竹炭对文物保存环境中微量二氧化硫的净化展开研究,比较了竹炭粒径、竹炭量、入口浓度、停留时间等不同操作条件下对SO2净化效果的影响;通过对吸附曲线的拟合分析获得竹炭对SO2的吸附容量并建立了竹炭使用寿命的数学模型;为进一步强化吸附作用,比较了竹炭超声改性和微波改性的效果,提高了其SO2的净化效果;通过SEM和EDS分析了改性前后竹炭表面的孔隙特征及C、O元素含量之比,分别考察了在水、有机酸或NOx存在的情况下竹炭对SO2吸附净化效果;通过XPS、FTIR和Boehm滴定分析了官能团吸附机理的关系;基于实际应用,将空气净化和湿度调节两者结合,研究了净化过程和调湿过程之间的相互影响。结果表明;当竹炭量为11 g,入口流速为1 L/min时,竹炭的净化效果最高,接近100%;经过超声改性法和微波改性法处理的1g竹炭对52 ppbSO2的净化效果也能达98%以上,且微波改性法略优于超声改性;竹炭对SO2的净化在相对湿度为40%到60%的情况下表现最佳,低浓度的NOx和有机酸对竹炭净化SO2没有明显影响;竹炭表面的C-O-和C=O基团的含量与其净化作用有很大关联。
SO2 not only damages the cultural relics greatly by itself,but also enhances the corrosion of cultural relics together with other aerosol pollutants even though the SO2 concentration is very low in the indoor environment.Therefore it must be paid special attention to air purification technology for preserving the heritage.
     This thesis focused on the sulfur dioxide purification in the micro-environment to preserve cultural relics by bamboo charcoal.SO2 purification efficiency was studied under different operation conditions,such as charcoal size,charcoal amount,inlet concentration or residence time.Through the fitting analysis of SO2 adsorption curve,adsorption capacity of bamboo charcoal was obtained and the mathematical model was established to calculate the life span of bamboo charcoal.Original bamboo charcoals were modified by means of ultrasound and microwave in order to further increase the adsorption efficiency.The charcoal surface characteristics,including pore nature.the ratio of carbon and oxygen content,were measured by SEM and EDS analysis and compared before and after modification.The SO2 adsorption efficiency on charcoal were investigated in the presence of water,organic acids or NOx respectively.The correlation between functional groups and adsorption mechanism were discussed by XPS,FTIR and Boehm titration.The air purifer and humidity controller were combined to study their interaction.Results indicated that:the highest purification efficiency,nearly 100% was achieved in the case of 11 grams charcoal,the inlet flow rate of 1L/min.The modification by ultrasonic and microwave treatment can increase the purification efficiency to be 98% for 52 ppb SO2 when 1 gram bamboo charcoal was used.Furthermore,the microwave method acts slightly better than ultrasonic modification.The best SO2 removal rate was found when relative humidity ranged between 40% and 60%,SO2 purification efficiency was not significantly impacted by low concentrations NOx or organic acids.The functional groups of C-O- and C=O in the charcoal surface had great relevance with SO2 purification.
引文
[1]王岩孙.山西古代壁画损毁成因及其保护[J].文物世界.2003(2):55-56.
    [2]罗红.论文物环境对文物保护的影响[J].山西大同大学学报(自然科学版).2008,24(5):30-31,37.
    [3]马涛,马宏林.陕西遗址,陵墓博物馆文物保存环境研究[J].陕西环境.2003,10(5):10-13.
    [4]Pavlogeorgatos G..Environmental parameters in museums[J].Building and Environment.38 (2003),1457-1462.
    [5]Thomson G.The museum environment[M]. London:Butterworths,1986.
    [6]Camuffo D..Microclimate for cultural heritage.Amsterdam:Elsevier.1998:235-292.
    [7]荣海琴,郑经堂,王茂章.室内空气中挥发性有机化合物及多孔炭材料在其脱除中的应用[J].环境科学进展.1999,7(6):104-109.
    [8]黄强,潘鼎,黄永秋.活性炭纤维在治理水和大气污染中的应用[J].化工新型材料.2002,30(8):32-34.
    [9]李长连.负离子发生器在母婴同室净化空气中的应用研究[J].中华医院感染学杂志.1999,9(3):168-169.
    [10]蒋耀庭,潘丽娜,金德林等.人工负离子净化舰艇舱内空气的效果研究[J].环境与健康杂志.1999,16(5):277-279.
    [11]Yinping Zhang, Jinhan Mo, Yuguo Li, et al.Can commonly-used fan-driven air cleaning technologies improve indoor air quality?A literature review[J].Atmospheric Environment.2011 (45):4329-4343.
    [12]龚圣,黄肖容,隋贤栋.室内空气净化技术[J].环境污染治理技术与设备.2004,5(4):55-58.
    [13]Lee C.H., Zou S.C., Mak S.C., et al,.Inhibition effect of SO2 on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion (ppb) level by TiO2[J].Applied Catalysis BEnvironmental.2004 (49):187-193.
    [14]Beko G., Clausen G., Weschler C.J.,.Sensory pollution from bag filters, carbon filters and combinations[J].Indoor Air.2008 (18):27-36.
    [15]Hodgson A.T., Destaillats H., Sullivan D.P., et al. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.Indoor Air.2007 (17):305-316.
    [16]Kujundzic E., Matalkah F., Howard C.J., et al.UV air cleaners and upper-room air ultraviolet germicidal irradiation for controlling airborne bacteria and fungal spores [J]. Journal of Occupational and Environmental Hygiene.2006 (3):536-546.
    [17]Van Durme J., Dewulf J., Demeestere K., Leys C., Van Langenhove H. Postplasma catalytic technology for the removal of toluene from indoor air:effect of humidity[J]. Applied Catalysis B:Environmental.2009 (87):78-83.
    [18]中国室内装饰协会室内环境监测工作委员会编.室内环境污染治理技术与应用[M].北京:机械工业出版社,2006.
    [19]韩桂泉,季营琰,苏哗等.室内空气净化材料介绍[J].住宅科技.2006(12):41-45.
    [20]蔡健,胡将军,张雁.改性活性碳纤维对甲醛吸附性能的研究[J].环境科学与技术.2004,27(3):16-17,19.
    [21]郝晶玉,刘宗怀.纳米二氧化钛光催化剂的研究进展[J].钛工业进展.2007,24(1):36-41.
    [22]向芸,杨世源,梁晓峰,等.光催化剂纳米Ti02改性技术的研究进展[J].材料导报.2006,20(1):57-60.
    [23]Sun Aihua, Zhang Gencheng, Xu Yiming.Photobleaching of metal phthaloeyanine sulfonates under UV and visible light irradiation over TiO2 semiconductor[J].Mater Lett.2005, 59 (29-30):4016-4019.
    [24]Xie Yibing, Yuan Chunwei, Li Xiangzhong.Photocatalytie degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system[J].Colloids and Surfaces A:Physicochemical and Enneering Aspects.2005,252 (1):87-94.
    [25]王雨群,贾祥焱,张云龙.纳米生态酶空气材料及其在空气净化器中的应用[J].江苏建筑.2005(4):36-38,51.
    [26]陆银兰,杨建忠.ACF负载纳米Ti02空气净化材料的应用研究[J].天津纺织科技.2006(4):22-23,27.
    [27]余亚白,陈源,赖呈纯等.室内空气净化植物的研究与利用现状及应用前景[J].福建农业学报.2006,21(4):425-429.
    [28]Yu Yabai, Chen Yuan, Lai Chengchun, et Fjian Journal of Agricultural Sciences.2006, 21 (4):425-429.
    [29]徐晖,王燕,魏密苏.环境工程中固定化酶与固定化微生物的应用[J].沧州师范专科学校学报.2002,18(3):42.
    [30]Kei M., Toshitatsu M..Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology.2004:255-257.
    [31]周琼.竹炭对水溶液中Cr(Ⅵ)的吸附特性及动力学研究[J].工业用水与废水.2009,40(5):61-63.
    [32]Zhang Qisheng, Jiang Shuhai, Huang Helang, et al. MECHANISM AND SCIENCE OF BAMBOO CHARCOAL AND BAMBOO VINEGAR[M].Beijing:China Forestry Publishing House,2001.6-15.
    [33]徐亦刚,石利利.竹炭对2,4-二氯苯酚的吸附特性及影响因素研究[J].农村生态环 境.2002,18(1):35-37
    [34]周建斌,邓丛静,傅金和,张齐生.纳米TiO2改性竹炭对空气中苯的吸附与降解[J].南京林业大学学报(自然科学版).2008,32(6):5-9.
    [35]刘楠,刘淼,刘小雪等.改性活性氧化铝对硫化氢吸附的研究[J].东北师大学报(自然科学版).2010,42(1):102-105.
    [36]李正西.炼油厂液化气脱有机硫措施[J].石油炼制与化工.1996,27(11):27-30.
    [37]邱晓林.炼油厂液化石油气(LPG)脱硫醇技术新进展[J].河北化工.1999,(4):7-10.
    [38]王会娜.中温羰基硫水解催化剂制备及其动力学研究[D].太原:太原理工大学,2007.
    [39]王芳芳,伍星亮,赵海等.干法脱除煤气中有机硫的研究现状与进展[J].煤化工.2007,3:29-32
    [40]郭鹏,葛晓陵等.吸附法在室内空气净化中的应用[J].环境科学与技术.2003,26:60-61.
    [41]Kouichi Miura, et al. Simultaneous removal of COS and H2S from coke oven gas at low temperature by use of an iron oxide[J].Ind End Chem Res.1992,31:415-419.
    [42]高志华,李春虎.纳米铁基催化剂活性组分制备条件对COS催化活性的影响[J].煤炭转化.1997,20(3):91-95.
    [43]张金昌,李学令,王树东,等.改性活性炭低温脱除COS的实验研究[J].辽宁化工.1998,27(2):102-104.
    [44]MILLWARD G R, EVANS H E, JONES I P, et al.The influence of carbonyl sulphide on the inhibition of filamentary carbon deposition on stainless steel [J].Materials and Corrosion.2003,54:864-869.
    [45]周中平,赵寿堂,朱立等.室内污染检测与控制.北京:化学工业出版社.2002,52-53,314-321
    [46]张文丽,徐东群,崔九思.空气细颗粒物(PM25)污染特性及其毒性机理的研究进展[J].中国环境监测.2002,18(1):59-63.
    [47]Jo Wan Kuen, Park Jung Hoon, Chun Hee Dong.Photocatalytic destruction of VOCs for in vehicle air cleaning[J]. Journal of Photochemistry and Photobiology A:Chemistry.2002, 148:109-119.
    [48]尹维东,刘来红,乔惠闲等.室内空气污染物的净化[J].环境污染治理技术与设备.2002,3(2):52-54.
    [49]Saraga D., Pateraki S., Papadopoulos A., et al.studying the indoor air quality in three non-residential environments of different se:A museum, a printery industry and an office [J].Building and Environment 2011, (46):2333-2341.
    [50]Camuffo D., Brimblecombe P., Grieken R.V., et al.Indoor air quality at the Correr Museum, Venice, Italy [J]. Science of the Total Environment,1999,236:135-152.
    [51]陈元生,解玉林.博物馆文物保存环境质量标准研究[J].文物保护与考古科学.2002,14:152-191.
    [52]张月玲.中国国家博物馆环境空气质量监测报告[J].文物保护与考古科学.2006,18(2):41-45.
    [53]Maria La G., Gianfranco R., Gianluca S., Francesco N..Control of indoor environments in heritage buildings;experimental measurements in an old Italian museum and proposal of a methodology[J].Journal of Cultural Heritage.2005 (6):147-155.
    [54]Spedding D J, Rowlando R P. Sorption of sulfur dioxide by indoor surfaces[J].Ap Chem.1970,20:143-146.
    [55]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002.
    [56]张秀云,郑继成.国内外烟气脱硫技术综述[J].电站系统工程.2010,26(4):1-2.
    [57]Camuffo D., Brimblecombe P., Grieken R.V., et al.Indoor air quality at the Correr Museum, Venice, Italy.Science of the Total Environment.1999,236:135-152.
    [58]彭会清,胡海样,赵根成.活性炭材料用于烟气脱硫的研究进展[J].能源工程.2003,27(4):29-33.
    [59]张爱莉,朱义年,纪锐琳,佟小薇,王敦球,张学洪.竹炭对氨氮的吸附性能及其影响因素的研究[J].环境科学与技术.2008,31(6):19-22.
    [60]周琼.竹炭对水溶液中Cr(Ⅵ)的吸附特性及动力学研究[J].工业用水与废水.2009,40(5):61-63.
    [61]Tsai J H, Jeng F T, Chang H L.Removal of H2S from exhaust gas by use of alkaline activated calbon[J].Adsorption.2001,7 (8):357-366.
    [62]LumLey J.L..Drag reduction in turbulent flow by polymer additives[J] Journal of Polymer Science, Macromolecular Reviews.1973, (7):263-290.
    [63]Tung T.T., Ng K.S., Hartnett J.P.Pipe friction factors for concentrated aqueous solutions of polyacrylamide[J]. Letters in Heat and Mass Transfer.1978,5 (1):59-69.
    [64]Bockchoon Pak., Young I.C., Stephen U.S..Study of turbulent heat transfer in a sudden-expansion pipe with drag-reducing viscoelastic fluid[J].International Journal of Heat and Mass Transfer.1991,34 (4-5):1195-1208.
    [65]Mochida I., Kishino M., et al.Regeneration of initial activity of a pitch-based ACF for NO-NH3 reaction at ambient temperature [J]. Fuel.1998,77 (15):1741-1746.
    [66]Kisamori S., Kuroda K., Kavano S., Mochida L.Oxidative removal of SO2 and recovery of H2SO4 over poly (acrylonitrile)-based activated carbon fibers[J].Energy and Fuel.1994, 8 (6):1337-1340.
    [67]周珊,陈斌,王佳莹等.改性竹炭对氨氮的吸附性能研究[J].浙江大学学报.2007,33(5):584-590.
    [68]徐浩东,宁平,蒋明等.净化PH3和H2S气体改性活性炭的制备与表征[J].环境科学学报.2008,28(7):1365-1369.
    [69]周建斌,张合玲,张齐生.KOH改性活性炭对木糖液脱色性能的研究[J].食品与发酵工业.2009,35(3):95-99.
    [70]谭小耀,李秀贞,吴迪镛等.改性活性炭低温催化氧化脱除H2S的研究[J].石油化工.1995,24:716-721.
    [71]马晓迅,张美华.改性活性炭吸附H2S测定及动力总传质系数的学研究[J].化学工程.1993,21(2):60-65.
    [72]范顺利,孙建辉,李红星等.改性活性炭的吸附性能变异探讨[J].河南师范大学学报.1995,23(4):48-50.
    [73]徐浩东,宁平,蒋明等.净化PH3和H2S气体改性活性炭的制备与表征[J].环境科学学报,2008,28(7):1365-1369.
    [74]叶平伟,栾志强,张忠良等.微波加热对活性炭表面性质的影响[J].炭素技术.2004,2(23):5-9.
    [75]Han Ying Li, Jing Zhi Sun, Wang Youwen, et al..Carbyne contamination in carbon-coated TEM microgrids made from vacuum-resistive heating deposition from a graphite rod[J].Materials Characterization.2004 (52):77-80.
    [76]Jon U., Uma G., Annick H., et al Herman Terryn.Electrodeposition of Ag nanoparticles onto carbon coated TEM grids A direct approach to study early stages of nucleation[J].Electrochemistry Communications.2010 (12):1706-1709.
    [77]Branca C., Corsaro C., Frusteri F., Magazu V., et al.Structural and vibrational properties of carbon nanotubes by TEM and infrared spectroscopy[J].Diamond and Related Materials, 2004(13):249-1253.
    [78]Qi-Lin, Shu-Ying Gu, Jing-Hua Gong, et al.SEM/STM studies on the surface structure of a novel carbon fiber from lyocell[J].Synthetic Metals.2006,156:792-795.
    [79]Berrin T., Pradeep N..SEM study of phenolphthalein adsorption on granular activated carbon[J].Advances in Environmental Research.2004,8:411-415.
    [80]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002:66-77
    [81]吴刚.材料结构表征及应用[M].北京:化学工业出版社,2002.347-349
    [82]Takahagi T. and Ishitani A..XPS study on the surface structure ofcarbon fibers using chemical modification and Cls line shape analysis[J].Carbon.1988,26 (3):389-396.
    [83]周玉,武高辉.材料分析测试技术—材料x射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,1998.2-5.
    [84]周建斌.竹炭环境效应及作用机理的研究[D].南京:南京林业大学,2005.
    [85]Tuistra F., Koeing J.L..Characterization of Graphite Fiber Surfaces with Raman Speetroscopy[J].J.Composite Materials.1970,4:492-499.
    [86]黄惠忠.纳米分析技术[M].北京:化学工业出版社,2003:1-2.
    [87]朱宏伟,吴得海,徐才录.碳纳米管[M].机械工业出版社,2003.67-69.
    [88]叶平伟,栾志强,张忠良等.微波加热对活性炭表面性质的影响[J].炭素技术.2004,2(23):5-9.
    [89]Boehm.Acidity of carbon characterized by their continuous pH[J].Carbon.1977,35 (1): 83-94.
    [90]Dishun Zhao, Juan Zhang, et al. Adsorption equilibrium and kinetics of dibenzothiophene from noctane on bamboo charcoal[J].Applied Surface Science.2008,254: 3242-3247.
    [91]张爱莉,朱义年,纪锐琳,佟小薇,王敦球,张学洪.竹炭对氨氮的吸附性能及其影响因素的研究[J].环境科学与技术.2008,31(6):19-22.
    [92]周琼.竹炭对水溶液中Cr(Ⅵ)的吸附特性及动力学研究[J].工业用水与废水.2009,40(5):61-63.
    [93]金红芳,徐威毅,黄丽敏,胡俊磊.甲醛吸收.副玫瑰苯胺分光光度法测定环境空气中二氧化硫误差的数学模型探讨[J].上海计量测试.2006,5:25-27.
    [94]郭鹏,葛晓陵等.吸附法在室内空气净化中的应用[J].环境科学与技术.2003,26:60-61.
    [95]姜树海.博士后研究报告.竹炭的吸附特性及其对水净化机理的研究[J].南京林业大学,2002:19-33。
    [96]刘洪波,张红波,伍恢和等.竹节制各高比表面积活性炭的研究[J].林产化学与工业.2001,21(4):63-74。
    [98]吴巧玲.竹炭的开发与用途[J].中国林副特产.2000,52(1):39.
    [99]张文标,叶良明,张宏等.竹炭生产和应用[J].竹子研究汇刊.2001,20(2):49-54.
    [100]汪奎宏.竹类资源利用现状及深度开发[J].竹子研究汇刊.2000,19(4):72-75.
    [101]姜树海,张齐生,蒋身学.竹炭材料的有效利用理论与应用研究进展[J].东北林业大学学报.2002,30(4):53-56.
    [102]胡永煌.竹炭、竹醋液的生产技术及应用开发研究进展[J].林产化学与工业.2002,22(3):79-83.
    [103]彭会清,胡海样,赵根成.活性炭材料用于烟气脱硫的研究进展[J].能源工程.2003,27(4):29-33.
    [104]李开喜,吕春祥,凌立成.活性炭纤维的脱硫性能[J].燃料化学学报.2002,30(1):89-96.
    [105]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1989.
    [106]谭增强,刘豪,邱建荣等.竹炭低温脱除SO2的试验研究[J].动力工程学报.2010,(11):883-888.
    [107]林轩,张平民,尹周澜等.纳米Sm2O3的表面改性研究[J].化学世界.2006,(8)454-458.
    [108]林轩,张平民,尹周澜等.纳米SnO2的表面改性研究[J].化工进展.2005,24(4);395-398.
    [109]黄健花,王兴国,金青哲等.超声波改性OTMAC凹凸棒土吸附苯酚[J].水处理技术.2005,31(9):61-64.
    [110]刘锋,张康助,王晓洁.碳纤维界面改性的研究[J].高科技纤维与应用.2005,30(4):22-26.
    [111]赵斌,王小治,王宜鑫等.表面活性剂用量对有机膨润土稳定性的影响[J].安全与环境学报.2008,8(4):36-39.
    [112]陈天虎.王健.庆承松等.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报.2006,34(Ⅱ):1406-1410.
    [113]刘丽,张翔,黄玉东,姜彬等.超声作用对芳纶纤维表面性质的影响[J].复合材料学报.2003,20(2):35-40.
    [114]王剑虹,严莲荷.微波技术在环境保护领域中的应用[J].工业水处理.2003,23(4):18-22.
    [115]郑英等.微波在矿物处理过程中的应用[J].铀矿冶.2002,21(3):151-153.
    [116]马双忱.微波改性活性炭用于烟气脱硫脱硝的实验研究[J].燃料化学学报.2010,36(6):739-744.
    [117]曹晓强等.微波改性活性炭对甲苯吸附性能的实验研究[J].西安建筑科技学院学报(自然科学版).2008,40(2):249-253.
    [118]Menendez J A., Menendez E M., Pis J J..thermal treatment of activated carbons:A comparison between microwave and electrical heating[J].Journal of Microwave Power and Electromagnetic Energy.1999,34 (3):137-143.
    [119]蒋文举,江霞,朱晓帆,等.微波加热对活性炭表面基团及吸附性能的影响[J].林产化学与工业.2003,23(1):39-42.
    [120]张利波,彭金辉,夏洪应,等.微波加热碳酸钾法制备烟杆基高比表面积活性炭[J].功能材料.2008,39(1):136—138.
    [121]骆俊,普红平.微波技术在活性炭制备中的应用[J].能源与环境.2008(1):86-88.
    [122]史晓燕,肖波,李建芬,等.磷酸-微波法活化树叶制备活性炭的初步研究[J].中国给水排水.2006,22(23):92—94.
    [123]左宋林,滕勇升.KOH活化石油焦制备工艺对活性炭吸附性能的影响[J].南京林业 大学学报(自然科学版).2008,32(3):48-52.
    [124]江霞,蒋文举,朱晓帆,金燕.微波辐照技术在活性炭脱硫中的应用[J].环境科学学报.2004,24(6)1098-1103.
    [125]吴燕,修光利等.竹炭净化文物保存微环境空气低浓度氮氧化物[J].环境科学与管理.2009,34(1):79-83.
    [126]吴博,黄戒介,张荣俊.活性炭(焦)低温吸附催化脱除H2S的基础研究[J].燃料化学学报.2009,37(3):355-359.
    [127]Enmanji Kimie.Long-Lasting Deodorant[P].Japan:J0507615.1993.
    [128]张力,刘伟.活性炭吸附低浓度S02烟气的研究[J].环境保护科学.1998,24(1):8-11.
    [129]袁婉丽,王翠苹,贾少刚.不同生物质活性炭脱除烟气中S02/NOx的实验研究青岛大学学报(工程技术版),2010,25(2):31-34.
    [130]王春慧,晋日亚,池致超,宋相丹.稳定性二氧化氯脱氮除硫实验研究[J].电镀与环保.2011,31(3):42-44.
    [131]王晓明,许绿丝.ACF脱除S02/NOx反应器数学模型的建立[J].环境工程学报.2008,2(6):794-798.
    [132]何启泰,高虎章,崔俊呜.化学防护技术基础[M].北京:兵器工业出版社,1996.
    [133]John F. Watts, Wolstenholme, J著:吴正龙译.表面分析(XPS和AES)引论[M].华东理工大学出版社,2008.4-5.
    [134]张飞龙,周荣秀,李澜等.改性凹凸棒粘土脱硫剂脱除SO2环境污染与防治.2009,31(7):66-70
    [135]haye J.The chemistry of carbon surface[J].Fuel.1998,77 (6):543-547.
    [136]张文标,李文珠,张宏,王伟龙.竹炭、竹醋液的生产与应用[M].中国林业出版,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700